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Abstract

This paper studies o-polynomials, that is, polynomials which represent hyperovals in Desar-
guesian projective planes of even order. We present theoretical restrictions on the form that
o-polynomials can have, and we determine the number of o-polynomials corresponding to each
of the known classes of hyperovals (other than Cherowitzo's). We use this to give the number
of known o-polynomials for the fields of orders 4, 8, 16 and 32. Exploratory computer searches
for o-polynomials for fields of small orders greater than 16 are reported.

1991 Mathematics subject classification (Amer. Math. Soc.) 51 E 20.

1. Theoretical results

Let PG(2, q) be the projective plane over the field GF{q) of order q, where
q is a power of a prime p . A hyperoval of PG{2, q) is a set of q + 2 points,
no three of which are collinear. An account of hyperovals appears in [5],
but here we note a few relevant definitions and results. Firstly, hyperovals
exist in PG(2, q) if and only if q is even. A hyperoval is regular if it
contains q + 1 points which are the points of a non-degenerate conic in
PG(2, q). Conversely, the points of a non-degenerate conic together with a
unique further point called the nucleus of the conic provide an example of a
hyperoval.

THEOREM 1.1 [5, 8.4.1]. If q = 2 then every hyperoval is regular.
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PROOF. In PG(2, 2) a hyperoval consists of four points, any three of
which form a conic.

By the transitivity of the collineation group PTL(3, q) of PG(2, q) on
quadrangles, every hyperoval can be mapped by an element of PTL(3, q)
to one containing the fundamental quadrangle (1 , 0, 0), (0, 1, 0), (0, 0, 1)
and ( 1 , 1 , 1 ) . A hyperoval which is the image under an element of
/ T L ( 3 , q) of a hyperoval & is equivalent to %?.

We therefore restrict our attention to PG{2, q) with q > 2 and consider
only hyperovals which contain the fundamental quadrangle. The next result
shows that these are related to permutation polynomials, that is, polynomials
which are permutations when regarded as polynomial functions.

THEOREM 1.2 [5, 8.4.2]. A hyperoval (f in PG(2, q) where q > 2 is even
can be written as

2HJ) = { ( ! , ' . fit))- t € GF(q)} U {(0, 1, 0), (0, 0, 1)}
where f is a permutation polynomial of degree at most q - 2 satisfying
/(0) = 0 and / ( I ) = 1. Further, for each s e GF{q), the polynomial / s )

where

is a permutation polynomial.

Permutation polynomials which arise in this way are called o-polynomials
following Cherowitzo [1], and o-polynomials arising from equivalent hyper-
ovals will be called equivalent. If / is an o-polynomial then /(0) = 0
and / ( I ) = 1 imply that / has no constant term and that the sum of the
coefficients of / is 1. Other results concerning the terms appearing in an
o-polynomial are the following three theorems.

THEOREM 1.3 [14; 5, 8.4.2 COROLLARY 1]. The coefficient of each term of
odd power in an o-polynomial is zero.

For the next statement we need the following partial ordering ^ on the
set of integers n where 0 < n < q - 1. If

h-\ h-\

;=o i=o

(where each bi and each ct is either 0 or 1) then b •< c if and only if o, < c(

for all i. In other words, b ^ c if and only if all terms appearing in the
binary expansion of b also appear in the binary expansion of c .
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The main source of importance for this partial ordering is the following
version of the binomial theorem in fields of characteristic 2:

Another way of stating this is

where n = al + a2 H \-ak and the a ; are distinct powers of 2.

THEOREM 1.4 [3]. A polynomial f of degree at most q-2 satisfying
/ ( 0 ) = 0 and / ( I ) = 1 is an o-polynomial if and only if the coefficient of
xc in f(x)b ( m o d * 9 - . * ) is zero for all pairs of integers (b, c) satisfying
1 <b<c<q-\, b^q-l and b^c.

Note that the case b = 1 gives the result of Theorem 1.3. In addition, this
condition can be analysed to give further equations relating the coeificients
of / as follows.

THEOREM 1.5. Let f(x) - J2"il\ aix' and suppose that Y1]Z\ ai ~ *•
Then f is an o-polynomial if and only if for all b with 1 < b < q - 2 and
all c with b <c

k=\

where b = a, + a2 H 1- an, the a are distinct powers of 2 and the sum is
over all ik with c = ££=1 ikak (mod# - 1).

