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Abstract. By numerical methods we have found an unstable two-armed density wave on a flat galactic 
model. We present the results in a form of four plots, and briefly discuss the observational implications 
as well as the uncertainties involved in the models and the calculations. 

1. Brief Description of the Calculations 

We have investigated the stability of a flat model galaxy derived from the rotation 
curve of M31 (Van de Hulst etal., 1957). From 4 kpc outward sufficiently high random 
motions were incorporated in the model to make it stable against local axisymmetric 
collapse. To stabilize the inner part rather large orbital eccentricities are required. 
Rather than extrapolate our epicyclic orbits to eccentricities larger than 0.2, we re
duced the response by supposing that only a fraction of the stars participated in the 
collective modes. Such a procedure appears to be qualitatively correct and is consistent 
with the results reported below. The perturbations or modes are assumed to be small 
in amplitude and are found by solving the Poisson and linearized Vlasov equations. 
The solutions of these equations can be written in the form R e [ / l ( r ) exp /(m6 + cot)] 
and are density waves which rotate around the axis of the galaxy with a pattern speed 
= Re(-co/m). The amplitude A(r) and the frequency co are obtained by solving an 
integral equation (Kalnajs, 1965). 

The two armed or m = 2 modes are special for the reasons pointed out by Lindblad 
(1958). We have obtained numerically the largest discrete m = 2 mode. By largest we 
mean that the gravitational interactions associated with it are strongest as measured 
by the shift of the pattern speed ( = 3 0 k m s _ 1 k p c " 1 ) from the kinematical value 
(Q — K/2& 10 km s~ 1 k p c - 1 ) which would obtain if the gravitational effects of the 
perturbation were neglected (Lindblad, 1958). The calculation itself involved the 
replacement of the kernel of the integral equation by a 60 x 60 complex matrix. The 
eigenvector solution was numerically stable. 

After finding a self-consistent mode it is possible to calculate the response of any 
subsystem of the galaxy to it. Since the spiral structure is seen most prominently in 
the gas and objects with the lowest velocity dispersion, we have calculated the density 
response and velocity fields of zero velocity dispersion objects. This is a reasonable 
approximation since the pressure effects in the gas are negligible on the scale of 
kiloparsecs. 

The results are graphically summarized in Figures 1-4. The rotation of the galaxy 
as well as of the pattern is counterclockwise. The amplitude of the latter grows at the 
rate of two powers of e in 10 9 yr. For the sake of clarity only the positive values of 
the perturbed quantities have been printed. The numbers in the figures must be 
multiplied by the indicated scale factors to obtain a consistent set of values. The 
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Fig. 1. Excess mass density. Scale factor is 6.17. 
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Fig. 2. Excess gas density. Scale factor is 0.0557. 
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Fig. 3. Tangential velocity. Scale factor is 2.32. 
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Fig. 4. Radial velocity. Scale factor is 2.42. 
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surface mass density is in solar masses p c " 2 , the velocities are in km s " 1 , and the 
surface gas density is normalized by its equilibrium value. In the calculation the latter 
was assumed to be constant, however a smooth variation with radius will not change 
the pattern significantly. 

The high frequency (co= —60 — 2/) gives rise to two resonances. At the particle 
resonance (inner circle, r = 9 kpc) the stars travel with the wave, whereas at the outer 
resonance (outer circle, r = 14 kpc) the stars see the force field varying at their epicyclic 
frequency. Energy and angular momentum are conserved over the whole disk but 
they are redistributed outward: the stars inside the particle resonances, which move 
faster than the wave, lose both to the stars on the outside of the resonance. An angular 
momentum transfer is already apparent from the trailing nature of the pattern. 

2. Discussion 

The interesting result of these calculations is the strong dependence of the perturbed 
densities on the velocity dispersion of the subsystem. The density wave is essentially 
a bar-like distortion of the central region of the galaxy which drives the gas. The 
tightly wound pattern and large density contrast in the latter are due to the presence 
of the resonances. The position of the resonance is determined by the inner part of 
the model, whereas the growth rate of the pattern depends on the mass density 
chiefly at the outer resonance. A decrease of the latter means a slower growth rate 
which tends to break up the gas pattern into nearly circular arcs around the reso
nance radii. 

Insofar as the model is entirely determined by the rotation curve, the above results 
should apply to our galaxy since the rotation curves are similar (at least from 4 kpc 
outward). The sun's radial position would fall half-way between the two resonances. 
If we take the observed north-south asymmetry in the rotation curve (Kerr, 1964) as 
evidence for the presence of such a mode, then we can explain it if the sun is placed in 
the position s, and the local standard of rest (LSR) has a radial motion which is 
one-half that of the gas, or - 4 k m s _ 1 . The asymmetry also determines the amplitude 
of the mode which is twice as large as that quoted in the figures. If we further assume 
that the LSR moves with the gas in the tangential direction (at 6.5 km s " 1 ) we can 
fill in most of the dip in the rotation curve which occurs at 6.7 kpc. There are other 
features such as the 50 km s " 1 maximum in the radial velocity field in the direction 
of the galactic center which would appear as an outward moving ' a rm ' , the general 
asymmetry with respect to the center, and the fact that the mode is unstable, which 
encourage further investigation. 

There are also many deficiencies, notably those in the equilibrium model and non-
linearities in the gas distribution, which have to be corrected. Small corrections in the 
model arise from the fact that the presence of the mode increases the Oort constants 
of the gas, A, B9 C, and Kby 2.7, 0.7, — 1.7, and —3.5 km s " 1 k p c " 1 respectively. A 
larger uncertainty comes from the central region. The model we used has no central 
condensation which would lead to an inner resonance. 
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The interpretation that leads to the 1965 Schmidt model, which is the commonly 
accepted one, tends to overestimate the central rotation rates. We have repeated the 
above calculation using this model and find that the mode is not very much affected 
in the outer regions ( r > 5 kpc), but is significantly modified in the vicinity of the inner 
resonance point at 2.3 kpc. If an amplitude is chosen to match the outer parts, we 
find non-circular velocities at 2.3 kpc in the range of 100-150 km s " 1 . Such ampli
tudes severely strain the linear theory. The credibility of the result is further lessened 
by our orbit approximations which in the presence of a resonance do become suspect. 
However, viewed as an order of magnitude calculation, the result suggests that a 
bar-like mode of the disk can produce large non-circular motions if a central conden
sation exists, and that the nature of the motions will have to be understood in order 
to obtain a quantitative description of the center. It is conceivable that the wide wings 
on the line profiles near the center are associated with an inner Lindblad resonance, 
which would imply a smaller central concentration than suggested by the Schmidt 
model. 

Another interesting feature of the inner resonance is the coincidence of the maxima 
in gas densities with the maxima in the inward radial velocities. 

A more detailed description of these calculations will be published later. 
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