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A MODEL FOR AN EPIDEMIC WITH CONTACT TRACING AND
CLUSTER ISOLATION, AND A DETECTION PARADOX
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Abstract

We determine the distributions of some random variables related to a simple model of an
epidemic with contact tracing and cluster isolation. This enables us to apply general limit
theorems for super-critical Crump–Mode–Jagers branching processes. Notably, we com-
pute explicitly the asymptotic proportion of isolated clusters with a given size amongst
all isolated clusters, conditionally on survival of the epidemic. Somewhat surprisingly,
the latter differs from the distribution of the size of a typical cluster at the time of its
detection, and we explain the reasons behind this seeming paradox.
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1. Introduction

Predicting and controlling the evolution of epidemics has motivated mathematical contribu-
tions for a long time and generated a huge literature; let us merely point to the lecture notes [4]
and references therein. Models involving contact tracing and isolation, which aim at reducing
the transmissibility of infections, have raised significant interest; see in particular [1], [2], [3],
[7], [13], [14], [15], and [17], among others. Below we present a toy model in this framework,
which is clearly oversimplified (many important aspects such as the possibility of recovery, the
age-dependency of the contamination rate, the spatial locations and displacements of infected
individuals are not taken into account) and likely unrealistic for practical applications, but
which is solvable in the sense that many quantities of interest can be computed explicitly.
This model is close to the one introduced recently by Bansaye, Gu, and Yuan [2], as will be
discussed in the final section of this article.

We take into account only infected individuals, implicitly assuming that there is an infi-
nite reservoir of healthy individuals susceptible to becoming infected at some point. There
is no death or recovery, but we distinguish between contagious individuals and those who
have been isolated and have therefore ceased to spread the epidemic. The infected population
grows with time as new individuals are contaminated; we suppose that a newly infected indi-
vidual is always contaminated by a single contagious individual. Imagine further that when
a contamination occurs, it can be either traceable, for instance in the case of a contamina-
tion between two relatives, or untraceable, for instance in the case when it occurs during a
public event involving two unrelated individuals. At any time, there is thus a natural partition
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of the infected population into clusters, where two individuals are parts of the same cluster
if and only if the contamination path between those individuals can be fully traced. Finally,
we suppose that individuals are randomly tested, and when a contagious individual is detected,
then one isolates its entire cluster instantaneously. A newly infected individual is always conta-
gious until it has been isolated, and then it ceases to contaminate further individuals forever. We
stress the distinction between detection, which acts on individuals, and isolation, which follows
from detection of a contagious individual and applies to a whole cluster. Clusters consisting
of contagious individuals are called active, and then isolated after detection of an infected
individual.

We now turn this model into a simple stochastic evolution depending on three parameters,
namely:

• γ > 0, the contamination rate of a contagious individual,

• p ∈ (0, 1), the probability of traceability for a contamination event,

• δ > 0, the rate of detection for a contagious individual.

In words, the probability that a contagious individual at time t contaminates some healthy indi-
vidual during the time interval [t, t + dt] is γ dt, and when this occurs, the probability that the
contamination is traceable is p. Simultaneously, the probability that a contagious individual
is detected during the time interval [t, t + dt] is δ dt. We suppose that these events are mutu-
ally independent, simultaneously for all times and all contagious individuals. In particular, the
probability that an active cluster of size s at time t is put into isolation during the time interval
[t, t + dt] is sδ dt. Finally, we suppose for simplicity that at the initial time t = 0, there is a
single infected individual in the population, which we call the ancestor.

The epidemic eventually stops once all contagious individuals have been isolated, and we
shall see that this occurs almost surely if and only if the rate of detection is greater than or
equal to the rate of untraceable contaminations, i.e. δ ≥ (1 − p)γ . Note that this is independent
of the rate pγ of traceable contaminations. We are mostly interested in the super-critical case
δ < (1 − p)γ when the epidemic survives forever with strictly positive probability.

Our main results in the super-critical regime specify to our setting general limit theorems
for Crump–Mode–Jagers branching processes. They show that the number of active, respec-
tively isolated, clusters counted with some characteristic grows exponentially fast in time with
exponent α = α(γ, p, δ) given by the Malthusian parameter. The limits after rescaling involve
as a universal factor (i.e. independent of the chosen characteristics) the terminal value of the
so-called intrinsic martingale. As a consequence, conditionally on survival of the epidemic, the
empirical distribution of the sizes of active clusters (respectively of isolated clusters) converges
as time goes to infinity. More precisely, we will show that the proportion of clusters of given
size k ≥ 1 amongst all active clusters at time t tends to

ca(1 − δ/ρ)k−1B(1 + α/ρ, k) (1.1)

as t → ∞, whereas this proportion amongst isolated clusters at time t tends to

ci(1 − δ/ρ)k−1B(α/ρ, k + 1), (1.2)

where ρ = δ + pγ , B denotes the beta function, and ca and ci are the normalization factors.
Concretely, the only observable variables at a given time in this model are the isolated

clusters, since, by definition, the active ones have not yet been detected. Our results point
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towards the following rather surprising feature (at least for non-specialists of general branch-
ing processes or structured population models). Since, loosely speaking, isolated clusters are
independent with the same distribution, one might expect that when the epidemic has spread
for a long time, the empirical distribution of the isolated clusters should be close to the law of
a typical isolated cluster, that is, the cluster generated by a typical contagious individual at the
time when it is isolated. However, it is easy to see that the size of a typical isolated cluster has
the geometric distribution with success parameter δ/ρ, so the probability that a typical isolated
cluster has size k equals

δ

ρ
(1 − δ/ρ)k−1,

which differs from (1.2). This is the detection paradox alluded to in the title of this work, and
which will be explained in the last section. Note that the bias factor B(α/ρ, k + 1) in (1.2)
decays as k increases, which entails that in the large time limit, the empirical isolated cluster is
in fact stochastically smaller than the typical cluster.