PROOF. The polynomial f(x)b is

By Theorem 1.4, if b <c then the coefficient of xc in the right hand-side
is zero; so

When investigating o-polynomials, two coefficients can often be assumed
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to be equal. More precisely,

THEOREM 1.6. Let f(x) = EfcL~i2)/2 a2kx2k be an o-polynomial such that
for some i and j , with i - j coprime to q - 1, a2l ^ 0 and a2j ^ 0. Then

f is equivalent to an o-polynomial g(x) = Y^k=\^2 ^ik^ w^tn bn = bij
and, for all k, b2k = 0 if and only if a2k = 0.

PROOF. Let f(x) = £it~"i2)/2 alkx
lk with a2i # 0, a2j / 0 and (i-j, q-

1) = 1. The hyperoval 31 (f) is mapped by the homography with matrix
/ I 0 0 \

J?s = 0 s~l 0 \ , se GF(q) - {0}
V0 0 f(s)-lJ

to a hyperoval J?s{3S{f)) which still contains the fundamental quadrangle,
since J^s fixes the points (1 , 0, 0), (0, 1, 0) and ( 0 , 0 , 1) and maps the
point ( 1 , 5 , f(s)) to (1 , 1, 1). Thus the o-polynomial fs of J?s{!&(f)) is
equivalent to / . Since

1 0 0 \ / l \ / 1 \ / 1
s~lt 1 = 1 u

J(sVlf(t)J \f(s)-lf(su).
this o-polynomial is

f(g-2)/2 \ (?-2)/2

f(x) = f(s)-lf(sx)=\ y ; a2,5
2M v <*2JtJ

fc=l J k=\

The ratio of the coefficient of x2' to the coefficient of x2j in fs is
52('~;)(a2/./a27) for 5 e GF(q) - {0}. Since (i - 7, ? - 1) = 1, the ra-
tio takes on q — 1 distinct non-zero values in the q — 1 o-polynomials fs

equivalent to / , and the result follows.

When conducting a computer search for o-polynomials and using this
theorem, each o-polynomial with a2i = a2J, non-zero, gives rise to q - 1
o-polynomials. The number of o-polynomials can be enough to characterize
the hyperovals by using the ideas of Theorem 1.8 below.

COROLLARY. A binomial o-polynomial f(x) = ax2' + bx2J has (i-j, q-
1 ) ^ 1 . In particular, if q - 1 is a prime then there are no binomial o-
polynomials representing hyperovals in PG(2, q).

PROOF. Suppose that f(x) — ax21 + bx2j is a binomial o-polynomial
for PG(2, q) and that (/ - j , q - 1) = 1. The theorem implies that / is
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equivalent to the o-polynomial fs(x) = ax2' + ax2j. But fs(l) = 1 means
that a + a = 1, a contradiction since when q is even, a + a = 0 for any
a e GF(q).

For example, q = 8 and q = 32 have q - 1 prime so hyperovals in
PG(2, 8) or PG{2, 32) can never have a binomial o-polynomial.

An o-polynomial defined over a proper subfield has further restrictions,
as remarked in [3].

THEOREM 1.7. If f is an o-polynomial for PG(2,qr) with coefficients
in GF(q) then f is congruent to an o-polynomial for PG(2,q) modulo
x2" + x2.

PROOF. If / is considered to be a polynomial over GF(q), then it is an
o-polynomial for PG(2, q), since it defines a set of points, no three collinear,
of the correct cardinality. It follows that / = g (modx9 + x) for some o-
polynomial g for PG{2, q). By Theorem 1.3 both / and g are squares,
say / = f2 and g = g\. Now / ,(a)2 = g{{a)2 for all a e GF(q), so
fx{a) = gx(a) for all a £ GF(q). Therefore /j = gx (mod*9 +x); so
f2 = g2 (mod*2" + x 2 ) . (In fact / (* ) = g{x) + r{x)2{x2q + x2) for some
polynomial r(x), since / is a square.)

Another useful observation, due to Cherowitzo [1], is that if Yl%i1>/2 a2ix2'
is an o-polynomial then Y^J\1^2 a2ix2' is an equivalent o-polynomial, where
a is any automorphism of GF{q).

