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Abstract. In this paper we take into consideration a conjecture of Bloch equating in a suitable range
and under some standard conjectures, the rank of the motivic cohomology of the special fiber of
a semistable degeneration over the ring of integers of a number field with the order of zero of the
local Euler factor of theL-function over the semistable prime corresponding to the special fiber. We
then develop, following the philosophy that the fiber ‘at infinity’ of an arithmetic variety should be
considered as ‘maximally degenerate’, a construction that goes in parallel to the one we use for the
non-archimedean fiber. Namely, a definition of a double complex and a weighted operatorN on it
that plays the role of the logarithm of the (local) monodromy map at infinity. We like to see this
archimedean theory as the analogue of the limiting mixed Hodge structure theory of a degeneration
of projective varieties over a disc. In particular, this yields to a description of the (motivic) Deligne
cohomology as homology of the mapping cone ofN . The main result arising from this construction
is the proof of a conjecture of Deninger. Namely we show that the archimedean�-factor of the Zeta-
function of the archimedean fiber can be seen as the characteristic polynomial of an archimedean
Frobenius acting on the subgroup of the invariants ofN into the hypercohomology of our double
complex.

Key words: algebraic cycles, values ofL-functions, motivic cohomology.

Introduction

In this paper we give an interpretation of the zeroes of the localL-factors related to
degenerations of algebraic varieties. By degeneration we mean either a semistable
degeneration of a family of proper and smooth varieties defined over a discrete
valuation ring for which the special fiberY is a reduced normal-crossings divisor
over a finite field, or – following a suggestion of Manin (cf [15]) – the ‘maximally
degenerate’ fiber at infinityX of an arithmetic variety. LetX be a proper, smooth
variety over a number fieldK and letX be a regular model ofX defined over
the ring of integersOK of K (cf Section 1 for the notations). Let} be a prime
ideal ofOK and letX� Spec(k(})) = Y be the fiber over}. Assume thatY is a
reduced, normal-crossings divisor onX and that the residue fieldk(}) is finite. Our
main result in this non-archimedean case, is the proof of a conjecture by Bloch (cf
Section 2) equating in a suitable range and under some standard conjectures, the
rank of the motivic cohomology ofY with the order of zero of the local Euler factor
of theL-function at}. The most interesting object we deal with is a double complex
(K �;�; d0; d00). K �;� is defined as a direct sum ofl-adic cohomology groups of the
different strata of the special fiberY and the differentialsd0 andd00 are determined
by means of corestrictions and the Gysin maps relating these groups. Furthermore,

**INTERPRINT**: A M/c ??: PIPS Nr.: 134975 MATHKAP
comp4100.tex; 28/05/1998; 9:06; v.7; p.1

https://doi.org/10.1023/A:1000362027455 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000362027455


324 C. CONSANI

K �;� is endowed with an operatorN which plays a central role in this theory
and behaves as the logarithm of the (local) monodromy map. To our knowledge,
this complex was firstly introduced by Steenbrink (cf. [22]), with the purpose of
making explicit theE1-terms of the spectral sequence of the vanishing cycles for
an algebraic degeneration over a disc and subsequently it was reexamined in the
same context by Guillén and Navarro Aznar (cf. [11]) in their proof of the local
invariant cycle theorem. Recently, Bloch, Gillet and Soulé (cf. [3]) have shown that
a complex as above makes sense and can be studied in a more general set up i.e.
for most cohomology theories and also for algebraic cycles modulo any adequate
equivalence relation. If one for example uses the groupsCH �(Y (�)) of algebraic
cycles of the strata modulo rational equivalence (cf. Section 1 for the notations),
it is fairly easy to prove (cf. (3.14)) that the mapping cone ofN is a complex
quasi-isomorphic to

: : : CH ��3(Y (3))
d00�! CH ��2(Y (2))! CH ��1(Y (1))

i��i��! CH �(Y (1))
d0�! CH �(Y (2))! CH �(Y (3)) : : : (0.1)

Here, the map in the middlei� � i� is the composite of a push-forward toward the
group of algebraic cycles of the family, followed by a pullback to the groups of
the components ofY . In [2], it has been shown that when resolution of singular-
ities holds, both the kernel and the cokernel ofi� � i� depend only on the generic
fiber of the family. Furthermore, up to replacing the Chow groups by some appro-
priate cohomology theoryH �, like Ql -étale orQ-Betti, the cap product induces
isomorphisms (n = dimY )

Ker(d0 : H �(Y (1))!H �(Y (2)))

Image(i� � i�)
' Ker(i� � i� : H2n��(Y

(1))!H �+2(Y (1)))

Image(d00)
:

We like to interpret these isomorphisms as the first step of a ‘symmetry’ between
right and left hand side of two complexes analogous to (0.1) but built up using
cohomology groups of the strata. In order to explain this symmetry for theQl -
étale cohomology theory, let us consider the spectral sequence of the vanishing
cycles and recall some of its properties. The couple made by theE1-term and the
first differential of this spectral sequence is isomorphic to the complex(K �;�; d =
d0 + d00), further it is known that the spectral sequence degenerates fromE2 on,
toward the cohomology of the geometric generic fiber of the family. The filtration
(by the weights of the Frobenius on the special fiber i.e. the weight filtration)
induced on the abutment coincides with the monodromy filtration when dimY 6 2
(cf. [16]). In higher dimensions that coincidence is still an open conjecture. In the
paper we refer to it as to the Monodromy Conjecture. The coincidence of the weight
and the monodromy filtrations implies isomorphisms between the corresponding
graded groups, by means of powers ofN . A suitable decomposition of these maps
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DOUBLE COMPLEXES ANDL-FACTORS 325

gives rise then, to the (symmetry-type) isomorphisms previously mentioned (cf.
the proof of Theorem 3.5).

Our results can be also described in terms of the Beilinson conjecture relating
the rank of the global motivic cohomology with the order of vanishing of a global
L-function. Here are two possible examples.

1. The local Euler factor of an elliptic curve at a primep 2 Z (K = Q) of
multiplicative reduction is(1 � jk(p)j�s)�1. The sign inside the parenteses is
negative and the factor has a single pole ats = 0, if and only if the curve has split
multiplicative reduction. This corresponds to the rationality of the 0-cycle which
is the difference of the two points in the normalization of the fiber lying over the
singular pointp.

A much deeper example, suggested to us by K. Kato, is the following.
2. Let assume that the monodromyT around} is unipotent. Then, one has

for any integerq > 0; N := log(T ) : Hq(X �K ;Ql ) ! Hq(X �K ;Ql (�1)): Hence,
as an operator,N can be interpreted as a class inH2d((X � X) �K ;Ql (d � 1))
(d = dimX �K) invariant under the decomposition group and therefore giving rise
to (i.e. explaining the presence of ) a pole of the local factor at} of L(H2d((X �
X) �K ;Ql ); s) ats = d� 1. By our resultN corresponds (assuming the conjectures
mentioned above) to an algebraic cycle of codimensiond � 1 on the threefold
intersections of components of the special fiber of a semistable model ofX �X.
We hope to discuss this description of the monodromy in a subsequent paper.

Following this order of ideas, we were lead to think that for the reduced and
irreducible fiber at infinityX of an arithmetic variety, a corresponding construction
(i.e. a definition of a double complexK �;� and a weighted operatorN ) should yield
to a description of the (motivic) Deligne cohomology as homology of the mapping
cone of an endomorphismN . The complex we define in Section 4 is a direct sum
of groups of real differential forms onX having certain weight and type and the
differentialsd0 andd00 are described by means of the real differential operatorsd
anddc on X. Then, Proposition 4.1 shows what we expected. Furthermore, we
prove that the hypercohomology of the simple complexK �;� associated toK �;� is
a polarized bigraded Lefschetz module in the sense of [17]. Hence,N induces
isomorphisms on the graded piecesgrW� H

�( ~X�) of the hypercohomology groups
of the complexK � (cf. Proposition 4.8) and in turn these isomorphisms lead to
(symmetry) isomorphisms (cf. Proposition 4.13) like in the case of a semistable
degeneration.

This archimedean theory should be thought of as the analogue of the limiting
mixed Hodge structure theory of a degeneration of projective varieties over a disc
as developed in cf. [22]. This correspondence suggests a connection of our double
complexK �;� with theE0-terms of a spectral sequence of ‘vanishing cycles’ at
infinity. Also we conjecture the existence of a real mixed Hodge structure, in the
sense of Deligne (cf. [6]), onK �;� (cf. [5]).

Another application of these ideas is shown in Section 5. There, we define
a linear operator� on the infinite dimensional hypercohomology vector spaces
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H �( ~X�)(= H �(K �; d)) studied in Section 4.�acts on the graded piecegrW2mH
�( ~X�)

of weightm as a multiplication by the weight. One might see� as a natural
logarithm of a sort of geometric frobenius operator at infinity and try to deduce
some analogies with the theory developed in Section 3 for a non archimedean
semistable degenerate fiber. Then, our main result is Theorem 5.4 where we are
able to recover, by means of the endomorphismsN and� onH �( ~X�), the Euler
factor at infinity using the notion of infinite determinant introduced by Deninger in
[7]. In op. cit. the Euler factors are reproduced as infinite determinants defined over
the infinite dimensional vector spacesH �

ar(X) (the ‘archimedean cohomology’)
and by means of a weight graded linear endomorphism�. Proposition 5.3 proves
that (H �

ar(X);�) coincides with our couple(H �( ~X�)N=0;�). This result shows
what was expected in [7], i.e. a natural geometric definition of(H �

ar(X);�) and
also it seems to agree with the point of view expressed in [9] that the ‘archimedean
cohomology’ should be thought as ‘a fixed module under inertia’ of a sort of
universal cohomology theory over a (still unknown!) arithmetic site.