The plan of this article is as follows. In Section 2 we explain how the model can be recast in
terms of a Crump–Mode–Jagers branching process by focusing on the clusters. In Section 3 we
describe the evolution of a typical cluster as a Yule process stopped at the time when it exceeds
an independent geometric variable. This enables us to derive a number of related statistics
explicitly, in particular regarding the point process of untraceable contaminations which are
induced. Our main results on the large time behavior of the epidemic in the super-critical
regime are presented in Section 4; they are merely deduced from a well-known general limit
theorem for Crump–Mode–Jagers branching processes using the explicit formulas of Section 3.
In Section 5 we first compare the model by Bansaye, Gu, and Yuan, and their approach, with
ours. In particular, we observe that the Malthusian parameter α and the limiting distribution
(1.1) solve a natural eigenproblem when the evolution of active cluster sizes is viewed as an
age-structured population model. We then explain the detection paradox, and finally, we briefly
discuss the relation between (1.1) and the classical Yule–Simon distribution.

2. The Crump–Mode–Jagers branching process of clusters

Although we introduced the epidemic model from the perspective of individuals, it will be
convenient for its analysis to look at clusters and their evolutions as time passes. Specifically,
imagine that we create an (unoriented) edge between the infector and the infected at the time
when a contamination occurs; each edge is further labeled traceable or untraceable, depend-
ing on the type of contamination. If we ignore the labels of edges, this endows the infected
population at any given time with a genealogical tree structure which is rooted at the ances-
tor. Plainly this tree structure grows as new individuals are contaminated and new traceable or
untraceable edges are added. The reader may find Figure 1 useful to visualize the notions that
will be introduced.

Any pair of infected individuals is connected by a unique segment in the tree, which we call
the contamination path. Two individuals belong to the same cluster if and only if their con-
tamination path contains only traceable edges, and more generally, the number of untraceable
edges along the contamination path between two individuals only depends on the two clusters
to which these individuals belong. We then define the generation of a given cluster as the num-
ber of untraceable edges along the contamination path between any individual in that cluster
and the ancestor.

We next observe that backtracking contaminations endows clusters with a natural geneal-
ogy, which in turn enables us to view the epidemic model as a so-called Crump–Mode–Jagers
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FIGURE 1. Graphical representation of the epidemic at a given time. The ancestor is the vertex at the
bottom of the figure. Vertices in red represent contagious individuals, vertices in white individuals who
have been isolated. Full edges indicate traceable contaminations, and dotted ones untraceable contami-
nations. Clusters consist of subsets of vertices connected by full edges. In turn, clusters are connected by
dotted edges. There are four active clusters: two at the first generation with sizes 4 and 3, one at the third
generation with size 1, and one at the fourth generation with size 1. There are four isolated clusters: the
ancestor cluster with size 5, one cluster with size 2 at the first generation, and two clusters with sizes 4

and 3 at the second generation.

branching process; see [9, Chapter 6] as well as [10], [11], and [16] for classical background,
and also [6, Section 5] for a more recent survey with further references. For this purpose, we
shall index each cluster by a finite sequence of positive integers, that is, by a vertex u of the
Ulam–Harris tree U = ⋃∞

n=0 N
n, such that the length |u| of u corresponds to the generation

of the cluster. By convention, the empty sequence ∅ with length 0 is used to label the cluster
containing the ancestor. Clusters at the first generation are those such that there is a single
untraceable edge along the contamination path from an infected individual in this cluster to
the ancestor. They are indexed by N

1 =N= {1, 2, . . .} according to increasing order of their
birth times, that is, times at which an individual in the ancestral cluster causes an untraceable
contamination and generates a new cluster. For the sake of definitiveness, we agree that when
the ancestral cluster generates only k untraceable contaminations until it is isolated, then the
clusters indexed by k + 1, k + 2, . . . are fictitious clusters born at time ∞. This is only a
formality, and of course we shall only be concerned with non-fictitious clusters. By an obvious
iteration, we label clusters at the nth generation by u = (u1, . . . , un) ∈N

n for any n ≥ 0. It
should be plain that the genealogy of clusters does not change with time, in the sense that once
a cluster is born, its label will remain the same in the future.

For any u ∈ U , if the cluster labeled by u is not fictitious, then we write ζu for the age (that
is, the time elapsed from the birth time) at which this cluster is isolated. We also write ξu for the
simple point process on [0, ∞) of the ages at which this cluster is involved with untraceable
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contaminations, that is, it generates new clusters. So ξu([0, t]) is the number of children clusters
generated when the cluster reaches age t, and in particular, ξu([ζu, ∞)) = 0. Finally, we write
Cu = (Cu(t), t ≥ 0), where Cu(t) is the size of this cluster at time t < ζu, and we agree that
Cu(t) = 0 whenever t ≥ ζu. In words, Cu is the process of the number of contagious individuals
in that cluster as a function of its age (recall that infected individuals are no longer contagious
once they have been isolated); in particular, C(ζ−) is the size reached by the cluster at the time
when it is detected. The most relevant information about the evolution of clusters and hence
about the epidemic is encoded by the family of pairs

Cu = (Cu, ξu), u ∈ U ,

where we agree for definitiveness that Cu ≡ 0 and ξu ≡ 0 when the cluster indexed by u is fic-
titious. Of course, Cu does not enable us to recover the subtree structure of the cluster indexed
by u, but this is irrelevant for the questions we are interested in.