These results can be used to conduct a computer search for o-polynomials,
particularly in small fields. An exhaustive list of o-polynomials for a given
value of q constitutes a means of characterization of the hyperovals of
PG(2, q) for that value of q. For this purpose, it is useful to know how
many o-polynomials are equivalent to a given o-polynomial. This depends
on the particular hyperoval, as is shown in the next result.

THEOREM 1.8. Let ^ be a hyperoval of PG(2, q) where q = 2h and
h>2, containing the fundamental quadrangle (1 , 0, 0), (0, 1, 0), (0, 0, 1)
and (1 , 1, 1). Let the o-polynomial of %? be f and let G denote the
stabiliser of %* in PTL(3,q). Then the number of o-polynomials equivalent
to f is

\)q{q-\)
\G\
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PROOF. The o-polynomials equivalent to / are precisely the o-poly-
nomials associated with the hyperovals which are images under PTL(2>, q)
of %? and which contain the fundamental quadrangle. We find the number
of such hyperovals by counting in two ways the pairs {%?', (?) where %?' is
an image under PTL(3, q) of %? and Q is a quadrangle contained in <%*'.
Letting N denote the number of hyperovals containing a fixed quadrangle
Q which are images under PTL(3, q) of %?, we obtain

and the result follows.

COROLLARY. Table 1 displays, for each of the known hyperovals ff, the
order \G{%?)\ of the stabiliser of that hyperoval and hence the number N{%?)
of equivalent o-polynomials representing that hyperoval. For the details, see
[9]. The known hyperovals of PG(2, q). q = 2h > 4, are the following:

(1) the regular hyperovals 31 = £&(x2);

(2) the translation hyperovals ST = 3>(x2'), where (i,h) = l, [12] ;
(3) the hyperoval 2(xb), where h>5 is odd, [13 , 14] ;
(4) the Lunelli-Sce hyperoval S? = 2{f), where f(x) = xn + x10 +

t]'' xs + x6 + r]2xA + rfx1, q = 16 and r\ is a primitive root satisfying
ti* = r,+ l,[6];

(5) the Glynn hyperovals ^ = ^ ( x 3 a + 4 ) , where h>l is odd and a1 = 2
(modq - I ) , [2]:

(6) the Glynn hyperovals &2 = 2{xa+k), where h > 1 is odd, a2 = 2
(modq - 1), A4 = 2 (mod? - 1) and X2 = a (modq - 1) [2];

(7) the Payne hyperovals & =2r(xl/6+xy6+x5/6), where h>5 is odd
and the exponents are read modulo q - 1, [10];

(8) the Cherowitzo hyperovals & = 3t(xa+xa+2+xi<J+*), where h = 5, 7
or 9 and a2 = 2 (modq - 1), [1].

Let X be a hyperoval containing the fundamental quadrangle Q and with
o-polynomial / . The group of projectivities which stabilises Q has order
24, and any of its elements maps ^ to an equivalent hyperoval. Using this
observation, Cherowitzo [1] gives a list of images of the point (1 , t, f(t))
which implicitly define 24 o-polynomials equivalent to / . In particular he
finds the o-polynomials of Theorem 1.9.

THEOREM 1.9 [1]. The following polynomials g are o-polynomials equiv-
alent to a given o-polynomial f:
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Table 1

hyperoval

regular ^ , 9 = 2 ,4

regular 31, q > 8

irregular translation y

^ ( x 6 ) , 9 = 32

3r(x6),q> 128

Lunelli-Sce &, q = 16

Glynn ^j

Glynn ^ 2 , 9 = 128

Glynn ^2 , 9 > 128

Payne &>

Cherowitzo ^ , 9 = 32

Cherowitzo 9", 9 > 128

|G(-T)|

(9 + 2)(q +

(9 + 1)9(9-

9(9-1)/!

3(9-1)/! =

(ff-l)A

(9 + 2)2/! =

(9-1)/!

3(9 - 1)* =

( 9 - l ) / i

2h

h = 5

divisible by

1)9(9-1)/!

-1)/!