The paper is organized as follows. Section 1 contains the definitions of the main
notations we have used in this paper. In Section 2 we state Bloch’s conjecture. In
Section 3 we introduce a double complexK �;�, together with two differentialsd0 and
d00 and an operatorN . After recalling the main properties of these objects, we show
how to prove Bloch’s conjecture under suitable conditions (cf. Theorem 3.5). In
Section 4 we define a second bigraded group(K �;�; d0; d00) and a corresponding map
N , in order to study the closed fiber at infinity. The first part of this paragraph deals
with the main properties ofK �;�. In particular, we show that the hypercohomology
of the associated simple complex is a polarized bigraded Lefschetz module. As
an application of this result, we prove (symmetry) isomorphisms between some
Deligne cohomology groups (cf. Proposition 4.13). In Section 5 we use the theory
developed in the previous paragraph to construct an infinite dimensional vector
spaceH �( ~X�)N=0 together with an endomorphism�. Then, borrowing a notion
of infinite determinant introduced in [7], we recover the Euler factor using the
couple(H �( ~X�)N=0;�) (cf. Theorem 5.4). Finally, we compare our construction
with Deninger’s one (cf. [7]): Proposition 5.3 shows a compatibility of the objects
involved.

1. Notations

We denote byS the spectrum of a Henselian discrete valuation ring�. Let� andv
be respectively the generic and closed points ofS; �� and�v are the corresponding
geometric points. Byk(�) andk(v) we mean the residue fields of� at� andv. We
writek(��) for a separable closure ofk(�)andk(�v) for the residue field of the integral
closure of� in k(��), defining the geometric point�v. Let Gal(��=�) resp. Gal(�v=v)
be the Galois groups Gal(k(��)=k(�)) resp. Gal(k(�v)=k(v)). Let I � Gal(��=�) be
the inertia group, defined as the kernel of the map Gal(��=�)! Gal(�v=v) (cf. [19]
Chapt. 1 Section 7).
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DOUBLE COMPLEXES ANDL-FACTORS 327

ForZ a scheme of finite type over a fieldk, andl a prime number such that
(chark; l) = 1, we denote byHm( �Z;Ql ) the l-adic geometric cohomology of
�Z = Z �Spec(k) Spec(�k), being�k an algebraic closure ofk.

Let X be a proper, smooth variety over a field. By amodelof X we mean a
flat, proper scheme over� : � : X! Spec(�), together with an isomorphism (i.e.
identification) of the generic fiberX� ' X(X� := X�Spec(k(�))). Given a model
X, we writeY for thespecial fiberX� Spec(k(v)).

In this paper we always assume thatX is a semistable model, by which we
mean thatX is a regular model and the special fiberY is a reduced divisor with
normal crossings inX. We will often refer to these conditions by saying that� is
asemistable fibration. In that case, each irreducible componentYi of Y = [ti=1Yi
is a regular scheme. For any subsetI � f1; : : : ; tgI 6= ;, we setYI = \i2IYi. It
follows from our assumptions thatYI is a regular scheme. We defineY; = X. Let
r = jIj be the cardinality ofI and letn = dim Y . Define

Y (r) =

8>>>>>><
>>>>>>:

Y (0) = X if r = 0a
jIj=r

YI if 1 6 r 6 n

; if r > n:

We write CHm(YI) (resp.CHm(YI)) for the Chow homology group (resp.
cohomology group) (in the sense of [10]) of dimension (resp. codimension)m alge-
braic cycles modulo rational equivalence on the stratumYI . We setCHm(Y

(r)) =
�jIj=rCHm(YI) (resp.CHm(Y (r)) = �jIj=rCHm(YI)).

Form; t andu non negative integers such that 16 u 6 t 6 r � 1(r = jIj), the
homomorphisms

�u� : CHm(Y
(t+1))! CHm(Y

(t))

and

��u : CHm(Y (t))! CHm(Y (t+1));

are defined as follows. LetI = fi1; : : : ; it+1g; with i1 < i2 < � � � < it+1 and let
J = I�fiug. Then, the restriction of�u� toCHm(YI) is the push forward map on
the Chow homology groups induced by the embeddingYI ! YJ . The component
of ��u in CHm(YJ); is the pullback map on the Chow cohomology groups induced
again by the above embedding of strata. We define Gysin morphisms
 (resp.
restriction morphisms�)


 : CHm(Y
(r+1))! CHm(Y

(r))

(� : CHm(Y (r))! CHm(Y (r+1)));
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by the formulae


 =
rX

u=1

(�1)u�1�u�

 
� =

rX
u=1

(�1)u�1��u

!
:

Similar definitions hold when we replace Chow cohomology groups byl-adic
cohomology groups of the strata and we interpret the Gysin maps as covariant
morphisms betweenl-adic cohomology groups shifting degrees.

One can show (cf. [3] Lemma 1 (i) and [11] Proposition (2.9) (iii)) that
2 =
0 = �2 and
 � �+ � � 
 = 0.

2. Higher chow groups of the special fiber of a semistable fibration and
L-functions

In this section we formulate a conjecture due to S. Bloch, on the rank of the higher
Chow groups of the special fiberY of a semistable fibration. In the next paragraph
we will prove it under suitable conditions.

We assume all the notations introduced in Section 1; in particular our starting
geometric setting consists of the following diagram

Y
i
- X �

j �X

Spec(k(v))
?

- Spec(�)
?

�

� Spec(��)
?

f

where� a semistable fibration.
In the following we will deal with themotivic cohomologytheory defined by

Bloch in [1]. For a proper, equidimensional schemeV of finite type over a field
k and for any couple of non negative integersq; r, the groups of integral motivic
cohomology are defined as

H
q
M(V;Z(r)) := CHr(V;2r � q):

CH�(V; �) are thehigher Chow groupsof algebraic cycles modulo rational equiv-
alence defined as follows. Form any non negative integer, let

�m = Spec

 
k[t0; : : : ; tm]

, X
i

ti � 1

!!
' Am

k :
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Given an increasing map� : f0; : : : ; tg ! f0; : : : ;mg, define~� : �t ! �m as
~��(ti) = ��(j)=itj and ~��(ti) = 0 if ��1(fig) = ;. If � is injective, the image
~�(�t) � �m is called aface; if � is surjective,~� is adegeneracy.

LetZ�(V;m) � Z�(V ��m) be the free abelian group generated by irreducible
subvarieties meeting all facesV ��t � V ��m properly. Let@i (resp.Si) be the
pullback along the face map

(t0; : : : ; tm�1)! (t0; : : : ; ti�1;0; ti+1; : : : ; tm�1)

(resp. degeneracy)

(t0; : : : ; tm)! (t0; : : : ; ti�1; ti + ti+1; ti+2; : : : ; tm):

Then, following [1], the groupsCH�(V;m) are defined to be the homotopy of the
complex of simplicial abelian groups

Z�(V; �) := (Z�(V;m); f@ig; fSig)m>0:

Because the homotopy of this complex in fact coincides with its homology, one
gets

CH�(V;m) =
\mi=0 Ker(@i : Z�(V;m)! Z�(V;m� 1))

@m+1(\mi=0 Ker(@i : Z�(V;m+ 1)! Z�(V;m)))

' Ker(�i(�1)i@i : Z�(V;m)! Z�(V;m� 1))
Image(�i(�1)i@i : Z�(V;m+ 1)! Z�(V;m))

:

It follows from the definition of the complexesZ�(Y (j); �), (note that each
stratumYI ; jIj = j, is a regular scheme) that one has the following exact sequence
of complexes calculating higher Chow groups, where the horizontal maps are Gysin
homomorphisms
 on the level of cycles that we have defined in the last paragraph

0! Zr�n�1(Y (n+1); �)! � � �

! Zr�2(Y (2); �)! Zr�1(Y (1); �)! Zr�1(Y; �)! 0 (2.1)

In particular, one has

CH�(Y ) ' Coker(
 : CHn��(Y
(2))! CHn��(Y

(1))): (2.2)

We assume from now on thatk(v) is a finite field: letN(v) be its number of
elements. We also assume for the rest of this section that 2r � q > 1.

Since the strataYI are proper and smooth over a finite field, the results obtained
in [21] may suggest the following
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CONJECTURE 2.1.Km(YI)
 Q = 0 for m > 0.