It should be intuitively clear that the distribution of the ancestral cluster C∅ determines
that of the whole process (Cu)u∈U . More precisely, let us write C = (C, ξ ) for a pair dis-
tributed as C∅, which we think of as describing the evolution of a typical cluster. Then it
is readily checked that conditionally on ξ∅(R+) = k, C1, . . . , Ck are k independent and iden-
tically distributed (i.i.d.) copies of C that are further independent of C∅. More generally, it
follows by iteration that for every n ≥ 1 and any u1, . . . , uk ∈N

n, conditionally on the event
that none of the clusters Cu1 , . . . , Cuk are fictitious (which is measurable with respect to the
family (Cv : |v| < n)), Cu1 , . . . , Cuk are k i.i.d. copies of C that are further independent of
(Cv : |v| < n). In other words, (Cu)u∈U generates a Crump–Mode–Jagers branching process
where the evolution of typical elements is distributed as C.

Remark 2.1. If we interpret the isolation time ζ of an active cluster as the death time, and if we
further view the size C(t) at time t as measuring some ‘age’ of the cluster, in the loose sense that
this quantity grows with time until death occurs, then we are essentially in the framework of
age-structured population models; see e.g. [12, Section II.E]. This aspect will be useful in the
forthcoming Section 5.1. In this area, we further refer to [7] for a different model for contact
tracing in an epidemic in terms of a disease age-structured population.

Remark 2.2. The arguments in this section are rather robust, in the sense that they remain
valid for more sophisticated versions of the model. For instance, one could incorporate
recovery, let the contamination rates depend on the age of the infection, etc. However, the
quantitative results in the next section are much more fragile; notably, the calculations for
the key Lemma 3.1 there cannot be adapted even to deal with recovery or death.

3. Statistics of a typical cluster

We discuss here some basic statistics of the typical cluster C = (C, ξ ) in terms of the
parameters (γ, p, δ) of the model. Recall that the integer-valued process C is absorbed at 0 at
the time

ζ = inf{t ≥ 0: C(t) = 0}
when this cluster is detected and isolated, and that ξ is the point process of times at which
untraceable contaminations occur.

It is now convenient to set
ρ := δ + pγ, (3.1)
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and recall that a Yule process with rate ρ > 0 refers to a pure birth process with birth rate ρk
from any state k ≥ 1 and started from 1.

Lemma 3.1. The process (C(t), t ≥ 0) has the same law as

(1{Y(t)≤G}Y(t), t ≥ 0),

where Y = (Y(t), t ≥ 0) is a Yule process with rate ρ, and G is an independent geometric
variable with success probability δ/ρ, i.e. with tail distribution function

P(G > k) = (1 − δ/ρ)k, k ≥ 0.

Proof. The process C is a continuous-time Markov chain on Z+ = {0, 1, . . .}, which starts
from 1 at time 0 and is absorbed at the cemetery state 0. Recall that only traceable contamina-
tions contribute to the growth of the cluster, that they occur at rate pγ per contagious individual,
and that each individual in the cluster is detected at rate δ.

We see that when the chain is at some state k ≥ 1, its next jump occurs after a waiting
time with the exponential distribution with parameter k(pγ + δ) = kρ, and independently of
this waiting time, the state after that jump is k + 1 with probability pγ /ρ, and 0 with com-
plementary probability δ/ρ. In particular, the size reached by the cluster when it is isolated
is a geometric variable with success probability δ/ρ. Our claim follows from the classical
properties of independent exponential variables. �

Lemma 3.1 shows in particular that the size C(ζ−) of the typical isolated cluster has the
geometric distribution with success probability δ/ρ. The one-dimensional marginal laws of
the typical cluster size process as well as the joint distribution of the time of isolation ζ and
C(ζ−) follow readily.

Corollary 3.1. For every t ≥ 0, we have

P(C(t) = k) = (1 − δ/ρ)k−1(1 − e−ρt)k−1 e−ρt for k ≥ 1

and

P(C(t) = 0) = P(ζ ≤ t) = 1 − ρ

ρ + δ(eρt − 1)
.

Furthermore, we also have

P(C(ζ−) = k, t ≥ ζ ) = δ

ρ
(1 − δ/ρ)k−1(1 − e−ρt)k for k ≥ 1.

Proof. It suffices to write for k ≥ 1 that

P(C(t) = k) = P(Y(t) = k, G ≥ k)

= P(Y(t) = k)P(G ≥ k),

and recall that Y(t) has the geometric distribution with success probability e−ρt. Then summa-
tion for k ≥ 1 yields the second formula of the statement. We get the third formula similarly,
writing for k ≥ 1 that

P(C(ζ−) = k, t ≥ ζ ) = P(G = k, Y(t) > k) = P(G = k)P(Y(t) > k). �
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We next turn our attention to the point process ξ at which new clusters are generated, and
write

Z1 := ξ (R+)

for the total number of (non-fictitious) clusters that the typical cluster begets. Its distribution is
obtained by a slight variation of the argument for Lemma 3.1, and this entails the criterion for
extinction of the epidemic that was stated in the Introduction.

Lemma 3.2. The variable 1 + Z1 follows the geometric distribution with success probability
δ/((1 − p)γ + δ). In particular, Z1 ∈ Lr(P) for all r ≥ 1,

E(Z1) = (1 − p)γ /δ,

and as a consequence, the total number of infected individuals is finite (in other words, the
epidemic eventually ceases) almost surely if and only if

(1 − p)γ ≤ δ.