465

144

2667

h

N

1

9 -

(9

(9

(9

(9

(9

(9

(9

(9

(9

<

(-2

+ 2)(9 +

+ 2)(9 +

+ 2)(9 +

+ 1)9(9-

+ 2)(9 +

+ 2)(9 +

+ 2)(9 +

+ 2)(9 +

+ 2)(9 +

(9 + 2)(9

1)

1)9/3 =

1)9

- l ) /2 =

l)/9

1)9/3

1)9

1)9(9-

1)9(9-

+ 1)9(9

11968

2040

l)/2

1)

- 1 )

(2) g(x) = f~ (x);
(5) g(x) = xf(l/x),g(0) = 0;

(11) g(x) = (x+l ) / ( l / ( i+ l ) ) + l
(12) g(x) = x + xf(l + (l/x)),g(0) = 0;
(16) g(x) =x + (x+ l)f(x/(x + 1)) ,g(l) =

as well as each of the above with f replaced by f~l. (Here the numbering
follows that of [I, Result 2]).

If we now consider projectivities fixing ( 1 , 0 , 0 ) , (0, 1, 0) and ( 0 , 0 , 1)

pointwise but not necessarily fixing the point ( 1 , 1, 1) we obtain the follow-

ing.

~{

THEOREM 1.10. If f is an o-polynomial then the following q- 1 polyno-
mials fs are o-polynomials equivalent to f:

/,(*) = f(s)~lf(sx), forse GF(q) - {0}.

PROOF. The homographies with matrix i ^ , J G GF(q) - {0} , introduced
in Theorem 1.6 map the hyperoval 2>(f) to equivalent hyperovals contain-
ing the fundamental quadrangle and hence give q - 1 o-polynomials fs

equivalent to / as in the statement of the theorem.
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THEOREM 1.11. When q>8 the q + 2 equivalent o-polynomials repre-
senting a regular hyperoval are exactly

(1) the 3 monomials x2, x1^2 and x~l,
(2) the q - 1 polynomials

(1-2)12

*,(*)= £ (s+l)s2'-lx21, forszGF(q)-{0}.
1=1

PROOF. A regular hyperoval is represented by the o-polynomial f(x) =
x2. The other two monomials listed in (1) are o-polynomials equivalent to
x1 by Theorem 1.9 (2) and (5). It can be verified that these three are distinct
for q > 8. By Theorem 1.9 (11), the regular hyperoval is also represented
by the o-polynomial

g(x) =
(x + iy x +

The o-polynomial g can also be expressed as g(x) = (x + \)q~2 + 1 =
Z)|iT2)/2 x2' • ^ now follows from Theorem 1.10 that g is equivalent to the
o-polynomials

i=i i=i

By Corollary (2) to Theorem 1.8 there are q + 2 o-polynomials equivalent
to / , and the proof is complete.

2. O-polynomials for PG{2, 4) and PG{2, 8)

THEOREM 2.1. In PG(2, 4) every hyperoval is regular. In particular, there
is a unique o-polynomial f{x) = x2 for PG(2, 4).

PROOF. A hyperoval in PG{2, 4) has six points, any five of which uniquely
determine a conic. By Theorems 1.2 and 1.3, an o-polynomial for PG(2, 4)
has only terms with even powers of x appearing, has degree at most ^ - 2 = 2
and has the sum of coefficients equal to 1. Since f(x) — x2 is an o-
polynomial the result follows.

COROLLARY. The stabiliser of a regular hyperoval in PG(2,4) has order
720, is isomorphic to S6 and acts naturally on the points of the hyperoval.

PROOF. By Theorem 1.4 and (2) above, the stabiliser G of a regular hy-
peroval ; r in PG{2, 4) has order 2(4 + 2)(4 + 1)4(4 - 1). We have a
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homomorphism from G into S6 with kernel the pointwise stabiliser of J " ,
which is trivial. To see that it is onto, note that the orders of G and S6 are
equal.

THEOREM 2.2. In PG(2, 8) every hyperoval is regular. The o-polynomials
for PG(2, 8) are a6x

6 + a4x
4 + a2x

2 where the values of a6, a4, a2 are given
in Table 2. GF(S) has primitive root e where e3 = e2 + 1, and so s7 - 1.