The Riemann–Roch isomorphism (9.1) of [1] would then imply

CH�(YI ;m)
 Q = (0) for m > 1:

Hence, whenm > 1, this vanishing together with (2.1) would yield, by a simple
diagram chase

CH�(Y;m)
 Q ' Ker(
 : CHn��(Y
(m+1))! CHn��(Y

(m)))

Image(
 : CHn��(Y (m+2))! CHn��(Y (m+1)))

 Q: (2.3)

Therefore, (2.2) and (2.3) would imply

rankCHr�1(Y;2r � q � 1)
Q

=

8<
:

rank Ker(
:CHn�r+1(Y
(2r�q)

)!CHn�r+1(Y
(2r�q�1)

))

Image(
:CHn�r+1(Y
(2r�q+1))!CHn�r+1(Y

(2r�q)))

 Q if 2r � q > 2

rank Coker(
 : CHn�r+1(Y
(2)
)! CHn�r+1(Y

(1)
))
 Q if 2r � q = 1:

(2.4)

Let denote byF � the (geometric) Frobenius automorphism acting on the groups
of geometricl-adic cohomology of�X. Under these conditions, Bloch has formu-
lated the following

CONJECTURE 2.2 (Bloch). ords=q�r det(I � F �N(v)�s j Hq�1( �X;Ql )
I) =

=

8<
:

rankCHr�1(Y;2r � q � 1)
 Ql if 2r � q > 2

rank Ker(i��i�:CHn�r+1(Y
(1))!CHr(Y (1)))

Image(
:CHn�r+1(Y (2))!CHn�r+1(Y (1)))

 Ql if 2r � q = 1:

The mapi� � i� is the composite of the push forward mapi� toward the Chow
groups of the modelX, followed by the pullbacki�.

A nice consequence of this conjecture is the independence of the rank of the
groupsHq�1

M (Y;Ql (r� 1)) = CHr�1(Y;2r� q� 1)
 Ql on the special fiberY ,
when 2r � q > 2. Results in this direction have been recently obtained by Gillet
and Souĺe (cf. [13]) and by Hanamura (cf. [14]).

In the next section we will show how Conjecture 2.2 follows from Monodromy
and Tate Conjectures, together with the Conjecture 2.1 and the assumption of the
semisimplicity of the frobenius. Finally, we anticipate that the homology groups
involved in the Conjecture 2.2 can be seen as homologies of a mapping cone of an
endomorphism of a suitable bigraded complexK �;� (cf. (3.14).

3. A bigraded complex with monodromy on the special fiber

In this section we introduce a bigraded complex endowed with a monodromy-type
mapN and we explain some properties of it which we use in the proof of the
Conjecture 2.2.
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We assume all of the notations introduced in Seciton 1; in particular, we denote
by n the dimension of the special fiberY .

Let i; j; k 2 Z. We define, following [22], [11]:

Ki;j;k :=

(
Hi+j�2k+n( �Y (2k�i+1);Ql (i� k)) if k > max(0; i)

0 otherwise:
(3.1)

Set:Ki;j = �kK
i;j;k andK� = �i+j=�K

i;j.
The corestriction map� and the Gysin homomorphism
 on l-adic cohomology

groups, define respectively maps:

d0 : Ki;j;k ! Ki+1;j+1;k+1 d0(a) = �(a)

d00 : Ki;j;k ! Ki+1;j+1;k d00(a) = �
(a)

and

N : Ki;j;k ! Ki+2;j;k+1(�1) N(a) = a

for anya 2 Ki;j;k.
OnKi;j; let d = d0 + d00. It follows from the definitions that[d;N ] = 0 and

d2 = 0.
We denote by Cone(N : K� ! K�) the complexK��K�[�1] endowed with

the differentialD(a; b) = (da;N(a)� db).
In [3], a similar complex has been defined using the groups of algebraic cycles

of the strataYI modulo rational, algebraic, homological or numerical equivalence.
More precisely, we would like to point out here that it was the axiomatic description
given in op. cit. and in [11] that suggested to us the definition of (3.1). In (3.13)
we will denote by the same nameKi;j;k the complex of algebraic cycles modulo
rational equivalence.

The following technical lemma will be used in the proof of Proposition 3.2.

LEMMA 3.1. LetN : C� ! D� be a morphism of complexes. Suppose there exists
an integerm such that

Ni : C
i ! Di is

8><
>:

injective ifi 6 m� 1

bijective ifi = m

surjective ifi > m+ 1
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Let us define a complexL� via the diagram with exact columns

0 0

0 0 Lm+1
?

- Lm+2 � � �
?

Cm�2
?

- Cm�1
?

dC
- Cm

- Cm+1
?

- Cm+2 � � �
?

Dm�2
?

N

- Dm�1
?

N

dD
- Dm

'

?

N

- Dm+1
?

N

- Dm+2 � � �
?

N

Lm�1
?

- Lm
?

0
?

0
?

0
?

0
?

where the differentialLm ! Lm+1 is defined by a diagram chase.
Then,L� is quasi-isomorphic to Cone(N : C� ! D�).
Proof. Let think Cone(N : C� ! D�) as the double complex

� � � - Ci
- Ci+1

- Ci+2
- � � �

� � � - Di

?

- Di+1
?

- Di+2
?

- � � �
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It contains the following acyclic sub-double complex

� � � - C
m�2

- C
m�1

- Image(dC) - 0 - 0 � � �

� � � - C
m�2
?

=

- C
m�1
?

=

- Image(N � dC)
?

=

- 0 - 0 � � �

Taking the quotient, we get that Cone(N : C� ! D�) is quasi-isomorphic to
the complex

� � � - 0 - 0 - �Cm - C
m+1

- C
m+2

- � � �

L
m�1
?

- L
m
?

dD
- Dm

?

N=1

- D
m+1
?

epi

- D
m+2
?

epi

- � � �

whereCm = Cm

Image(dC)
andDm = Dm

Image(N �dC)
. The acyclic complex

� � � - Cm=N�1(Image(dD)) - Dm+1
- Dm+2

- � � �

Dm=Image(dD)
?

'

- Dm+1
?

=

- Dm+2
?

=

- � � �

is a quotient of the previous one. The kernel, which is quasi-isomorphic to Cone(N :
C� ! D�), is the complex

0 - 0 - N
�1
(Image(dD)) - L

m+1
- L

m+2
- � � �

L
m�1
?

- L
m
?

dD
- Image(dD)

?

'

- 0
?

0
?

It is easy to check that this complex is quasi-isomorphic toL�.

PROPOSITION 3.2.Let� be a fixed integer. Then, the complex(q 2 Z)

Cone(N : Kq��;q�n ! Kq��+2;q�n(�1))

is quasi-isomorphic to the following complex

Cq(�) :=

(
H2q��( �Y (��q);Ql (q � �)) if q 6 � � 1

H�( �Y (q��+1);Ql ) if q > �
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for a 2 Cq(�), the differentialdC is given by

dC(a) =

8><
>:
d00(a) if q < � � 1

�i?i?(a) if q = � � 1

d0(a) if q > �

i.e.

: : : H2q��( �Y (��q);Ql (q � �)) d00�! � � � ! H��4( �Y (2);Ql (�2))

! H��2( �Y (1);Ql (�1))
�i?�i?
- H�( �Y (1);Ql )

d0�! H�( �Y (2);Ql )

! H�( �Y (3);Ql )! � � � ! H�( �Y (q��+1);Ql )
d0�! � � �

In particular,C�(�) = H�( �Y (1);Ql ) andC��1(�) = H��2( �Y (1);Ql (�1)): The
compositei? � i? is the push forward mapi? : H��2( �Y (1);Ql (�1)) ! H�(X;Ql )
followed by (the identityN and) the pullbacki? : H�(X;Ql )! H�( �Y (1);Ql ).

Proof. Let fix an integer� and defineCq = Kq��;q�n;Dq = Kq��+2;q�n.
Then, the mapN : Cq ! Dq looks like:

q � � > 0: N : �k>q��K
q��;q�n;k KerN = Kq��;q�n;q��

� �k>q��+2K
q��+2;q�n;k;

q � � = �1: N : �k>0K
�1;q�n;k

'�! �k>1K
1;q�n;k;

q � � 6 �2: N : �k>0K
q��;q�n;k CokerN = Kq��+2;q�n;0

,! �k>0K
q��+2;q�n;k;

We are now in the situation of Lemma 3.1, withm = � � 1 and

Lq =

(
Kq��+1;q�n�1;0; if q 6 � � 1

Kq��;q�n;q��; if q > �

Therefore the claim follows. 2
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Sinced2 = 0 andd commutes withN; d defines a differential on the bigraded
groups:

Ker(N)�;� = Ker(K �;� N�! K �+2;�(�1));

Coker(N)�;� = Coker(K �;� N�! K �+2;�(�1))

as well on the mapping cone ofN

Cone(N)�;� = Cone(K �;� N�! K �+2;�(�1)):

We introduce following [3], the groups (q > 0; r 2 Z):

grWq+rH
q( ~X�) :=

Ker(d : K�r;q�n ! K�r+1;q�n+1)

Image(d : K�r�1;q�n�1 ! K�r;q�n)
(3.2)

grWq+rH
q(X�)

:=
Ker(d : Cone(N)�r+1;q�n�1 ! Cone(N)�r+2;q�n)

Image(d : Cone(N)�r;q�n�2 ! Cone(N)�r+1;q�n�1)
(3.3)

grWq+rH
q(Y ) :=

Ker(d : Ker(N)�r;q�n ! Ker(N)�r+1;q�n+1)

Image(d : Ker(N)�r�1;q�n�1 ! Ker(N)�r;q�n)
(3.4)

grWq+rH
q
Y (X)

