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Abstract. In this paper we take into consideration a conjecture of Bloch equating in a suitable range
and under some standard conjectures, the rank of the motivic cohomology of the special fiber of
a semistable degeneration over the ring of integers of a number field with the order of zero of the
local Euler factor of thd.-function over the semistable prime corresponding to the special fiber. We
then develop, following the philosophy that the fiber ‘at infinity’ of an arithmetic variety should be
considered as ‘maximally degenerate’, a construction that goes in parallel to the one we use for the
non-archimedean fiber. Namely, a definition of a double complex and a weighted op€ratoit

that plays the role of the logarithm of the (local) monodromy map at infinity. We like to see this
archimedean theory as the analogue of the limiting mixed Hodge structure theory of a degeneration
of projective varieties over a disc. In particular, this yields to a description of the (motivic) Deligne
cohomology as homology of the mapping coné\afThe main result arising from this construction

is the proof of a conjecture of Deninger. Namely we show that the archimddésotor of the Zeta-
function of the archimedean fiber can be seen as the characteristic polynomial of an archimedean
Frobenius acting on the subgroup of the invariantévointo the hypercohomology of our double
complex.

Key words: algebraic cycles, values @f-functions, motivic cohomology.

Introduction

In this paper we give an interpretation of the zeroes of the Ibdaktors related to
degenerations of algebraic varieties. By degeneration we mean either a semistable
degeneration of a family of proper and smooth varieties defined over a discrete
valuation ring for which the special fibéf is a reduced normal-crossings divisor
over a finite field, or — following a suggestion of Manin (cf [15]) — the ‘maximally
degenerate’ fiber at infinitX’ of an arithmetic variety. LeX be a proper, smooth
variety over a number field( and letx be a regular model ok defined over

the ring of integer®x of K (cf Section 1 for the notations). Let be a prime

ideal of Ok and letx x Spe¢k(p)) = Y be the fiber ovep. Assume that” is a
reduced, normal-crossings divisor ®mnd that the residue fieldp) is finite. Our

main result in this non-archimedean case, is the proof of a conjecture by Bloch (cf
Section 2) equating in a suitable range and under some standard conjectures, the
rank of the motivic cohomology &f with the order of zero of the local Euler factor

of the L-function atp. The most interesting object we deal with is a double complex
(K,d',d"). K is defined as a direct sum bfadic cohomology groups of the
different strata of the special fib&rand the differentiald’ andd” are determined

by means of corestrictions and the Gysin maps relating these groups. Furthermore,
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K is endowed with an operata¥ which plays a central role in this theory

and behaves as the logarithm of the (local) monodromy map. To our knowledge,
this complex was firstly introduced by Steenbrink (cf. [22]), with the purpose of
making explicit theF;-terms of the spectral sequence of the vanishing cycles for
an algebraic degeneration over a disc and subsequently it was reexamined in the
same context by Guéin and Navarro Aznar (cf. [11]) in their proof of the local
invariant cycle theorem. Recently, Bloch, Gillet and $ofeff. [3]) have shown that

a complex as above makes sense and can be studied in a more general set up i.e.
for most cohomology theories and also for algebraic cycles modulo any adequate
equivalence relation. If one for example uses the gratips(Y *)) of algebraic
cycles of the strata modulo rational equivalence (cf. Section 1 for the notations),
it is fairly easy to prove (cf. (3.14)) that the mapping coneNofis a complex
guasi-isomorphic to

LCH3YO®) L og2(v®) 5 oy ®)

S o (y®) L e (y®) - e (v ). ©.1)

Here, the map in the middlg - i, is the composite of a push-forward toward the
group of algebraic cycles of the family, followed by a pullback to the groups of
the components of . In [2], it has been shown that when resolution of singular-
ities holds, both the kernel and the cokernel’of i, depend only on the generic
fiber of the family. Furthermore, up to replacing the Chow groups by some appro-
priate cohomology theoryd", like Q,-étale orQ-Betti, the cap product induces
isomorphisms? = dimY’)

Ker(d': H (YY) H (Y®)) Ker(i* - i, : Hop (YY) 5 H (YD)
Imagei* - i) B Imaged"”) '

We like to interpret these isomorphisms as the first step of a ‘'symmetry’ between
right and left hand side of two complexes analogous to (0.1) but built up using
cohomology groups of the strata. In order to explain this symmetry foQthe
étale cohomology theory, let us consider the spectral sequence of the vanishing
cycles and recall some of its properties. The couple made hittierm and the

first differential of this spectral sequence is isomorphic to the com@#ex, d =

d' + d"), further it is known that the spectral sequence degeneratesHkoan,
toward the cohomology of the geometric generic fiber of the family. The filtration
(by the weights of the Frobenius on the special fiber i.e. the weight filtration)
induced on the abutment coincides with the monodromy filtration wherydin2