Proof. Fix some arbitrary time t ≥ 0, and work conditionally on the event that at time t, the
typical cluster has size k ≥ 1 and is still active. Consider the first event after time t at which
either there is a new traceable or untraceable contamination, or the cluster is detected. The
probability that this event is due to an untraceable contamination is (1 − p)γ /(γ + δ), whereas
the probability that this event is due to detection is δ/(γ + δ). In the remaining case, the size
of the cluster increases by one unit.

The probabilities above depend on neither t nor k, and it follows by iteration that if we
now introduce the first instant τ after t at which either an untraceable contamination occurs
or the cluster is detected, then independently of C(τ ), the probability that τ is the time of an
untraceable contamination equals ((1 − p)γ )/((1 − p)γ + δ) (this is the failure probability).
Another iteration yields our first claim, and the formula for the first moment of Z1 follows.

Finally, if we write Zn for the number of (non-fictitious) clusters at the nth generation, then
(Zn, n ≥ 0) is a Galton–Watson process with reproduction law distributed according to Z1. So
if δ < (1 − p)γ , there is a strictly positive probability that this Galton–Watson process survives
for ever, in which case the total number of infected individuals is obviously infinite. Otherwise,
the Galton–Watson process eventually becomes extinct almost surely: there are only finitely
many (non-fictitious) clusters, each consisting of finitely many infected individuals. �

Last, we introduce the intensity measure μ of the point process ξ :

μ(t) :=E(ξ ([0, t])), t ≥ 0.

Corollary 3.2. For every t ≥ 0, there is the identity

μ(t) = (1 − p)
γ

δ

(
1 − 1

1 + δ(eρt − 1)/ρ

)
.
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Proof. Indeed, the conditional probability given the process C, that an untraceable con-
tamination event occurs during the time interval [t, t + dt], equals (1 − p)γ C(t) dt, and as a
consequence,

dμ(t) = (1 − p)γE(C(t)) dt.

We deduce from Corollary 3.1 that

E(C(t)) = eρt

(1 + δ(eρt − 1)/ρ)2
.

The formula in the statement follows. �

We note that letting t → ∞ in Corollary 3.2 yields

E(ξ (R+)) = (1 − p)γ /δ,

in agreement with Lemma 3.2.

4. The Malthusian behavior

We shall assume throughout this section that

δ < (1 − p)γ, (4.1)

so that the epidemic survives with strictly positive probability. More precisely, one immediately
deduces from Lemma 3.2 that the probability of extinction equals δ/((1 − p)γ ), which is the
smallest solution to the equation E(xZ1 ) = x. We shall derive here the main results of this work,
simply by specifying in our setting some fundamental results of Nerman [16] on the asymptotic
behavior of Crump–Mode–Jagers branching processes with random characteristics. We start by
introducing some of the key actors in this framework.

Consider the Laplace transform of the intensity measure of untraceable contaminations for
a typical cluster:

L(x) =
∫ ∞

0
e−xtdμ(t), x ≥ 0.

Since L(0) = (1 − p)γ /δ > 1, the equation L(x) = 1 possesses a unique solution α =
α(γ, p, δ) ∈ (0, ∞), called the Malthusian parameter. That is, thanks to Corollary 3.2,

(1 − p)γ
∫ ∞

0

e(ρ−α)t

(1 + δ(eρt − 1)/ρ)2
dt = 1,

or equivalently, in a slightly simpler form, using the change of variables x = e−ρt,

(1 − p)γρ

∫ 1

0

xα/ρ

((ρ − δ)x + δ)2
dx = 1. (4.2)

We further set

β = −L′(α) = (1 − p)γ
∫ ∞

0
t

e(ρ−α)t

(1 + δ(eρt − 1)/ρ)2
dt; (4.3)

plainly β ∈ (0, ∞).

https://doi.org/10.1017/jpr.2022.112 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.112


A model for an epidemic with contact tracing and cluster isolation 1087

Next, it is convenient to use the notation

〈m, f 〉 :=
∞∑

n=1

f (n)m(n),

where m = (m(n), n ∈N) is a finite measure on N and f : N→R+ is a generic non-negative
function. We introduce two important measures ma and mi, related to typical active and isolated
clusters respectively, by

〈ma, f 〉 =
∫ ∞

0
e−αt

E(f (C(t)), t < ζ ) dt

and

〈mi, f 〉 =
∫ ∞

0
e−αt

E(f (C(ζ−)), ζ ≤ t) dt.

These two measures can be determined explicitly from Corollary 3.1, using the notation

B(x, y) = 
(x)
(y)


(x + y)
=

∫ 1

0
sx−1(1 − s)y−1ds, x, y > 0,

for the beta function. Indeed, from the change of variables e−ρt = s, we then obtain that, for
every k ≥ 1,

ma(k) = (1 − δ/ρ)k−1
∫ ∞

0
e−αt(1 − e−ρt)k−1 e−ρtdt

= 1

ρ
(1 − δ/ρ)k−1B(1 + α/ρ, k) (4.4)

and

mi(k) = δ

ρ
(1 − δ/ρ)k−1

∫ ∞

0
e−αt(1 − e−ρt)kdt

= δ

ρ2
(1 − δ/ρ)k−1B(α/ρ, k + 1). (4.5)

Finally, we introduce

Wn =
∑
u∈Nn

e−ασu , n ≥ 0,

where σu stands for the birth time of the cluster labeled by u (so that σu = ∞ and e−ασu = 0
if this cluster is fictitious). The process (Wn, n ≥ 0) is a martingale, often referred to as
the intrinsic martingale; see Jagers [9, Chapter 6]). Using the inequality W1 ≤ ξ (R+) and
Lemma 3.2, we see that