:=
Ker(d : Coker(N)�r;q�n�2 ! Coker(N)�r+1;q�n�1)

Image(d : Coker(N)�r�1;q�n�3 ! Coker(N)�r;q�n�2)
(3.5)

These formal definitions (inspired by the theory of variations of Hodge struc-
tures) imply analogs of the Wang exact sequence and the standard exact sequence
for cohomology with supports. In this abstract setting that means the exactness of
(m 2 Z):

: : : grWmHq(X�)! grWmHq( ~X�)

N�! grWm�2H
q( ~X�)(�1)! grWmHq+1(X�) : : : (3.6)

: : : grWmHq(Y )! grWmHq(X�)

! grWmH
q+1
Y (X)! grWmH

q+1(Y ) : : : (3.7)

(cf. op. cit. Lemma 3 for a proof).
As in op. cit. Lemma 4 we have the following formulae
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LEMMA 3.3.
(i)

grWq+rH
q(Y ) =

8<
:

Ker(d00:Hq+r( �Y (�r+1);Ql)!Hq+r( �Y (�r+2);Ql))
Image(d0:Hq+r( �Y (�r);Ql)!Hq+r( �Y (�r+1);Ql))

if r 6 0

0 otherwise

In particular,

grWmHm(Y ) = Ker(d0 : Hm( �Y (1);Ql )! Hm( �Y (2);Ql ))

(ii)

grWq+rH
q
Y (X)

=

8<
:

Ker(d00:Hq�r�2( �Y (r+1);Ql(�r�1))!Hq�r( �Y (r);Ql(�r)))

Image(d00:Hq�r�4( �Y (r+2);Ql(�r�2))!Hq�r�2( �Y (r+1);Ql(�r�1)))
if r > 0

0 otherwise

In particular,

grWmHm
Y (X) = Coker(d00 : Hm�4( �Y (2);Ql (�2))! Hm�2( �Y (1);Ql (�1)))

(iii) The mapgrWmH
q
Y (X) ! grWmHq(Y ) in the exact sequence(3:7) is zero

unlessm = q. OngrWmH
m
Y (X) this map coincides with the morphism:

�i� � i� : Hm�2( �Y (1);Ql (�1))! Hm( �Y (1);Ql ):

(iv)

grWq+rH
q(X�) =

8>>>>>>>>><
>>>>>>>>>:

grWq+rH
q+1
Y (X) if r > 1;

Ker(�i��i�:Hq�1( �Y (1);Ql(�1))!Hq+1( �Y (1);Ql))
Image(d00) if r = 1;

Ker(d0:Hq( �Y (1);Ql)!Hq( �Y (2);Ql))
Image(�i��i�)

if r = 0;

grWq+rH
q(Y ) if r 6 �1

COROLLARY 3.4.

N : grWq+rH
q( ~X�)! grWq+r�2H

q( ~X�)(�1) is

8><
>:

injective ifr > 1

bijective ifr = 1

surjective ifr 6 0
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Furthermore:

if r > 1: Coker(N : grWq+rH
q( ~X�)! grWq+r�2H

q( ~X�)(�1))

= grWq+rH
q+1(X�)

if r 6 0: Ker(N : grWq+rH
q( ~X�)! grWq+r�2H

q( ~X�)(�1))

= grWq+rH
q(X�)

Proof. Follows from the Wang exact sequence (3.6) together with Lemma 3.3
(iv). 2

Let us consider, following [16] (cf. Theorem 2.10), the Gal(��=�)-equivariant
spectral sequence of the vanishing cycles(r; q 2 Z; q > 0):

E
�r;q+r
1

=
M

k>max(0;�r)

Hq�r�2k( �Y (r+2k+1);Ql (�r � k))) Hq( �X;Ql );

E�r;q+r
1 = grWq+rH

q( �X;Ql ):

(3.8)

The differential on theE1-term is defined as

d1 =
X
k

((�1)r+kd01 + (�1)k�rd001)

for d01 = d0 = � andd001 = d00 = �
, where
 and� are respectively the Gysin
and the corestriction homomorphisms as defined in Section 1. Furthermore, since

 � �+ � � 
 = 0, one hasd001 � d01 + d01 � d001 = 0:

It follows from Weil conjectures thatE�r;q+r
1 is a pure Galois module of weight

q + r. Therefore, the spectral sequence degenerates at theE2-term andE�r;q+r
1

has pure weightq + r. From the definitions (3.8) and (3.1) we get that

E
�r;q+r
1 = K�r;q�n

Hence,

(E�r;q+r
1 ; d1 = d01 + d001) ' (K�r;q�n; d = d0 + d00)

and that is enough to conclude

grWq+rH
q( �X;Ql ) ' grWq+rH

q( ~X�):
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If n (= dim Y ) 6 2, Rapoport and Zink have proved (cf.op. cit.Theorem 2.13)
that the filtration induced on the abutmentHq( �X;Ql ) by the weight filtration on the
special fiberY , coincides with the monodromy filtration. This means that the action
of (T �1) onE1, whereT is a topological generator of the maximal pro-l-quotient
of I � Gal(��=�), induces the monodromy transformation ongrWq+rH

q( �X;Ql ).
Hence, the corresponding nilpotent mapN = log T defines the monodromy
filtration onHq( �X;Ql ). Therefore, the operatorN on the associated graded group
determines isomorphisms of weighted pure Galois structures(q; r > 0)

N r : grWq+rH
q( �X;Ql )

'�! grWq�rH
q( �X;Ql )(�r): (3.9)

Whenn > 2, this result is still unproved in the full generality (although some
particular cases have been studied, e.g. abelian varieties over number fields: cf.
[16]). We will refer to it as the Monodromy Conjecture.

In the rest of this section we will assume the Monodromy Conjecture.
The isomorphisms (3.9) together with the exact sequences (3.6) and (3.7) imply

the exactness of the following weighted sequencem 2 Z (Clemens–Schmidt type)

: : : grWmH
q
Y (X)! grWmH

q(Y )! grWmHq( ~X�)

N�! grWm�2H
q( ~X�)(�1)! grWmH

q+2
Y (X) : : : (3.10)

We refer to [22] (5.12), [18] and [12] (IV, 7.14) for a proof of this claim.
We are now ready to state our main result

THEOREM 3.5.Let suppose that the fieldk(v) is finite and letN(v) be its number
of elements. LetF � be the (geometric) frobenius automorphism acting on the
geometricl-adic cohomology groups of�X. Assume the Monodromy Conjecture
and supposeF � acts semisimply onH�( �X;Ql )

I . Let m = 2r � q > 1 and
a = q � r, then

ord
s=a

det(I � F �N(v)�sjHq�1( �X;Ql )
I)

=

8>><
>>:
rk
�

Ker(d00:H2a( �Y (m);Ql(a))!H2(a+1)( �Y (m�1);Ql(a+1)))
Image(d00)

�F=id
m > 2

rk
�

Ker(i��i�:H2a( �Y (1);Ql(a))!H2(a+1)( �Y (1);Ql(a+1)))
Image(d00)

�F=id
m = 1

Proof. SinceF � acts semisimply on the inertia invariants inHq�1( �X;Ql ), we
have

ord
s=a

det(I � F �N(v)�sjHq�1( �X;Ql )
I) = rankHq�1( �X;Ql )

hI;F=N(v)ai

comp4100.tex; 28/05/1998; 9:06; v.7; p.16

https://doi.org/10.1023/A:1000362027455 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000362027455


DOUBLE COMPLEXES ANDL-FACTORS 339

Since the wild inertia acts trivially (we deal with a semistable fibration)

rank(Hq�1( �X;Ql )
I)F=N(v)a

= rank
�
Ker(N : grW2aH

q�1( ~X�)(a)

! grW2(a�1)H
q�1( ~X�)(a� 1))

�hF=idi
:

It follows from the Monodromy Conjecture together with Corollary 3.4 and
Lemma 3.3 that

ord
s=a

det(I � F �N(v)�sjHq�1( �X;Ql )
I) = rank(grW2aH

q�1(X�)(a))hF=idi

=

8>><
>>:

rank(grW2aH
q�1(Y )(a))hF=idi if m > 2

rank
�
grW2aH

2a(Y )(a)
Image(i��i�)

�hF=idi
if m = 1

=

8>><
>>:
rk
�

Ker(d0:H2a( �Y (m);Ql(a))!H2a( �Y (m+1);Ql(a)))
Image(d0)

�hF=idi
m > 2

rk
�

Ker(d0:H2a( �Y (1);Ql(a))!H2a( �Y (2);Ql(a)))
Image(i��i�)

�hF=idi
m = 1

From the Monodromy Conjecture we also have an isomorphism like (3.9)

grW2rH
q�1( ~X�)(r)

N2r�q+1
- grW2(a�1)H

q�1( ~X�)(a� 1)

(2r � q + 1 > 2, under our hypotheses). Let decompose this isomorphism as

0! grW2rH
q�1( ~X�)(r)

N�! grW2(r�1)H
q�1( ~X�)(r � 1) N�! � � �

� � � N�! grW2aH
q�1( ~X�)(a)