(cf. [16]). In higher dimensions that coincidence is still an open conjecture. In the
paper we refer to it as to the Monodromy Conjecture. The coincidence of the weight
and the monodromy filtrations implies isomorphisms between the corresponding
graded groups, by means of powers\ofA suitable decomposition of these maps
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gives rise then, to the (symmetry-type) isomorphisms previously mentioned (cf.
the proof of Theorem 3.5).

Our results can be also described in terms of the Beilinson conjecture relating
the rank of the global motivic cohomology with the order of vanishing of a global
L-function. Here are two possible examples.

1. The local Euler factor of an elliptic curve at a primes 7Z (K = Q) of
multiplicative reduction is(1 + |k(p)|~*)~1. The sign inside the parenteses is
negative and the factor has a single pole &t 0, if and only if the curve has split
multiplicative reduction. This corresponds to the rationality of the 0-cycle which
is the difference of the two points in the normalization of the fiber lying over the
singular poinip.

A much deeper example, suggested to us by K. Kato, is the following.

2. Let assume that the monodroriyaroundy is unipotent. Then, one has
for any integerg > O, N := log(T') : HY(X,Q) — HY(X%,Q(-1)). Hence,
as an operatorN can be interpreted as a class B¢ ((X x X)z,Q(d — 1))

(d = dim X ) invariant under the decomposition group and therefore giving rise
to (i.e. explaining the presence of) a pole of the local factgr et L(H?¢((X x
X) i, Q),s) ats = d — 1. By our resultN corresponds (assuming the conjectures
mentioned above) to an algebraic cycle of codimengienl on the threefold
intersections of components of the special fiber of a semistable modebofX .

We hope to discuss this description of the monodromy in a subsequent paper.

Following this order of ideas, we were lead to think that for the reduced and
irreducible fiber at infinityX of an arithmetic variety, a corresponding construction
(i.e. a definition of a double complgx > and a weighted operatdf) should yield
to a description of the (motivic) Deligne cohomology as homology of the mapping
cone of an endomorphisi. The complex we define in Section 4 is a direct sum
of groups of real differential forms o having certain weight and type and the
differentialsd’ andd” are described by means of the real differential operators
andd® on X. Then, Proposition 4.1 shows what we expected. Furthermore, we
prove that the hypercohomology of the simple compléx associated td({ " is
a polarized bigraded Lefschetz module in the sense of [17]. HeMceduces
isomorphisms on the graded pieged” H (X*) of the hypercohomology groups
of the complexk " (cf. Proposition 4.8) and in turn these isomorphisms lead to
(symmetry) isomorphisms (cf. Proposition 4.13) like in the case of a semistable
degeneration.

This archimedean theory should be thought of as the analogue of the limiting
mixed Hodge structure theory of a degeneration of projective varieties over a disc
as developed in cf. [22]. This correspondence suggests a connection of our double
complex K with the Eg-terms of a spectral sequence of ‘vanishing cycles’ at
infinity. Also we conjecture the existence of a real mixed Hodge structure, in the
sense of Deligne (cf. [6]), o& " (cf. [5]).

Another application of these ideas is shown in Section 5. There, we define
a linear operato® on the infinite dimensional hypercohomology vector spaces
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H'(X*)(= | (K", d))studied in Section 4b acts on the graded piege}) H' (X *)

of weight m as a multiplication by the weight. One might séeas a natural
logarithm of a sort of geometric frobenius operator at infinity and try to deduce
some analogies with the theory developed in Section 3 for a non archimedean
semistable degenerate fiber. Then, our main result is Theorem 5.4 where we are
able to recover, by means of the endomorphigfnand® on H'(X*), the Euler
factor at infinity using the notion of infinite determinant introduced by Deninger in
[7]. In op. cit the Euler factors are reproduced as infinite determinants defined over
the infinite dimensional vector spacég,(X) (the ‘archimedean cohomology’)

and by means of a weight graded linear endomorplésriroposition 5.3 proves

that (H;,(X), ®) coincides with our couplé¢H (X*)N=0, &). This result shows
what was expected in [7], i.e. a natural geometric definitio/6f,(X), ©®) and

also it seems to agree with the point of view expressed in [9] that the ‘archimedean
cohomology’ should be thought as ‘a fixed module under inertia’ of a sort of
universal conomology theory over a (still unknown!) arithmetic site.