E(W2
1 ) < ∞,

and the uniform integrability of the intrinsic martingale follows; see e.g. [10, Theorem 6.1]. We
furthermore recall that its terminal value W∞ is strictly positive on the event that the epidemic
survives, and of course W∞ = 0 on the event that the epidemic eventually ceases.
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For the sake of simplicity, we focus on a few natural statistics of the epidemic at time
t ≥ 0. Given a generic non-negative function f : N→R+, we agree implicitly that f (0) = 0
and write

Af (t) =
∑

f (Cu(t − σu)),

where the sum is taken over all vertices u in the Ulam–Harris tree U , such that the cluster
labeled by u is born at time σu ≤ t (note that only active clusters at time t contribute to the
sum). Turning our attention to isolated clusters, we similarly write

If (t) =
∑

f (Cu(ζu−))1{σu+ζu≤t},

where the sum is taken over all clusters that are isolated at time t. In the Crump–Mode–Jagers
terminology, Af and If are known as the processes counted with the random characteristics

φa : t �→ f (C(t))1{t<ζ } and φi : t �→ f (C(ζ−))1{t≥ζ }, (4.6)

respectively.
Recall the notation above, and notably (4.2), (4.3), (4.4), and (4.5). We can now state the

main result of this work.

Theorem 4.1. Assume (4.1) and let f : N→R+ with f (n) = O(ebn) for some b < − log (1 −
δ/ρ). The following limits then hold almost surely and in L1(P):

lim
t→∞ e−αtAf (t) = β−1〈ma, f 〉W∞

and

lim
t→∞ e−αtIf (t) = β−1〈mi, f 〉W∞.

In particular, taking f (n) = n yields the first-order asymptotic behavior of the total number
of contagious (respectively isolated) individuals as time goes to infinity.

Proof. The claim of almost sure convergence is seen from Theorem 5.4 in Nerman [16]; we
just need to verify Conditions 5.1 and 5.2 there. For the first, we simply write

∫ ∞

t
e−αsξ (ds) ≤ e−αtξ (R+),

and recall from Lemma 3.2 that Z1 = ξ (R+) is integrable. This ensures that

E

(
sup
t≥0

eαt
∫ ∞

t
e−αsξ (ds)

)
< ∞.

For the second, we assume for simplicity that |f (n)| ≤ ebn for all n ≥ 1 without loss of
generality. The random characteristics in (4.6) can be bounded for all t ≥ 0 by

|φa(t)| ≤ exp (bC(ζ−)) and |φi(t)| ≤ exp (bC(ζ−)).

Observe that

E( exp (bC(ζ−))) < ∞,
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since we know from Lemma 3.1 that C(ζ−) has the geometric distribution with success prob-
ability δ/ρ, and (1 − δ/ρ) eb < 1. It follows immediately that Condition 5.2 of [16] holds for
both φa and φi.

We next turn our attention to convergence in L1(P). This in turn relies on [16,
Corollary 3.3], and we have to check equations 3.1 and 3.2 therein. The latter are both
straightforward from the bounds established in the first part of this proof. �

Remark 4.1. Iksanov, Kolesko, and Meiners [8] have recently obtained a remarkable cen-
tral limit theorem for general Crump–Mode–Jagers branching processes counted with random
characteristics, which specifies the fluctuations of Nerman’s law of large numbers. Of course,
it would be interesting to apply their results to our setting; however, in order to do so, one needs
information about the possible roots to the equation L(z) = 1 in the complex strip α/2 ≤ z ≤ α,
which does not seem easy to obtain even though the intensity μ is explicitly known.

We next turn our attention to the empirical distribution of the sizes of active, respectively
isolated, clusters. We denote the function identical to 1 on N by 1, so that in the above notation,
A1(t) and I1(t), respectively, are the number of active and of isolated clusters at time t. We then
define the empirical distributions a(t) and i(t) for a generic function f : N→R+ by

〈a(t), f 〉 = Af (t)/A1(t)

and

〈i(t), f 〉 = If (t)/I1(t).

We also introduce the normalized probability measures on N:

πa = ma/〈ma, 1〉 and π i = mi/〈mi, 1〉.
Thanks to (4.4) and (4.5), these are given explicitly by

πa(k) = ca(1 − δ/ρ)k−1B(1 + α/ρ, k) for all k ≥ 1, (4.7)

with

1/ca =
∞∑

j=1

(1 − δ/ρ)j−1B(1 + α/ρ, j),

and
π i(k) = ci(1 − δ/ρ)k−1B(α/ρ, k + 1) for all k ≥ 1, (4.8)

with

1/ci =
∞∑

j=1

(1 − δ/ρ)j−1B(α/ρ, j + 1).

We can now state the convergence of the empirical distributions.

Corollary 4.1. Assume (4.1). Then, conditionally on the event that the epidemic survives
forever, we have almost surely

lim
t→∞ a(t) = πa and lim

t→∞ i(t) = π i.
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Proof. Indeed, recall that W∞ > 0 a.s. conditionally on survival of the epidemic. We derive
from Theorem 4.1 that, on this event,

lim
t→∞ Af (t)/A1(t) = 〈πa, f 〉 and lim

t→∞ If (t)/I1(t) = 〈π i, f 〉

for every bounded function f : N→R. �

In words, Corollary 4.1 states that conditionally on survival of the epidemic, the empirical
distributions of active cluster sizes and of isolated clusters sizes converge to πa and π i, respec-
tively, as time goes to infinity. We shall therefore think of the latter as describing asymptotically
the average distributions of the sizes of active clusters and isolated clusters, respectively. It
is interesting to point out similarities between Corollary 4.1 and earlier results by Deijfen [5,
Theorem 1.1 and Example 2] on the asymptotic degree distribution for certain random evolving
networks. More specifically, in this model new vertices arrive in continuous time, are connected
to an existing vertex with probability proportional to the so-called fitness of that vertex, and
vertices then die at rates depending on their accumulated in-degrees. Although the model con-
sidered by Deijfen is different from ours, it also bears a clear resemblance, and the similarities
between the results (and the methods as well) should not come as a surprise.