N�! grW2(a�1)H
q�1( ~X�)(a� 1)! 0

where the firstN on the left is injective and the lastN on the right is surjective (cf.
Corollary 3.4). The composite

grW2(r�1)H
q�1( ~X�)(r � 1)

N2r�q�1
- grW2aH

q�1( ~X�)(a);
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is also an isomorphism for 2r � q > 2, therefore in this range we get

grW2aH
q�1(Y )(a)

= Ker(N : grW2aH
q�1( ~X�)(a)! grW2(a�1)H

q�1( ~X�)(a� 1))

'Coker(N : grW2rH
q�1( ~X�)(r)! grW2(r�1)H

q�1( ~X�)(r � 1))

= grW2rH
q+1
Y (X)(r)

=
Ker(d00 : H2a( �Y (2r�q);Ql (a))! H2(a+1)( �Y (2r�q�1);Ql (a+ 1)))

Image(d00)
(3.11)

For 2r � q = 1:

grW2aH
2a(Y )(a)

Image(i� � i�)

= Ker(N : grW2aH
2a( ~X�)(a)! grW2(a�1)H

2a( ~X�)(a� 1))

' Coker(N : grW2(a+1)H
2a( ~X�)(a+ 1)! grW2aH

2a( ~X�)(a))

=
Ker(i� � i� : H2a( �Y (1);Ql (a))! H2(a+1)( �Y (1);Ql (a+ 1)))

Image(d00)
(3.12)

2

We would like to remark explicitly here that the isomorphisms (3.11) and (3.12)
established in the proof of the previous Theorem should be interpreted as higher
analogs of the isomorphism

� : Ha;a
II (X)�et ! H

a;a
I (X)�et;

described in [2] Theorem (6.3.1). Therefore, the assumption of the Monodromy
Conjecture in the Theorem 3.5 allows us to prove isomorphisms betweenI-
cohomological invariants and coinvariants (I being the inertia group), or equiv-
alently between right and left hand side with respect to the mapi� � i�, of the
complexes Cone(N) described in Proposition 3.2 and in (3.13) below.

In analogy to (3.1) one can define fori; j; k 2 Z:

Ki;j;k :=

8>><
>>:
CH

i+j�2k+n
2 (Y (2k�i+1)) if k > max(0; i) and

i+ j + n � 0 (2)

0 otherwise

(3.13)
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Gysin homomorphisms and restriction maps define differentialsd0 andd00 as we
have already described for the complex (3.1). Letd = d0 + d00.
The operatorN : Ki;j;k ! Ki+2;j;k+1 is set to be the identity: i.e.N(a) = a, for
a 2 Ki;j;k.

The analogue of Proposition 3.2 for this complex states that for a fixed integer
�, Cone(N : Kq�2�;q�n ! Kq�2�+2;q�n) (q 2 Z) is quasi-isomorphic to

: : : CHq��(Y (2��q))
d00�! � � � ! CH��2(Y (2))! CH��1(Y (1))

i?�i?
- CH�(Y (1))

d0�! CH�(Y (2))! � � � ! CH�(Y (q�2�))! � � �

The complex (3.13) has been firstly studied in [3]. For this geometric theory the
Monodromy Conjecture is achieved if one assumes that the strata ofY satisfy both
the hard Lefschetz theorem and the Hodge index theorem.

We are now able to complete a proof of the Conjecture 2.2.

COROLLARY 3.6.Under the same hypotheses and notations of Theorem 3.5,
assuming Tate conjectures and the injectivity of the cycle class map on each
stratumYI and Conjecture 2.1, we have

ord
s=q�r

det(I � F �N(v)�sjHq�1( �X;Ql )
I)

=

8<
:

rankCHr�1(Y;2r � q � 1)
 Ql if 2r � q > 2

rank Ker(i��i�:CHn�r+1(Y
(1))!CHr(Y (1)))

Image(
:CHn�r+1(Y (2))!CHn�r+1(Y (1)))

 Ql if 2r � q = 1:

Proof. Since Tate conjectures hold and the spectral sequence 3.8 is Galois
equivariant, it follows from Theorem 3.5 that (G = Gal(�v=v))

ord
s=q�r

det(I � F �N(v)�sjHq�1( �X;Ql )
I)

=

8>><
>>:
rk
�

Ker(d00:H2(q�r)( �Y (2r�q);Ql(q�r))!H
2(q�r+1)( �Y (2r�q�1);Ql(q�r+1)))

Image(d00)

�G
2r � q>2

rk
�

Ker(i��i�:H2(r�1)( �Y (1);Ql(r�1))!H2r( �Y (1);Ql(r)))
Image(d00)

�G
2r�q=1

=

8>><
>>:
rk

Ker(
:CHn�r+1(Y
(2r�q))!CHn�r+1(Y

(2r�q�1)))

Image(
:CHn�r+1(Y (2r�q+1))!CHn�r+1(Y (2r�q)))

 Ql 2r � q > 2

rk
Ker(i��i�:CHn�r+1(Y

(1))!CHr(Y (1)))

Image(
:CHn�r+1(Y (2))!CHn�r+1(Y (1)))

 Ql 2r � q = 1:

Then, the claim follows from Conjecture 2.1 as we showed in Section 2.
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4. A bigraded complex with monodromy for the closed fiber at infinity

LetX be a smooth projective variety of dimensionn overC orR. In this paragraph
we define a bigraded complex, endowed with a monodromy-type mapN , which
should be interpreted as the archimedean analogue of the complexK �;� studied
in the last section. In particular, we show that real Deligne cohomology can be
described as the homology of the mapping cone of this bigraded complex. Our
construction is intended to stress some similarities occurring at the semistable
and the archimedean places. In particular, the symmetry between cohomologi-
cal I-invariants and coinvariants at the semistable places described in Section 3,
corresponds here to the (already known!) isomorphisms

H
q
D(X;R(p)) ' H

q+1
D (X;R(q + 1� p)); q > 2p > 0:

In this section, we will prove thatHq
D(X;R(p)) is in fact symmetric to

H
q+1
D (X;R(q + 1� p)), with respect to the map(�2�

p�1)ddc. This result will
be taken up again at the end of the next paragraph where we show that, by means
of a non degenerate pairing, these two groups are dual.

We write(Aa;b +Ab;a)R for the abelian group of real differential forms of type
(a; b) + (b; a) onX. By the expression(Aa;b + Ab;a)R(p)(p 2 Z), we mean the
pth-Tate twist of(Aa;b+Ab;a)R i.e.(Aa;b+Ab;a)R(p) = (2�

p�1)p(Aa;b+Ab;a)R.
Let i; j; k 2 Z. We define the following complex:

Ki;j;k :=

8>>>>><
>>>>>:

0
B@ M

a+b=j+n

ja�bj62k�i

Aa;b

1
CA
R

�
n+ j � i

2

�
if n+ j � i � 0(2)

andk > max(0; i)

0 otherwise:

(4.1)

SetKi;j = �kK
i;j;k andK� = �i+j=�K

i;j.
Consider the real differential operatorsd = (@ + �@) anddc = �p�1(@ � �@).

One defines the following maps:

d0 : Ki;j;k ! Ki+1;j+1;k+1; d0(a) = d(a) (4.2)

d00 : Ki;j;k ! Ki+1;j+1;k

d00(a) = �dc(a) (projected ontoKi+1;j+1;k)
(4.3)

and

N : Ki;j;k ! Ki+2;j;k+1 N(a) = (2�
p
�1)�1a (4.4)

for anya 2 Ki;j;k.
OnKi;j, let d = d0 + d00. The complex Cone(N) = Cone(N : K� ! K�) is

defined to beK� �K�[�1] endowed with the differentialD(a; b) = (da;N(a)�
db).

Using the same arguments presented in the proof of Proposition 3.2, one gets
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PROPOSITION 4.1.Let p be a fixed non negative integer. Then, the complex
Cone(N : Kq�2p;q�n ! Kq�2p+2;q�n)(q 2 Z) is quasi-isomorphic to the ‘Deligne-
complex’(Cq

D(p);dD)

C
q
D(p) :=

8>>>>>>>>>><
>>>>>>>>>>:

0
B@ M

a+b=j�1
ja�bj62p�q�1

Aa;b

1
CA
R

(p� 1) if q 6 2p� 1

0
B@ M

a+b=q

ja�bj6q�2p

Aa;b

1
CA
R

(p) if q > 2p

for a 2 Cq
D(p), the differentialdD is given by

dD(a) =

8><
>:
d00(a) if q < 2p� 1

2�
p�1d0d00(a) if q = 2p� 1

d0(a) if q > 2p

i.e. 0
B@ M

a+b=q�1
ja�bj62p�q�1

Aa;b

1
CA
R

(p� 1) d00�! � � � !

0
B@ M

a+b=2p�3
ja�bj61

Aa;b

1
CA
R

(p� 1)

! (Ap�1;p�1)R(p� 1)
2�
p
�1d0d00
-

2�
p
�1d0d00
- (Ap;p)R(p)

d0�!

0
B@ M

a+b=2p+1
ja�bj61

Aa;b

1
CA
R

(p)

! � � � !

0
B@ M

a+b=q

ja�bj6q�2p

Aa;b

1
CA
R

(p)! � � �

In particular,C2p�1
D (p) = (Ap�1;p�1)R(p� 1); C2p

D (p) = (Ap;p)R(p). The map
2�
p�1d0d00 is the composite ofd00 followed by (the identityN and) the mapd0.