The paper is organized as follows. Section 1 contains the definitions of the main
notations we have used in this paper. In Section 2 we state Bloch'’s conjecture. In
Section 3 we introduce a double compl€x', together with two differentiald’ and
d" and an operataV . After recalling the main properties of these objects, we show
how to prove Bloch’s conjecture under suitable conditions (cf. Theorem 3.5). In
Section 4 we define a second bigraded grgkip', d’, d") and a corresponding map
N, in order to study the closed fiber at infinity. The first part of this paragraph deals
with the main properties ok . In particular, we show that the hypercohomology
of the associated simple complex is a polarized bigraded Lefschetz module. As
an application of this result, we prove (symmetry) isomorphisms between some
Deligne cohomology groups (cf. Proposition 4.13). In Section 5 we use the theory
developed in the previous paragraph to construct an infinite dimensional vector
spaceHd” (f(*)N:0 together with an endomorphisin Then, borrowing a notion
of infinite determinant introduced in [7], we recover the Euler factor using the
couple(H (X*)VN=0, ) (cf. Theorem 5.4). Finally, we compare our construction
with Deninger’s one (cf. [7]): Proposition 5.3 shows a compatibility of the objects
involved.

1. Notations

We denote bys the spectrum of a Henselian discrete valuation Angetn andv
be respectively the generic and closed point§',0f andv are the corresponding
geometric points. B¥(n) andk(v) we mean the residue fields &fatn andv. We
write k() for a separable closure bfr) andk(v) for the residue field of the integral
closure ofA in k(7n), defining the geometric point Let Gal7/n) resp. Galv/v)
be the Galois groups G&i(7)/k(n)) resp. Galk(v)/k(v)). LetI C Gal(r/n) be
the inertia group, defined as the kernel of the map%al) — Gal(v/v) (cf. [19]
Chapt. 1 Section 7).
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For Z a scheme of finite type over a field and/ a prime number such that
(chark,l) = 1, we denote byH™(Z, Q) the [-adic geometric cohomology of
7 = 7 Xspe¢r) SPeCk), beingk an algebraic closure df.

Let X be a proper, smooth variety over a field. Bynadelof X we mean a
flat, proper scheme ovér: 7 : X — SpecA), together with an isomorphism (i.e.
identification) of the generic fibet,, ~ X (X, := X x Spe¢k(n))). Given a model
X, we writeY” for thespecial fiberx x Speck(v)).

In this paper we always assume thais a semistable modgby which we
mean thatx is a regular model and the special fiBéris a reduced divisor with
normal crossings itx. We will often refer to these conditions by saying thai
asemistable fibrationin that case, each irreducible compon&pof Y = U!_,Y;
is a regular scheme. For any subget {1,...,t}I # 0, we setY; = N;cY;. It
follows from our assumptions tha¥ is a regular scheme. We defilg = X. Let
r = |I| be the cardinality of and letn = dimY". Define

YO =% ifr=0

Y(r): HY[ fl<r<n
|T|=r
0 if > n.

We write CH,,(Y7) (resp.CH™(Y7)) for the Chow homology group (resp.
cohomology group) (in the sense of [10]) of dimension (resp. codimensiahje-
braic cycles modulo rational equivalence on the stratinWe setC H,, (Y (")) =
®|7/=-CHp (Y1) (resp.CH™(Y ") = @1, CH™(Y7)).

Form, ¢ andu non negative integers such thatl, < t < r — 1(r = |I]), the
homomorphisms

Sus : CHp (YY) - CH,, (YD)
and
5 CH™Y W) - cH™ (Y (D),

are defined as follows. Ldt= {i1,..., 041}, With i1 < ip < --- <4449 and let

J = I —{i,}. Then, the restriction a¥,. to C H,,,(Y7) is the push forward map on
the Chow homology groups induced by the embeddiphg+ Y;. The component

of 6% in CH™(Y}), is the pullback map on the Chow cohomology groups induced
again by the above embedding of strata. We define Gysin morphjs(rssp.
restriction morphismgp)

v:CHp (Y)Y = CH,, (Y™)

(p: CH™(Y("))  CH™(v(+D)),
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by the formulae

Y= Z(_l)zkléw
u=1

(p - i(—l)“*é:) -

u=1

Similar definitions hold when we replace Chow cohomology groupkdnyic
cohomology groups of the strata and we interpret the Gysin maps as covariant
morphisms betweehadic cohomology groups shifting degrees.