It is also interesting to observe from formulas (4.7) and (4.8) and the elementary identity

α

ρ
B(α/ρ, k + 1) = kB(1 + α/ρ, k)

that

π i(k) = kπa(k)∑∞
j=1 jπa(j)

for all k ≥ 1.

In words, the average distribution of the sizes of isolated clusters is the size-biased version of
that of active clusters. This relation stems from the fact that the rate at which an active cluster
becomes isolated is proportional to its size. Since the empirical distribution of active cluster
sizes converges to πa, the empirical distribution of isolated cluster sizes must converge to the
size-biased version of πa. We refer to Corollary 1 of [2] and its proof for details of a rigorous
argument.

5. Concluding comments

5.1. Comparison with a model of Bansaye, Gu, and Yuan, and an eigenproblem

This work was inspired by a recent manuscript of Bansaye et al. [2], in which they intro-
duced a similar model for epidemics with contact tracing and cluster isolation. The main
difference from the present article is that in [2], contaminations are always traceable initially,
but traceability gets lost at some fixed rate. In other words, edges in the contamination tree are
traceable when they first appear, and become untraceable after exponentially distributed time-
laps, independently of the other edges. As a consequence, clusters do not only grow when new
contamination events occur, but also split when a traceable edge becomes untraceable.

Bansaye et al. investigate the large time asymptotic behavior of the epidemic using different
tools, namely they first analyze a deterministic eigenproblem for a growth–fragmentation–
isolation equation that is naturally related to their setting; furthermore they also rely on known
properties of random recursive trees. They establish results similar to our Theorem 4.1 and

https://doi.org/10.1017/jpr.2022.112 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.112


A model for an epidemic with contact tracing and cluster isolation 1091

Corollary 4.1 in terms of these eigenelements; the statements in [2] are, however, less pre-
cise than ours, as no explicit formulas for the eigenelements are given (only their existence is
established).

In our setting, using the notation of Section 4, the expectation of linear functionals of
clusters at a given time yields a family (νt, t ≥ 0) of measures on N given by

〈νt, f 〉 =E(Af (t)),

where f : N→R+ is a generic bounded function. From the dynamics of the epidemic, we get
the evolution equation

d〈νt, f 〉 = 〈νt,Af 〉 dt, (5.1)

with
Af (k) = k(pγ (f (k + 1) − f (k)) + (1 − p)γ f (1) − δf (k)); (5.2)

the initial condition ν0 is the Dirac mass at 1 since we assume that the epidemic starts from a
single contagious individual. Specifically, in (5.2), the term kpγ (f (k + 1) − f (k)) accounts for
the growth of a cluster from size k to k + 1, which occurs with rate kpγ . The term k(1 − p)γ f (1)
stems from the birth of new clusters of size 1 (i.e. an untraceable contamination) induced by
a cluster of size k, which occurs with rate k(1 − p)γ , and finally −kδf (k) for the isolation of
a cluster of size k, which occurs with rate kδ. This formula for the infinitesimal generator A
should be compared with Lemma 1 in [2], and notably equation (4.15) therein.

Predominantly, growth–fragmentation equations (and more generally, evolution equations)
cannot be solved explicitly, and most works in this area are concerned with the large time
asymptotic behavior of its solutions; see [2] for some references. Roughly speaking, the
paradigm, which stems from the Perron–Frobenius theorem for matrices with positive entries,
is to resolve the eigenproblem for the infinitesimal generator, that is, to determine the principal
eigenvalue (i.e. the eigenvalue with the largest real part) and its left eigenfunctions. The prin-
cipal eigenvalue is identified as the Malthusian parameter, and the left eigenfunction (viewed
as a measure) yields the so-called asymptotic profile, that is, in our setting, the measure ma

in Theorem 4.1. So the analysis carried out in the present Section 4 solves this eigenproblem
indirectly for (5.2), the solution being given by (4.2) and (4.7). Specifically, it holds for all
bounded f : N→R+ that

〈Aπa, f 〉 := 〈πa,Af 〉 = α〈πa, f 〉.
However, it does not seem straightforward to check this identity directly, and we shall provide
more details below.

Let νt(k) denote the expected number of active clusters of size k ≥ 1 at time t. From the
dynamics of the epidemic (see the discussion following (5.2)), we have that for k ≥ 2

∂νt(k)

∂t
+ pγ (kνt(k) − (k − 1)νt(k − 1)) = −δkνt(k), (5.3)

whereas for k = 1
∂νt(1)

∂t
+ pγ νt(1) = (1 − p)γ

∞∑
j=1

jνt(j) − δνt(1). (5.4)

Of course, (5.3) and (5.4) are equivalent to the evolution equation (5.1). From the point of view
of age-structured population models (recall Remark 2.1), these should be viewed as a version
of the McKendrick–von Foerster PDE; see [12, equations (23.4) and (23.5)].
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Following [12, Chapter 23], it is then natural to search for a special solution to (5.3) and
(5.4) in the form νt(k) = ertν(k) for some r > 0 and some measure ν on N, which of course
amounts to solving the eigenproblem Aν = rν. Recall the notation (3.1); from (5.3) and (5.4),
we first get the linear recurrence equation