WhenX is defined overC , the homology of this complex computes the real
Deligne cohomology ofX (cf. [4] Theorem 1.10). We recall that the real Deligne
cohomology ofXR (i.e. a variety defined overR) is defined as

H�
D(XR;R(p)) := H�

D(XC ;R(p))
�F1=id
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�F1 being the De-Rham conjugation. Therefore, taking the�F1-invariants of the
homology of the above complex yields a description ofH�

D(XR;R(p)).
In analogy with the properties stated in [2] Lemma 1, we have

LEMMA 4.2.

(i) d2 = 0 = d0d00 + d00d0:
(ii) N commutes withd0 andd00, hence[N; d] = 0.
(iii) For anyi; j 2 Z; i > 0 the map

N i : K�i;j ! Ki;j

is an isomorphism.
(iv) For anyi; j 2 Z; i > 0

Ker(N i+1) \K�i;j = K�i;j;0 =

0
B@ M

a+b=j+n

ja�bj6i

Aa;b

1
CA
R

�
n+ j + i

2

�
:

Proof. For (i): let f be a differential form of pure type(a; b) with a < b. Let
g = f+ �f be an element ofKi;j;k. Then,a+b = j+n. If ja�bj < 2k� i, then the
statement follows from the well known equalityddc+dcd = 0. If ja� bj = 2k� i,
then

d0d00(g) = �
p
�1d0(@f � �@ �f) = �

p
�1(�@ �@ �f + �@@f):

On the other hand, sinced00(@f + �@ �f) = 0 and@ �@ = ��@@

d00d0(g) = d00(@ �f + �@f) = �
p
�1(@ �@f � �@@ �f) =

p
�1(�@ �@ �f + �@@f):

(ii), (iii) and (iv) are direct consequences of the definitions by checking degrees.2

Sinced2 = 0= [N; d]; d defines a differential on the bigraded groups:

Ker(N)�;�=Ker(K �;� N�! K �+2;�); Coker(N)�;�=Coker(K _;� N�! K �+2;�)

as well as on the mapping cone ofN

Cone(N)�;� = Cone(K �;� N�! K �+2;�):

We define as in (3.2)–(3.5) the groupsgrWq+rH
q( ~X�); grWq+rH

q(X�); grWq+rH
q(Y )

andgrWq+rH
q
Y (X). These groups fit into exact sequences like (3.6) and (3.7). In

analogy with Lemma 3.3 of Section 3 we have (p 2 Z).
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LEMMA 4.3.

(i)

grWq+rH
q(Y )

=

8>>>>><
>>>>>:

Ker

0
B@d0:

0
B@ L

a+b=q

ja�bj6�r

Aa;b

1
CA
R

(p)!

0
B@ L

a+b=q+1
ja�bj6�r+1

Aa;b

1
CA
R

(p)

1
CA

Image(d0) r 6 0; q + r = 2p

0 otherwise

In particular,

grW2pH
2p(Y ) = Ker

0
BB@d0 : (Ap;p)R(p)!

0
B@ M

a+b=2p+1
ja�bj61

Aa;b

1
CA
R

(p)

1
CCA

(ii)

grWq+rH
q
Y (X)

=

8>>>>><
>>>>>:

Ker

0
B@d00:

0
B@ L

a+b=q�2
ja�bj6�r

Aa;b

1
CA
R

(p�1)!

0
B@ L

a+b=q�1
ja�bj6r�1

Aa;b

1
CA
R

(p�1)

1
CA

Image(d00) r > 0; q + r = 2p

0 otherwise

In particular,

grW2pH
2p
Y (X)

= Coker

0
BB@d00 :

0
B@ M

a+b=2p�3
ja�bj61

Aa;b

1
CA
R

(p� 1)! (Ap�1;p�1)R(p� 1)

1
CCA
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(iii) The mapgrWmH
q
Y (X) ! grWmHq(Y ) in the exact sequence(3:7) is zero

unlessm = q = 2p. OngrW2pH
2p
Y (X) this map coincides with the morphism:

2�
p
�1d0d00 :

(Ap�1;p�1)R(p� 1)
Image(d00)

! Ker

0
BB@d0 : (Ap;p)R(p)!

0
B@ M

a+b=2p+1
ja�bj61

Aa;b

1
CA
R

(p)

1
CCA

(iv) grWq+rH
q(X�) = 0 unlessq + r = 2p, in which case

grW2pH
q(X�)

=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

grW2pH
q+1
Y (X) if q < 2p� 1;

Ker(2�
p
�1d0d00: (Ap�1;p�1)R(p�1)!(Ap;p)R(p))

Image(d00) if q = 2p� 1;

Ker(d0: (Ap;p)R(p)!

0
B@ L

a+b=2p+1
ja�bj61

Aa;b

1
CA
R

(p))

Image(2�
p
�1d0d00)

if q = 2p;

grW2pH
q(Y ) if q > 2p+ 1

Note that forp > 0 one gets isomorphisms

H
q
D(XC ;R(p)) ' grW2pH

q(X�)

(resp: Hq
D(XR;R(p)) ' grW2pH

q(X�)
�F1=id)

The statement which corresponds to Corollary 3.4 in this context is.

COROLLARY 4.4.grWq+rH
q( ~X�) = 0 unlessq + r = 2p, in which case

N : grW2pH
q( ~X�)! grW2p�2H

q( ~X�)

is

8><
>:

injective ifq < 2p� 1

bijective ifq = 2p� 1

surjective ifq > 2p
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Furthermore,

if q < 2p� 1;

CokerN =
Hq(X; C)

F pHq(X; C) +H
q
B(X;R(p))

' H
q+1
D (XC ;R(p))

if q > 2p; KerN = grW2pH
q(X�):

If q = 2p :

grW2pH
2p(X�) = F pH2p(X; C ) \H2p

B (X;R(p)) ' H
2p
D (XC ;R(p)):

Finally, forXR, we have the correspondingstatements by taking the�F1-invariants.
In particular

grW2pH
2p(X�)

�F1=id ' H
2p
D (XR;R(p)):

SinceX is projective overC (or R), the fundamental real(1;1)-form ! on it
defines the Lefschetz operator

l : Ki;j;k ! Ki;j+2;k l(a) = (2�
p
�1)a ^ ! (4.5)

This operator satisfies the following properties.

LEMMA 4.5.
(i) [l; N ] = [l; d0] = [l; d00] = 0 and hence[l; d] = 0.
(ii) For any integeri and8j > 0; l induces isomorphisms

lj : Ki;�j ! Ki;j

(iii) For any non negative integersi; j

(K�i;�j)0

:= K�i;�j \ (Ker lj+1) \ (KerN i+1)

= K�i;�j;0 \ (Ker lj+1)

= Ker

0
BB@lj+1:

0
B@ M

a+b=�j+n

ja�bj6i

Aa;b

1
CA
R

�
n+ i� j

2

�

!

0
B@ M

a+b=j+n+2
ja�bj6i

Aa;b

1
CA
R

�
n+ i+ j

2
+ 1

�1CCA :
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Proof. It is immediate that[l; N ] = 0:[l; d0] = 0 = [l; d00] follow from the
definitions and the property that! is d0-closed. (ii) is the hard Lefschetz theorem
on the level of differential forms (cf. [23] Chapt. V, Sect. 2 and Theorem 3.12(c)).
Finally, (iii) follows from Lemma 4.2(iv). 2

We set, form 2 Z

�(m) = (�1)
m(m+1)

2 :

Let denote byC the Weil operator: on a differential formf of type(a; b)

C(f) := (
p
�1)a�b(f):

(cf. op. cit.Chapt. V, Sect. 1).
Define pairings

 : K�i;�j;k 
Ki;j;k+i ! R(n)

 (x; y) =

�
1

2�
p�1

�n
�(n� j)(�1)k

Z
X

x ^ Cy
(4.6)

x 2 K�i;�j;k

=

0
B@ M

a+b=�j+n

ja�bj62k+i

Aa;b

1
CA
R

�
n� j + i

2

�
; y 2 Ki;j;k+i

=

0
B@ M

a+b=j+n

ja�bj62k+i

Aa;b

1
CA
R

�
n+ j � i

2

�
:

One extends by zero: i.e. vanishes onKi;j;k 
 Ku;v;w unlessi + u =
j + v = w + i� k = 0. Hence, we get a pairing

 : K �;� 
K �;� ! R(n):

LEMMA 4.6. The following identities hold

(i)  (x; y) = (�1)n (y; x):
(ii)  (Nx; y) +  (x;Ny) = 0:
(iii)  (lx; y) +  (x; ly) = 0:
(iv)  (d0x; y) =  (x; d00y):
(v)  (d00x; y) =  (x; d0y):
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Proof. (i) is a direct consequence of the equality(�1)k�(n�j) = (�1)k+i�(n+
j)(�1)j . Note that it follows from the definition of the complexKi;j;k given in
(4.1) that (x; y) = (�1)i+j (y; x) = (�1)n (y; x). (ii) is immediate from the
definitions. (iii) is a consequence of�(n � j) = ��(n � j � 2): For (iv): let
x 2 K�i�1;�j�1;k�1 and y 2 Ki;j;k+i: Sincedc = C�1d0C, it follows from
Stokes’s theorem and the definitions ofd0 andd00