One can show (cf. [3] Lemma 1 (i) and [11] Proposition (2.9) (iii)) that=
O=p?andy-p+p-v=0.

2. Higher chow groups of the special fiber of a semistable fibration and
L-functions

In this section we formulate a conjecture due to S. Bloch, on the rank of the higher
Chow groups of the special fib&r of a semistable fibration. In the next paragraph
we will prove it under suitable conditions.

We assume all the notations introduced in Section 1; in particular our starting
geometric setting consists of the following diagram

Y U S | X

Spe¢k(v)) — Spe¢A) —— Sped1)

wherer a semistable fibration.

In the following we will deal with themotivic cohomologyheory defined by
Bloch in [1]. For a proper, equidimensional scheinef finite type over a field
k and for any couple of non negative integers, the groups of integral motivic
cohomology are defined as

HJIM(V, Z(r)):=CH"(V,2r —q).

CH*(V,-) are thehigher Chow groupsf algebraic cycles modulo rational equiv-
alence defined as follows. For any non negative integer, let

A" = Spec(k:[to, oy tm] / (Z t; — 1) > ~ AT,

https://doi.org/10.1023/A:1000362027455 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000362027455

DOUBLE COMPLEXES ANDL-FACTORS 329

Given an increasing map: {0,...,t} — {0,...,m}, definep: A — A™ as
p*(ti) = Bpjy=it; andp*(t;) = O if p~1({i}) = 0. If pis injective, the image
p(AY) c A™ is called aface if p is surjectivep is adegeneracy

LetZ*(V,m) C Z*(V x A™) be the free abelian group generated by irreducible
subvarieties meeting all fac&x A! C V x A™ properly. Leto; (resp.S;) be the
pullback along the face map

(to, ce atm—l) — (to, eeytizn, 0, Titlye-- ,tm—l)
(resp. degeneracy)
(to, ce ,tm) — (to, ey tic1, b+ tiga, tig2, - - ,tm).

Then, following [1], the group&'H*(V, m) are defined to be the homotopy of the
complex of simplicial abelian groups

Z*(Vv ) = (Z*(Vv m)v {81}7 {Si})m20-

Because the homotopy of this complex in fact coincides with its homology, one
gets

Nt Ker(9;: Z*(V,m) — Z*(V,m — 1))
Om+1(NoKer(0;: Z*(V,m + 1) — Z*(V,m)))

CH*(V,m) =

_ Ker(Zi(=1)'9;: Z*(V,m) = Z*(V,m — 1))
" Image;(—1)i9;: Z*(V,m + 1) = Z*(V,m))

It follows from the definition of the complexeg*(Y'(7),.), (note that each
stratumY7, |I| = j, is a regular scheme) that one has the following exact sequence
of complexes calculating higher Chow groups, where the horizontal maps are Gysin
homomaorphisms on the level of cycles that we have defined in the last paragraph

0 27 Lyt ) ...
- 2Z2(v@ ) 5 2zl y® )y 5 2y, ) = 0 (2.1)
In particular, one has
CH*(Y) ~ Cokey: CH,_.(Y®) = CH,_.(YWY)). (2.2)
We assume from now on th&{v) is a finite field: letN (v) be its number of
elements. We also assume for the rest of this section that@> 1.

Since the strat®; are proper and smooth over a finite field, the results obtained
in [21] may suggest the following
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CONJECTURE 2.1.K,,(Y7) ® Q = 0form > 0.

The Riemann—Roch isomorphism (9.1) of [1] would then imply
CH*(Y;,m)® Q= (0) form > 1.

Hence, whenn > 1, this vanishing together with (2.1) would yield, by a simple
diagram chase

Ker(y: CH, .(Y™tD) = CH, .(Y(™))

CH*(Y, ~ .(2.3
Yom) © Q= 4 ey - Ol (YD) 5 O, (vmDy) © ¢ (23
Therefore, (2.2) and (2.3) would imply
rankCH Y(Y,2r—¢—1)®Q
er(y CHp — g1 (Y P77 )5 OHypy i (Y197 D)) ;
_ ) rank e cI'{Hn_j+1(yy(%—q+1>)fcrff_r:(wzr—q)>> ®Q if2r-q>2 (2.4)
rank Cokety: CHp—r11(Y®) = CHyr i (Y O @ Q if2r —g=1.