ν(k) = pγ (k − 1)

r + ρk
ν(k − 1), k ≥ 2, (5.5)

and then, for k = 1, the identity

(r + ρ)ν(1) = (1 − p)γ
∞∑

j=1

jν(j). (5.6)

We readily deduce from (5.5) and well-known properties of the beta function B that

ν(k) = c(1 − δ/ρ)k−1B(1 + r/ρ, k), k ≥ 1, (5.7)

where c > 0 is some arbitrary constant. We note that (r + ρ)ν(1)/c = ρ, and can now determine
r by rewriting (5.6) in the form

ρ = (1 − p)γ
∞∑

j=1

j(1 − δ/ρ)j−1B(1 + r/ρ, j)

= (1 − p)γ
∞∑

j=1

∫ 1

0
j(1 − δ/ρ)j−1(1 − x)j−1xr/ρdx

= (1 − p)γ
∫ 1

0

xr/ρ

(1 − (1 − δ/ρ)(1 − x))2
dx

= (1 − p)γρ2
∫ 1

0

xr/ρ

((ρ − δ)x + δ)2
dx.

We have recovered (4.2), which determines the Malthusian parameter. So r = α, and we
conclude from (5.7) and (4.7) that ν and πa are indeed proportional.

The calculations above are reminiscent of those for the Leslie model [12, Chapter 22], and
in particular (4.2) can be thought of as an Euler–Lotka equation [12, equation (20.6)].

5.2. A detection paradox

We next discuss in more detail the detection paradox mentioned in the Introduction. Imagine
that we rank the clusters in increasing order of their birth times rather than indexing them by
the Ulam–Harris genealogical tree as we did previously. This sequence is infinite if and only
if the epidemic survives, and conditionally on that event, its elements are independent, each
being distributed as the typical cluster. One may then expect from the law of large numbers that
as time goes to infinity, the limit π i of the empirical distribution of the sizes of isolated clusters
should coincide with the law of the size of a typical cluster at the time when it is detected,
that is, by Lemma 3.1, the geometric distribution with success probability δ/ρ. However, (4.8)
shows that this is not the case, and more precisely, π i is a biased version of the geometric law,
where the bias is given by a beta function.
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The naive argument above of course has a flaw, which stems from the fact that the empiri-
cal distribution of the isolated clusters at a given time corresponds to a partial sum of clusters
which are listed in increasing order of their detection times rather than their birth times. This
reordering tends to list first clusters which are quickly detected and hence had little time to
grow, which hints at the feature that the average isolated cluster size is dominated stochasti-
cally by the size of a typical isolated cluster. Nonetheless, reordering alone is not sufficient
to explain the detection paradox: the second crucial ingredient is the exponential growth, and
more precisely the fact that the number of clusters, say for simplicity born during the time
interval [t, t + 1], is of the same order as the number of all the clusters born before time t, no
matter how large t is. A significant proportion of clusters born during [t, t + 1] are detected
before time t + 1; due to the time constraint, these clusters have on average a smaller size than
the typical cluster when it is isolated, and this explains the seeming paradox.

For a better understanding of the mechanisms at work in the explanation above, it may
be useful to consider the following elementary example. Consider a Poisson point process
on R+ × (0, ∞) whose atoms are denoted generically by (b, �), and which has intensity
ebdbλ(d�), where λ is some probability measure on (0, ∞). We think of (b, �) as an individual
born at time b and with lifespan �. Imagine that we want to estimate the lifespan distribution
λ, that is, more specifically, the quantity 〈λ, f 〉 for an arbitrary bounded continuous function
f : (0, ∞) →R, from the observation of the population up to some large time t. If we could
observe the lifespan of an individual at the time when it is born, then this would be an easy
matter. Indeed, it then suffices to compute the empirical mean of f (�) for individuals (b, �) born
at time b ≤ t, and it is readily checked by Poissonian computation that this quantity converges
almost surely to 〈λ, f 〉 as t → ∞. But of course it is unrealistic to assume that the lifespan
can be observed at the birth of an individual, and let us instead assume that lifespan can be
observed at death only.

The total number of dead individuals at time t has the Poisson distribution with parameter

∫ t

0
ebλ((0, t − b]) db ∼ et

∫
(0,∞)

e−�λ(d�) as t → ∞.

More generally, it is easily checked that if we write 〈M(t), f 〉 for the empirical mean of f (�)
computed for all individuals who are dead at time t, that is, such that b + � ≤ t, then

lim
t→∞〈M(t), f 〉 = 〈λ1, f 〉,

where

λ1(d�) = e−�λ(d�)∫
(0,∞) e−sλ(ds)

.

In other words, the empirical mean 〈M(t), f 〉 is a consistent estimator of 〈λ1, f 〉 rather than of
〈λ, f 〉.

We stress that this detection paradox disappears for a version of this model where the inten-
sity of the Poisson point process only grows sub-exponentially in time – say for simplicity it
is given by brdbλ(d�) for some r > 0. The same calculation as above easily shows that the
empirical mean of f (�) computed for all individuals who are dead by time t then does converge
to 〈λ, f 〉 as t → ∞.
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5.3. Relation to the Yule–Simon distribution

In 1955, following G. Udny Yule [19], Herbert A. Simon [18] introduced an elementary
model depending on a parameter q ∈ (0, 1) (that accounts for the memory of the model), which
today would be referred to as an algorithm with preferential attachment. Simon’s algorithm
produces a random text, that is, a long string of words w1 . . . wn, as follows. Once the first word
w1 has been written, for each j = 1, . . . , n − 1, wj+1 is copied from a uniform sample from
w1, . . . , wj with probability q, and with complementary probability 1 − q, wj+1 is a new word
different from all the preceding words. Simon proved that for every fixed k ≥ 1, the expected
proportion of different words that have been written exactly k times in the text converges as
n → ∞ towards

σq(k) = 1

q
B(1 + 1/q, k). (5.8)

The probability measure on N, σq = (σq(k), k ≥ 1), is known as the Yule–Simon distribution
with parameter 1/q. Comparing (4.7) with (5.8), we can now view the average distributions of
the sizes of active clusters ma as an exponentially tilted version of the Yule–Simon distribution
with parameter α/ρ.