Table 2

0 0 e3 e3 e5 e5 e6 e6 e7 e7

0 e7 e1 e4 e2 e4 e1 e2 0 e7

e7 0 e6 e5 e6 e3 e3 e5 0 e7

PROOF. By Theorems 1.2 and 1.3, an o-polynomial for PG(2, 8) is of
the form a6x

6+ a4x
4 + a2x

2 where a6 + a4 + a2 = 1. Consider the equations
of Theorem 1.5 for the cases b = 3 , c = 3 and b = 3 , c = 7, which are

a\a2 + a2
2a6 = 0 and a\a2 + a\ak = 0

respectively. There are 10 solutions (a6, a4,a2) with a2 + a4 + a6 = 1 to
this system of equations. This can be seen by noting that the system can be
rewritten as [a2

4+a2a6)a2 - 0 and (al + a2a6)a6 = 0 so that the solutions are
the point (0, 1,0) together with the points of the conic a4 = a2a6 . Since
Theorem 1.11 constructs 10 o-polynomials representing regular hyperovals,
it follows that they are the only o-polynomials for PG(2, 8).

Note the curious fact mentioned by Glynn [3] that the triples (a6, a4, a2)
with a6x

6+a4x
4+a2x

2 an o-polynomial themselves form a regular hyperoval
in PG(2, 8).

3. O-polynomials for PG(2, 16)

By Theorems 1.2 and 1.3, an o-po\ynomia\ for PG(2, 16) has the form
14 + 12 + xi0 + * + ax6 + * + ax2

al4x
1 al2x

1 al0x
i a6x

6 a4x* a2x
2

where at € GF (16) for all / and a14 + an+aio + a6 + a4 + a2 = 1. There are

166 = 224 such polynomials, that is, about 17 million. Theorem 1.2 provides
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an easily programmed test of whether or not a given polynomial is an o-
polynomial. The output of a program which deals with all the polynomials
of the above form is given in [8]. Only 2058 of the polynomials are o-
polynomials. This verifies the following result of Hall [4], also obtained by
computer.

THEOREM 3.1 [4]. In PG(2, 16) there are two equivalence classes of hy-
perovals, namely the regular hyperovals giving rise to 18 o-polynomials and
the hyperovals first constructed by Lunelli and See [6] which give rise to 2040
o-polynomials.

COROLLARY. The stabiliser of a Lunelli-Sce hyperoval in PG(2,\6) has
order 144.

PROOF. By Theorem 1.8, the stabiliser has order 4.18.17.16.15/2040.

In fact the stabiliser of the Lunelli-Sce hyperoval was first found in [11],
without using Hall's result. This was used, together with Theorems 1.5 and
1.8 to prove Hall's result without a computer [7].

4. O-polynomials for PG{2, 32)

The hyperovals in PG(2, 32) have not yet been classified, and as a con-
sequence the number of o-polynomials for PG(2, 32) is unknown.

There are 5 known classes of hyperovals in PG(2, 32), giving a lower
bound on the number of o-polynomials. The regular hyperovals provide 34
o-polynomials, the irregular translation hyperovals provide 1122 and the hy-
peroval 3f(x6) gives rise to 11,968. The Payne hyperovals provide 556,512
o-polynomials and the Cherowitzo hyperovals give rise to 1,113,024.

The search space for o-polynomials for PG(2, 32) is at present too large
for an exhaustive computer search to be justifiable. However, the following
smaller searches have been made, with all o-polynomials found coming from
one of the above 5 classes:
- polynomials with coefficients in GF{2) ([1,3]);
- polynomials with one term ([2]).
These two searches were repeated, as well as
- polynomials with 2 to 4 terms;
- some polynomials with 5 terms.

5. Computer searches for hyperovals, q > 32

The following spaces of polynomials over GF(q) were searched for o-
polynomials. In each case, any o-polynomials found correspond to a hyper-
oval belonging to one of the known classes.
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(1)
- polynomials with coefficients in GF(2) ([3]);
- some polynomials with coefficients in GF(4) ([3]);
- polynomials with one term ([2]);
- polynomials with 2 to 3 terms.

(2) PG(2, 128)
- polynomials with one term ([2]);
- polynomials with 3 terms and coefficients in GF{2) ([1]).

(3) PG(2,256)
- polynomials with one term ([2]);
- 2040 o-polynomials for the Lunelli-Sce hyperoval with coeffi-

cients (from GF (16)) considered as elements of G.F(256).
(4) PG(2,5\2)

- polynomials with one term ([2]);
- polynomials with 3 terms and coefficients in GF(2) whose ex-

ponents occur as monomial o-polynomials ([1]).
(5) PG(2,2h), h<2%

- polynomials with one term ([2, 3]).
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