Let denote by the (geometric) Frobenius automorphism acting on the groups
of geometricd-adic cohomology ofX. Under these conditions, Bloch has formu-
lated the following

CONJECTURE 2.2 (Bloch). otd,_,det{7 — F*N(v)~* | H* }(X,Q)) =

{ rankCH™ 1Y, 2r —q—1) @ Q if 2r—g>2
- Ker(i* i CHy, p 1 (YD) CH” (Y (D)) . _
rank e CHR,TH(?@)—)CH%M(Y(D)) QY if2r—qg=1

The mapi* - i, is the composite of the push forward mapoward the Chow
groups of the modet, followed by the pullback*.

A nice consequence of this conjecture is the independence of the rank of the
groupsHﬁ;l(Y, Q(r—1)) = CH™Y(Y,2r — ¢ — 1) ® @ on the special fibey’,
when 2 — ¢ > 2. Results in this direction have been recently obtained by Gillet
and Sout (cf. [13]) and by Hanamura (cf. [14]).

In the next section we will show how Conjecture 2.2 follows from Monodromy
and Tate Conjectures, together with the Conjecture 2.1 and the assumption of the
semisimplicity of the frobenius. Finally, we anticipate that the homology groups
involved in the Conjecture 2.2 can be seen as homologies of a mapping cone of an
endomorphism of a suitable bigraded compléx (cf. (3.14).

3. A bigraded complex with monodromy on the special fiber

In this section we introduce a bigraded complex endowed with a monodromy-type
map N and we explain some properties of it which we use in the proof of the
Conjecture 2.2.
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We assume all of the notations introduced in Seciton 1; in particular, we denote
by n the dimension of the special fib&T.
Leti, j, k € Z.We define, following [22], [11]:

B Hiti-2ktn(y @it @ (i — k if &> max0,i
iy ::{ ( Qi —k)) X0, 1) (3.1)

0 otherwise

Set: K = @kKi’j’k andK* = @H_]':*Ki’j.
The corestriction map and the Gysin homomorphistnon I-adic cohomology
groups, define respectively maps:

d' - Kk _y it Lt Lkl d’(a) = pla)
d": Kbk githitlk d"(a) = —v(a)
and
N : Kbk o giF20k4 1) N(a) =a

for anya € Kk,

On K% letd = d' + d". It follows from the definitions thafd, N] = 0 and
d?> =0.

We denote by CongV: K* — K*) the complexks™* @ K*[—1] endowed with
the differentialD (a, b) = (da, N(a) — db).

In [3], a similar complex has been defined using the groups of algebraic cycles
of the stratay; modulo rational, algebraic, homological or numerical equivalence.
More precisely, we would like to point out here that it was the axiomatic description
given inop. cit.and in [11] that suggested to us the definition of (3.1). In (3.13)
we will denote by the same nani€’-/** the complex of algebraic cycles modulo
rational equivalence.

The following technical lemma will be used in the proof of Proposition 3.2.

LEMMA 3.1. LetN: C* — D* be amorphism of complexes. Suppose there exists
an integerm such that

injective ifi <m —1
N;: C* = D' is{ bijective ifi=m
surjective ifi >m + 1
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Let us define a complax® via the diagram with exact columns

0 0 Lm+l ., Lm+2
Y Y Y

Cm—Z Cm—l do oL N Cm—l—l Cm+2
N N N N N
Y Y Y

Dm—2 Dm—l dp Dm _ Dm+l Dm+2

where the differential.™ — L™*! is defined by a diagram chase.
Then,L* is quasi-isomorphic to Cori@’: C* — D*).
Proof. Letthink ConéN: C* — D*) as the double complex

Ci Ci—l—l Ci—I—Z

Di Di+l Di+2
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It contains the following acyclic sub-double complex

cm? —— o™t Imagedc) 0 0---
Cm72 Cmfl |magE(N . dC) » 0 »0---

Taking the quotient, we get that Cd@é: C* — D*) is quasi-isomorphic to
the complex

-~ 0 - 0 -~ Cm G ol
\ N=1 \epi \epi
Lm—l Lm dp W Dm+1 Dm+2 L
whereC™ = Tmagdds) andD™ = TMaga N-dg) " The acyclic complex

. —— C™/N Y(Imagddp)) — D™t —~ D2, ...