In this direction, we observe that the limiting case of our model with δ = 0, which corre-
sponds to a degenerate case where detection is absent, merely rephrases Simon’s algorithm
with memory parameter q = p. When there is no detection, the evolution of a typical cluster is
just that of a Yule process with rate pγ (without killing). Then the intensity measure of birth
times of new clusters given by μ(dt) = (1 − p)γ epγ tdt and the Malthusian parameter can be
identified by solving

(1 − p)γ
∫ ∞

0
e(pγ−α)tdt = 1.

Plainly we have α = γ and the parameter of the Yule–Simon distribution is simply α/ρ =
1/p. In this setting, the degenerate case of Corollary 4.1 for δ = 0 can be viewed as a strong
version of Simon’s result, where the convergence is almost sure and not just for the expectation.
See [6, Example B.11] for a closely related discussion in the setting of Yule’s original model
of evolution of species, which is a bit different but nonetheless also yields the Yule–Simon
distribution (5.8).

Acknowledgements

I would like to thank Vincent Bansaye for pointing out some similarities to age-structured
models and, in particular, the existence of explicit solutions to eigenproblems for the latter. I
am also grateful to two anonymous referees for their careful reading of the first version of this
work and their constructive comments.

Funding information

The author acknowledges partial support from Swiss National Science Foundation grants
188693.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

https://doi.org/10.1017/jpr.2022.112 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.112


A model for an epidemic with contact tracing and cluster isolation 1095

References

[1] BALL, F. G., KNOCK, E. S. AND O’NEILL, P. D. (2011). Threshold behaviour of emerging epidemics featuring
contact tracing. Adv. Appl. Prob. 43, 1048–1065.

[2] BANSAYE, V., GU, C. AND YUAN, L. (2022). A growth–fragmentation–isolation process on random recursive
trees. Available at arXiv:2109.05760. To appear in Ann. Appl. Prob.

[3] BARLOW, M. (2020). A branching process with contact tracings. Available at arXiv:2007.16182.
[4] BRITTON, T. AND PARDOUX, E. (2019). Stochastic Epidemic Models with Inference (Lecture Notes Math.

2255). Springer, Cham.
[5] DEIJFEN, M. (2010). Random networks with preferential growth and vertex death. J. Appl. Prob. 47,

1150–1163.
[6] HOLMGREN, C. AND JANSON, S. (2017). Fringe trees, Crump–Mode–Jagers branching processes and m-ary

search trees. Prob. Surv. 14, 53–154.
[7] HUO, X. (2015). Modeling of contact tracing in epidemic populations structured by disease age. Discrete

Contin. Dyn. Syst. Ser. B 20, 1685–1713.
[8] IKSANOV, A., KOLESKO, K. AND MEINERS, M. (2021). Asymptotic fluctuations in supercritical Crump–

Mode–Jagers processes. Available at arXiv:2109.00867.
[9] JAGERS, P. (1975). Branching Processes with Biological Applications (Wiley Series in Probability and

Mathematical Statistics: Applied Probability and Statistics). John Wiley, London, New York, Sydney.
[10] JAGERS, P. (1989). General branching processes as Markov fields. Stoch. Process. Appl. 32, 183–212.
[11] JAGERS, P. AND NERMAN, O. (1984). The growth and composition of branching populations. Adv. Appl. Prob.

16, 221–259.
[12] KOT, M. (2003). Elements of Mathematical Ecology. Cambridge University Press.
[13] LAMBERT, A. (2021). A mathematical assessment of the efficiency of quarantining and contact tracing in

curbing the COVID-19 epidemic. Math. Model. Nat. Phenom. 16, 53.
[14] MÜLLER, J. AND KRETZSCHMAR, M. (2021). Contact tracing: old models and new challenges. Infect. Disease

Model. 6, 222–231.
[15] MÜLLER, J., KRETZSCHMAR, M. AND DIETZ, K. (2000). Contact tracing in stochastic and deterministic

epidemic models. Math. Biosci. 164, 39–64.
[16] NERMAN, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z.

Wahrscheinlichkeitsth. 57, 365–395.
[17] OKOLIE, A. AND MÜLLER, J. (2020). Exact and approximate formulas for contact tracing on random trees.

Math. Biosci. 321, 108320.
[18] SIMON, H. A. (1955). On a class of skew distribution functions. Biometrika 42, 425–440.
[19] YULE, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S.

Phil. Trans. R. Soc. London B 213, 21–87.

https://doi.org/10.1017/jpr.2022.112 Published online by Cambridge University Press

https://doi.org/10.48550/arXiv.2109.05760
https://doi.org/10.48550/arXiv.2007.16182
https://doi.org/10.48550/arXiv.2109.00867
https://doi.org/10.1017/jpr.2022.112

	Introduction
	The Crump"2013`Mode"2013`Jagers branching process of clusters
	Statistics of a typical cluster
	The Malthusian behavior
	Concluding comments
	Comparison with a model of Bansaye, Gu, and Yuan, and an eigenproblem
	A detection paradox
	Relation to the Yule"2013`Simon distribution

	Acknowledgements
	Funding information
	Competing interests
	References