 (d0x; y) =
�

1
2�
p
�1

�n
�(n� j)(�1)k

R
X d

0x ^ Cy

=
�

1
2�
p
�1

�n
�(n� j)(�1)n�j+k

R
X x ^ C(C�1d0C)y

=
�

1
2�
p
�1

�n
(�(n� j)(�1)n�j)(�1)k�1 R

X x ^ Cd00y
=  (x; d00y):

(v) is a direct consequence of (iv) and (i). 2

PROPOSITION 4.7.The bilinear form (�; ljN i�) induces onK�i;�j
0 a polariza-

tion i.e. the bilinear form

Q : K�i;�j
0 
K

�i;�j
0 ! R;

defined as

Q(x; y) =  (x; ljN iy);

is symmetric and positive definite.
Proof. Let

x; y 2 (K�i;�j)0

= (K�i;�j;0)0 =

0
B@ M

a+b=n�j

ja�bj6i

Aa;b

1
CA
R

�
n� j + i

2

�
;

then

(2�
p
�1)

�n+j�i

2 x; (2�
p
�1)

�n+j�i

2 y 2

0
B@ M

a+b=n�j

ja�bj6i

Aa;b

1
CA
R

:
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SinceN(a) = (2�
p�1)�1a; andl(a) = (2�

p�1)a ^ !, one has

Q(x; y) =

�
1

2�
p�1

�n
�(n� j)

Z
X
x ^ ljN iCy

= �(n� j)

Z
X

(2�
p
�1)

�n+j�i

2 x ^C(2�
p
�1)

�n+j�i

2 y:

Hence, the claim follows from classical Hodge theory: cf. [23] Chapt. V, Sect. 6,
Theorem 6.1(d). 2

From Lemmas 4.2, 4.5, 4.6 and Proposition 4.7 we deduce that(K �;�; N; l;  )
is a polarized bigraded Lefschetz module in the sense of Saito (cf. [17]). Hence,
via the one-to-one correspondence between bigraded Lefschetz modules and rep-
resentations of the Lie groupSL2(R)�SL2(R), we associate to(K �;�; N; l;  ) the
representation� of SL2(R) � SL2(R) defined as

�

��
a 0
0 a�1

�
;

�
b 0
0 b�1

��
(x) = aib jx; x 2 Ki;j

and

d�
��

0 1
0 0

�
;0
�
= N;

d�
�
0;
�

0 1
0 0

��
= l:

It follows from the notations introduced in Lemma 4.5(iii), that one has a
Lefschetz decomposition

Ki;j =
M
r;s>0

N rls(Ki�2r;j�2s)0:

The Weyl element

w =

�
0 1
�1 0

�
2 SL2(R);

defines the elementw2 = (w;w) 2 SL2(R) � SL2(R) and since the bilinear form
 defined in (4.6) induces a polarization ofK �;� (i.e. satisfies the properties (ii)
and (iii) of Lemma 4.6 and Proposition 4.7), it is not difficult to see that the pairing

�(x; y) :=  (x;w2y);
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is symmetric and positive definite onK �;� (cf. [11] p. 151 for a proof). It follows
from Lemma 4.6 that the differentiald = d0 + d00 admitsw�1

2 dw2 as transposetd
relative to�. Then, the Laplace operator onK �;�

2 := d(td) + (td)d;

commutes with the action ofSL2(R) � SL2(R) (cf. op. cit. Lemma at p. 153).
Using the properties of� mentioned above, one gets

H�(K�; d) = Ker d=Image d= Ker d \ Ker td = Ker2

and2 is invariant for the action ofSL2(R)�SL2(R). Then, from the isomorphism
of complexes

K� ' Ker2� Image2;

where d= 0 on (Ker2) and the complex (Image2) is d-acyclic, one deduces
an induced action ofSL2(R) � SL2(R) onH�(K�;d). Hence, the cohomology
H�(K�;d) ofK�, equipped with the endomorphismsN andl and the polarization
 , is a polarized bigraded Lefschetz module. In particular, that means that both
N andl satisfy hard Lefschetz theorems on the bigraded moduleH�(K�;d) as in
Lemmas 4.2(iii) and 4.5(iii). Therefore, one has the following.

PROPOSITION 4.8.For all q; r 2 Z; q > 0 the operatorN induces isomorphisms

N r : grWq+rH
q( ~X�)

'�! grWq�rH
q( ~X�)

This result, together with exact sequences as in (3.6) and (3.7) implies (cf.op.
cit. Theorem (5.3) for the arguments) the following Clemens–Schmidt type exact
sequence.

PROPOSITION 4.9.For r 2 Z the following sequence is exact

� � � ! grWq+rH
q
Y (X)! grWq+rH

q(Y )
sp�! grWq+rH

q( ~X�)

N�! grWq+r�2H
q( ~X�)

��! grWq+rH
q+2
Y (X)! grWq+rH

q+2(Y )! � � � ;

sp is the compositegrWq+rH
q(Y )! grWq+rH

q(X�)! grWq+rH
q( ~X�) and� is the

compositegrWq+r�2H
q( ~X�) ! grWq+rH

q+1(X�) ! grWq+rH
q+2
Y (X) as described

in the sequences(3:6) and(3:7).

Let define, following the notations used in [2] (p 2 Z), the groups

H
p;p
II := Coker(d0d00 : grW2pH

2p
Y (X)! grW2pH

2p(Y ))

H
p;p
I := Ker(d0d00 : grW2p+2H

2p+2
Y (X)! grW2p+2H

2p+2(Y )):

From Lemma 4.3 and Proposition 4.9 it is easy to deduce
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COROLLARY 4.10.

(i) H
p;p
II = grW2pH

2p(X�) = Ker(N : grW2pH
2p( ~X�)! grW2p�2H

2p( ~X�))

(ii) H
p;p
I =grW2p+2H

2p+1(X�)=Coker(N : grW2p+2H
2p( ~X�)!grW2pH

2p( ~X�)):

This Corollary together with Proposition 4.8 implies, arguing as in [2] (6.3).

COROLLARY 4.11.

H
p;p
II ' H

p;p
I

i.e.

grW2pH
2p(X�) ' grW2p+2H

2p+1(X�):

Whenp > 0, using the results established in Lemma 4.3(vi) and Corollary 4.4
we deduce an equivalent way to express this isomorphism.

COROLLARY 4.12.

H
2p
D (XC ;R(p)) ' H

2p+1
D (XC ;R(p + 1));

resp. forXR

H
2p
D (XR;R(p)) ' H

2p+1
D (XR;R(p + 1)):

Proposition 4.8, together with Lemma 4.3 and Corollary 4.4 permit us to extend
the isomorphismsHp;p

II ' H
p;p
I to higher analogs. The symmetry already estab-

lished in Corollary 4.11 by mean of the isomorphismN2 : grW2(p+1)H
2p( ~X�)

'�!
grW2(p�1)H

2p( ~X�) represents only the first piece of the following more general
result.

Let suppose thatq > 2p, for q; p 2 Zand q non negative. Then, the isomorphism
(q � 2p+ 2> 2)

N q�2p+2 : grW2(q�p+1)H
q( ~X�);

'�! grW2(p�1)H
q( ~X�);

decomposes into the following sequence of maps

0! grW2(q�p+1)H
q( ~X�)

N�! grW2(q�p)H
q( ~X�)

N�! � � � N�! grW2pH
q( ~X�)

N�! grW2(p�1)H
q( ~X�)! 0: (4.7)
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According to Corollary 4.4, the first homomorphismN on the left is injective
and the last one on the right is surjective. Further,

N q�2p : grW2(q�p)H
q( ~X�)

'�! grW2pH
q( ~X�);

is also an isomorphism. Therefore putting together these two facts one gets the
following decomposition ofgrW2pH

q( ~X�) as direct sum

grW2pH
q( ~X�)

= grW2pH
q(Y )� Image(N q�2p+1 : grW2(q�p+1)H

q( ~X�)

! grW2pH
q( ~X�)):

Finally, noting that

Image(N q�2p+1 : grW2(q�p+1)H
q( ~X�)! grW2pH

q( ~X�))

' Image(N : grW2(q�p+1)H
q( ~X�)! grW2(q�p)H

q( ~X�));

we have

grW2pH
q(Y ) =

grW2pH
q( ~X�)

Image(N q�2p+1 : grW2(q�p+1)H
q( ~X�)! grW2pH

q( ~X�))

'
grW2(q�p)H

q( ~X�)

Image(N : grW2(q�p+1)H
q( ~X�)! grW2(q�p)H

q( ~X�))

= grW2(q�p+1)H
q+2
Y (X):

Summarizing, the theory developed in this section also allows one to recover
the following results about Deligne cohomology groups.

PROPOSITION 4.13.For q; p 2 Z; q > 2p; (q > 0)

grW2pH
q(Y ) ' grW2(q�p+1)H

q+2
Y (X) ' H

q+1
D (XC ;R(q + 1� p))

resp.

grW2pH
q(Y )

�F1=id ' H
q+1
D (XC ;R(q + 1� p))(�1)q �F1=id:

In particular, whenp > 0 these isomorphisms show

H
q
D(XC ;R(p)) ' H

q+1
D (XC ;R(q + 1� p))

resp.