1
\
\

D™ /Imagddp) pmtl . pmt2___, ...

is a quotient of the previous one. The kernel, which is quasi-isomorphic to(Gane
C* — D*), is the complex

0 0 N~ (Imagedp)) Lt L™t

~

Lt = Imagedp) 0 0

It is easy to check that this complex is quasi-isomorphitto

PROPOSITION 3.2Let* be a fixed integer. Then, the complexc Z)
CongN: K9 0 n K9 *+24-n(_1))

is quasi-isomorphic to the following complex

[ HET (YD, Qg - %) ifg

i) o
e a) ifq

<
> %
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for a € C1(x), the differentiakl is given by
d"(a) ifg<x—1
de(a) = —i*iy(a) ifg=x—-1
d'(a) if ¢ >
ie.
LHETH(Y OO, g —0) D o BV O, (-2)
- B2V 0, (-1) = B (70, 0) -5 B (Y?,0)
- H(Y®,Q) - - = H (Y, q) 5
In particular,C*(x) = H*(Y(®, @) andC*1(x) = H* 2(vD, @ (—1)). The
composite* - i, is the push forward map.: H* (YD, Q(-1)) — H*(%,Q)
followed by (the identityv' and) the pullback* : H*(%, Ql) — H(YD, Q).
Proof. Let fix an integerx and defineC'? = K9 77" D1 = K9~ g ",
Then, the mapv: C'?7 — DY looks like:
g—*>01 N: @psy KIH9k KerN = KI5 i+
> Bpsgosp2 KT 2R
q—+x=—-1. N: @k>oK_l’q_n’k
— @k>1K1’q_n k
q—*< =20 N: @K 0™k CokerN = K7 *+2a-n0
SN @k>0Kq *+2,q— n,k’
We are now in the situation of Lemma 3.1, with= x — 1 and
14— Ko7 the=n=10, jf g <x — 1
KI—%a-n,0—*: if ¢ >
Therefore the claim follows. O
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Sinced? = 0 andd commutes withV, d defines a differential on the bigraded
groups:

Ker(N)" = Ker(K™ X K27 (1)),
Coke(N)" = Coke( K" 5 K +27(—1))
as well on the mapping cone of
CondN)» = Cond K~ 5 K27 (—1)).
We introduce following [3], the groupg & 0,7 € Z):

Ker(d: K—"4—" — K—r+bha—ntl)

il ) o R K R 2
9o HI(XY)

_ Ker(d: CongN)"+ba—n=1 _, Cond N)~"+29—")

" Imag€d: CondN) ™4 "2 — CongN) "+ha-n-1) (3.3)
) - St
grysrHy (X)

_ Ker(d: Coke(N)~"47"=2 — CokeN)~"+Li—n-1) 3.5)

" Imagdd: Coke(N)-"-La-n=3 _ Cokel N)~"1-1~2)

These formal definitions (inspired by the theory of variations of Hodge struc-
tures) imply analogs of the Wang exact sequence and the standard exact sequence
for cohomology with supports. In this abstract setting that means the exactness of

(m e Z):
LgrWVHI(XY) — grV HI(X)
Ay grW L HY(XH) (1) — grlV HITY (XY .. (3.6)
L grVHIY) — gr)V HI(X)
— grWHITY(X) = grV HIPY(Y) .. (3.7)

(cf. op. cit Lemma 3 for a proof).
As in op. cit Lemma 4 we have the following formulae

https://doi.org/10.1023/A:1000362027455 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000362027455

336 C. CONSANI

LEMMA 3.3.
(i)

Ker(d": Ht7 (Y ("D g HI (Y2 .01) e g
gri JHY(Y) = { Image(d: Ha+ (V (=1),0;)— He+ (V(=77D,0)) -

0 otherwise
In particular,

grV H™(Y) = Ker(d': H™MY W, Q) —» BT ®,q))

(i)
gronHE(X)
Ker(d": H—"—2(V "+ @) (=r—1)) 5 HI~"(V () .0y (=1))) ifr>0
Image d’: Ha——4(Y (*+2) Q;(—r—2))— Hi—"—2(Y (r+D) (@, (—r—1))) rz
0 otherwise
In particular,

grm HY*(X) = Cokexd": H™ *(Y?,qu(-2)) » H"2(YW,@(-1)))

(i) The mapgr)Y HY-(X) — gr)¥ H(Y) in the exact sequend8.7) is zero
unlessm = ¢q. Ongr’V H?(X) this map coincides with the morphism:

—i* i HP2(Y W (1)) » HM(YD, q).

(iv)
( grgirH%H(X) ifr>1,
Ker(—i*-iu HIZH (VD 0 (-1) s HTFA(F M 0n)) 3 q
W rrq v Imaged’”) r=454
g’rq—l—rH (X ) = _ _
Ker(d':H1(Y D Q)= HI(Y @ q))) ifr=0
image —i* i) r="y
{ grgs HI(Y) ifr < —1

COROLLARY 3.4.

injective  ifr > 1
N: gr  JHUX*) = gri', ,HY(X*)(-1) is { bijective ifr=1
surjective ifr <0
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Furthermore:
ifr>1: Coke(N: grgirﬂq()z*) — grﬁpzﬂq(x*)(—l))
= grit HTHX)
ifr<0: Ker(N: gr(‘ﬁ_rﬂq(x*) — grﬁr_zﬂq()z*)(—l))
= grlV HY(X")

Proof. Follows from the Wang exact sequence (3.6) together with Lemma 3.3
(iv). O

Let us consider, following [16] (cf. Theorem 2.10), the Gigl)-equivariant
spectral sequence of the vanishing cygleg € 7, q > 0):

El

= P HITEFEED @ (—r — k) = BH(X,Q);

3.8
k>max0,—r) ( )
Egor,q-i-r — gr}ﬁ-qu(X’ Q).
The differential on th&®;-term is defined as
dy =Y ()" *dy + (-1 d))
k
fordy = d' = p andd] = d" = —v, wherey andp are respectively the Gysin

and the corestriction homomorphisms as defined in Section 1. Furthermore, since
y-p+p-y=0,0nehad] dj+d-d] =0.
It follows from Weil conjectures that; """ is a pure Galois module of weight
q + r. Therefore, the spectral sequence degenerates dtherm andE 71"
has pure weighg + . From the definitions (3.8) and (3.1) we get that

By = g
Hence,
(By" " dy =dy+dy) ~ (K™ d =d +d")

and that is enough to conclude

grill HO(X, @) ~ grll, HI(X?).
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If n (=dimY') < 2, Rapoportand Zink have proved (op. cit. Theorem 2.13)
that the filtration induced on the abutméfit( X, Q) by the weight filtration on the
specialfibed”, coincides with the monodromy filtration. This means that the action
of (T — 1) on E1, whereT is a topological generator of the maximal pro-I-quotient
of I ¢ Gal(77/n), induces the monodromy transformation MTHQ(X,QZ).
Hence, the corresponding nilpotent map = log T defines the monodromy
filtration on H7(X, Q). Therefore, the operatd¥ on the associated graded group
determines isomorphisms of weighted pure Galois structytes > 0)

N": gr}l/l_/i_qu(X,Ql) = gr};erq()_(,Ql)(—r). (3.9)

Whenn > 2, this result is still unproved in the full generality (although some
particular cases have been studied, e.g. abelian varieties over number fields: cf.
[16]). We will refer to it as the Monodromy Conjecture.

In the rest of this section we will assume the Monodromy Conjecture.

The isomorphisms (3.9) together with the exact sequences (3.6) and (3.7) imply
the exactness of the following weighted sequence Z (Clemens—Schmidt type)

.. .grnml/H;Z/(X) — grnV?Hq(Y) — grnml/Hq(X*)
N O % 2
= griV JHY(X*)(=1) — gr)y HE(X) ... (3.10)

We refer to [22] (5.12), [18] and [12] (IV, 7.14) for a proof of this claim.
We are now ready to state our main result

THEOREM 3.5.Let suppose that the fieldv) is finite and letV (v) be its number

of elements. Lef™ be the (geometric) frobenius automorphism acting on the
geometric/-adic cohomology groups of. Assume the Monodromy Conjecture
and supposeé™ acts semisimply off*(X, Q). Letm = 2r — ¢ > 1 and
a=q—r,then

orddet(I — F*N(v) ™ |H""*(X,@)")

Jo ((Kerd": B2 (¥ (0m) 0y (a)) = H2e D) (7 (=D gy (a+1))) | = S 2
r Imag€gd'’) mz

m=1

o ((Kerti* i 2 (¥ ® 0, (0)) 5 2D (¥ D) 0y (a+1))) | * =
r Imagdd'")

Proof. SinceF™* acts semisimply on the inertia invariantsiff —1(X, Q;), we
have

ord de(Z — F*N(v) *|H" 1(X,@)") = rankH? (X, )" "=V
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Since the wild inertia acts trivially (we deal with a semistable fibration)
rank( H'~*(X, @) ) =N 0"
= rank(Ker(N: grsl H171(X*)(a)

1o (F=id)
= gy, yHTHX )@ —- 1))