H
q
D(XR;R(p)) ' H

q+1
D (XC ;R(q + 1� p))(�1)q �F1=id:
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The assertions about Deligne cohomology follow from Proposition 4.1, Lemma
4.3 and Corollary 4.4.

The isomorphisms between Deligne cohomology groups shown in the Propo-
sition can easily be seen a priori by simply working out the definitions of those
groups. The above Proposition shows therefore that the theory developed in this
chapter behaves correctly.

Finally, our construction shows explicitly a symmetry between homology groups
of the right and left hand sides of the ‘Deligne complex’C �

D(p) introduced in Propo-
sition 4.1. There, the map in the middle 2�

p�1d0d00 = �2�
p�1ddc replaces in

the archimedean case the composite�i� � i� studied in the non archimedean case:
cf. Sect. 3 Proposition 3.2 and Lemma 3.3.

5. Applications: on Deninger infinite determinants

LetX be a smooth projective variety over a global fieldk and� be a place ofk.
Let denote byHq(X�)(X� = X � Spec(k�)) the classical q-th Betti cohomology
(q > 0) if � is an archimedean place and the q-thl-adic cohomology (� - l)
otherwise. In [7], [8] and [9] Deninger proved that the localL-factorL�(Hq(X�); s)
can be described as it follows, using a suitable definition of an infinite determinant

L�(H
q(X�); s) =

(
det1( 1

2� (s��)jHq
ar(X�))

�1; if �j1
det1( 1

2� (s��)jD (Hq (X�)))
�1 if � is finite:

At an archimedean place, the vector spaceH
q
ar(X�) (the ‘archimedean coho-

mology’) is infinite dimensional overR and it carries a natural endomorphism�. If
� is a non archimedean place of good reduction,X ! D (Hq (X�)) is a cohomol-
ogy theory on pure good reduction motives overk� . In general,D (Hq (X�)) is an
object in the category of regular-singular algebraic differential equations onGm=C
or equivalently into the category of finite-dimensional complex representations of
�1(C

� ;1) ' Z. Finally,N� is the number of elements of the residue field of the
local fieldk� .

In this paragraph we deal with the ‘archimedean cohomology’ and we prove
that the Euler factor at infinity can be completely recovered using the definition
of the infinite determinant introduced in [7] on the infinite dimensionalR-vector
spaceHq( ~X�)N=0 = �pgr

W
2pH

q(X�) studied in the last section. OnHq( ~X�) we
define a linear operator� acting ongrW2pH

q(X�) as a multiplication byp. The
main result proved in this section are the equalities

(Hq
ar(XC );�) = (Hq( ~X�)N=0;�)

(Hq
ar(XR);�) = (Hq( ~X�)N=0; �F1=id;�):

Unfortunately, one cannot expect a similar result at a finite place� of semistable
reduction and recover there the local L-factorL�(H

q(X�); s) using again Deninger
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formal construction by the infinite determinants applied to the spacesHq( ~X�) we
introduced in Sect. 3, the main reason being the finite rank of those vector spaces.

From now on we indicate byX a smooth, projective variety overK = C or R.
Following [7] (cf. p. 253), the ‘archimedean cohomology’ groups are defined as

Hq
ar(XK) := D (H

q
B(XC ; C ));

where the Betti cohomology groupsHq
B(XC ; C ) = H

q
sing(X(C ); C ) are viewed as

real Hodge structures overK:D (�) is a functor from the abelian category of pure
Hodge structures overK to the additive categoryDK whose objects are couples
(D;�D):D is a freeLK -module of finite rank and� is anR-linear endomorphism
on D satisfying some module-type compatibility conditions as inop. cit (cf. p.
249).LK is anR-algebra isomorphic toR[T�1] if K = C and toR[T�2] if K = R,
beingT an indeterminate.LK is endowed with a derivation map�L = T d

dT
and

the morphisms in the additive categoryDK areL-linear maps commuting with
the �’s. According to the properties of the functorD ; D (Hq

B(XC ; C )) is a free
(L;�L)-module of rank equal to theq-th Betti number ofX.

The main result ofop. cit (cf. Theorem (4.1)) is the following:

THEOREM 5.1 (Deninger).

det1

�
s

2�
� �

2�
jHq

ar(X)

��1

= LK(H
q
B(XC ; C ); s):

LK(H
q
B(XC ; C ); s) is the complex (or real) Euler factor (cf. [20]) associated to

the real Hodge structureHq
B(XC ; C ). det1 is the infinite determinant defined inop.

cit. (cf. pp. 246–7). Since it is known that the order of pole ofLK(H
q
B(XC ; C ); s)

at any integers 6 q
2 is related to the real Deligne cohomology ofXK , a corollary

of this theorem is the following (cf.op. cit.Proposition (5.1))

PROPOSITION 5.2 (Deninger).If q > 2m, then

dimRH
q
ar(XK)

�=m = dimRH
q+1
D (XK ;R(q + 1�m)):

Let now consider the couple(Hq( ~X�); N) as defined in the last section. We
recall thatHq( ~X�) = �pgr

W
2pH

q( ~X�) and by constructiongrW2pH
q( ~X�) has

weightp. We define on it the following linear operator

� : grW2pH
q( ~X�)! grW2pH

q( ~X�) �(a) := p � a:

Then, we extend this definition on the whole groupHq( ~X�) according to the
decomposition ofHq( ~X�) as above.

Note that on each graded piece, one might view� as the logarithm of a sort of
‘frobenius-type’ operator

Fr: grW2pH
q( ~X�)! grW2pH

q( ~X�) Fr(a) := ep � a: (5.1)
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These definitions might be interpreted as another hint for a classification of the
fiber at infinity in the context of the ‘bad’ fibers.

From now on we will use the following notation

Hq( ~X�
K)

N=0 =

(
Hq( ~X�)N=0 if K = C

Hq( ~X�)N=0; �F1=id if K = R:
(5.2)

As a first result we have

PROPOSITION 5.3.For anyq > 0

(Hq
ar(XK);�) = (Hq( ~X�

K)
N=0;�):

Proof. If q > 2m andK = C , then it follows from Deninger definitions that

Hq
ar(XC )

h�=mi

:= D (H
q
B (XC ; C ))

h�=mi

=

2
4X

v

F vH
q
B(XC ; C ) 


X
k6v

R(k)

3
5
c=id;�=m

= [FmHq(XC ; C ) 
C R(m)]
c=id ;

for c being theR-linear involution induced by the complex cojugation on the
coefficients. It is immediate from the description given in Sect. 4 Corollary 4.4 that
this group is equal togrW2mH

q( ~X�)N=0 = grW2mH
q(X�) = Hq(X�

C )
�=m.

WhenK = R,

Hq
ar(XR)

h�=mi := D (Hq (XC ; C ))
F1=id;h�=mi

= [FmHq(XC ; C ) 
C R(m)]
�F1=id;c=id;

whereF1 is theC -linear involution induced by the complex conjugation on the
varietyXC . Also in this case this group coincides with ourgrW2mH

q( ~X�
R)

N=0 =
Hq(X�

R)
�=m: cf. (5.2) above.

If q < 2m; [FmHq(XC ; C )]
c=id = 0 = grW2mH

q( ~X�
K)

N=0: Hence, we con-
clude that

Hq
ar(XK)=

M
q>2m

Hq
ar(XK)

�=m=
M
q>2m

grW2mH
q( ~X�

K)
N=0=Hq( ~X�

K)
N=0

2

As a direct consequence of that and the definition of infinite determinant, we can
state our main result
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THEOREM 5.4.

det1

�
s

2�
� �

2�
jHq( ~X�

K)
N=0

��1

= LK(H
q
B(XC ; C ); s):

We end up by remarking that the isomorphism

(Hq( ~X�
K)

N=0)h�=mi ' H
q+1
D (XK ;R(q + 1�m)) (5.3)

dependson a choice ofi =
p�1 (i.e. an orientation ofC ). In our theory this reliance

is a clear consequence of the definition of the weighted operatorN , since (5.3) is
nothing but a way to express the isomorphisms shown in Proposition 4.13, i.e. the
identification ofgrW2mH

q(Y ) with grW2(q�m+1)H
q+2
Y (X) ' H

q+1
D (XK ;R(q + 1�

m)). In [9] (cf. Proposition (6.10)), the corresponding duality isomorphism between
the ‘archimedean cohomology’Hq

ar(XK)
h�=mi and (a twist of)Hq+1

D (XK ;R(q +
1�m)) is explained by constructing a natural perfect pairing

H
q+1
D (XK ;R(q + 1�m))�Hq

ar(XK)
h�=mi ! R:

Because of the Proposition 5.3, that implies the naturality of the corresponding
pairing

H
q+1
D (XK ;R(q + 1�m))� (Hq( ~X�

K)
N=0)h�=mi ! R:
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uscript ‘On Chow groups of semistable models’: a first version of [3] and by
Steenbrink thesis (cf. [22]). Finally, I would like to thank K. Kato for some sug-
gestions and remarks.

References

1. Bloch, S.: Algebraic cycles and higherK-theory,Advances in mathematics61 (1986) 267–304.
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