It follows from the Monodromy Conjecture together with Corollary 3.4 and
Lemma 3.3 that

ord det(I — F*N(v) *|H? (X, Q)") = rankgrl} HY }(X")(a)) "=

(rank(gry H7 YY) (a))F= if m > 2

a

. (F=id)
rank(g’]gn::;;%i()“)> if m=1

\

. a(y (m a (v (m F=id
( rk (Ker(d,H2 (v ),gi;‘;)geagz (v ¢ +1>,Qz(a))))( id) m> 2
= " Ker(d' :H?* (YD 0;(a))— H? (Y @ 0)(a))) (F=id) _
L7 ( Image(i* i) ) m =

From the Monodromy Conjecture we also have an isomorphism like (3.9)
gray HHX*)(r) —— gry(,_yHT H(X*)(a — 1)
(2r — g + 1 > 2, under our hypotheses). Let decompose this isomorphism as
0 gril HTHX*)(r) 5 grlf, _p HTHX ) (r = 1) 5 -
s L grlh HHX) (@) = grify_p HI7HX*) (@~ 1) = 0

where the firsiV on the left is injective and the last on the right is surjective (cf.
Corollary 3.4). The composite
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is also an isomorphism for2- ¢ > 2, therefore in this range we get
gra, HH(Y)(a)

= Ker(N: gry HI Y X*)(a) — grgga_l)qul(X*)(a -1))

~Coke(N: gry H™Y(X*)(r) = gry, o HHX*)(r — 1))

= gr3y HY (X)) (r)
B Ker(d" HZa(Y(ZT*‘I)’ Q(a)) — H2at1) (Y(zrfqil), Q(a+1))) (3.11)
- Imagdd"”) '
For2r —q=1:
gro H**(Y)(a)
Imagei* - i,)

= Ker(N : gry, H*(X*)(a) — grgx(/a_l)Hza(X*)(a -1))

~ CokeN: gryly 1) H**(X*)(a + 1) — gry, H**(X*)(a))

_ Ker(i*-in: H2(VD, Qi) » AXDYD, Ga+ D)

- Imagdd"”) '

O

We would like to remark explicitly here that the isomorphisms (3.11) and (3.12)
established in the proof of the previous Theorem should be interpreted as higher
analogs of the isomorphism

T Hif' (X)et = HpP"(X)et,

described in [2] Theorem (6.3.1). Therefore, the assumption of the Monodromy
Conjecture in the Theorem 3.5 allows us to prove isomorphisms betdreen
cohomological invariants and coinvarianisifeing the inertia group), or equiv-
alently between right and left hand side with respect to the ap,, of the
complexes Cone(N) described in Proposition 3.2 and in (3.13) below.

In analogy to (3.1) one can define fgy, k € Z:

CH™Z (YD) if k > max(0,) and
Kisdok - — i+7+n=0(2) (3.13)
0 otherwise
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Gysin homomorphisms and restriction maps define differentialadd” as we
have already described for the complex (3.1).d.et d' + d".
The operatotV : Kk — Ki+25k+1 g set to be the identity: .6V (a) = a, for
a € Kk,
The analogue of Proposition 3.2 for this complex states that for a fixed integer
x, CONgN : K9=254-" _ K9=2%+24-1) (¢ € 7)is quasi-isomorphic to

LOHTH Y@ 0y L o2y @) o ot iy ™)

AT

T o (v®y L ot (Y®) o o (Y)Y

The complex (3.13) has been firstly studied in [3]. For this geometric theory the
Monodromy Conjecture is achieved if one assumes that the strataafisfy both
the hard Lefschetz theorem and the Hodge index theorem.

We are now able to complete a proof of the Conjecture 2.2.

COROLLARY 3.6.Under the same hypotheses and notations of Theorem 3.5,
assuming Tate conjectures and the injectivity of the cycle class map on each
stratumY; and Conjecture 2.1, we have

ord det(I — F*N(v) *|H? }{(X,qQ)!)

s=q—r
{rankC’H’"—l(YZr—q—l)®Ql if2r—q>2
- Ker(i* i CHp—pn (YO 5 CHT (v D)) _ B

Proof. Since Tate conjectures hold and the spectral sequence 3.8 is Galois
equivariant, it follows from Theorem 3.5 tha¥ (= Gal(v/v))

ord detl — F*N(v) *|H Y(X,Q)))

s=q—r

Ker(d": H2(4~) (¥ (=) g (q—r))»H2@ 7D (¥ 2 =a-D 0, (g—r+1))) | ©
’I“k( ( ( l(q Irrzage(d”) ( 1\q ) 2r — C]>2
- Ker(i* iz 20— (VD) 0y (r— 1)) 512 (VD 01(r))) | © =
rk ( ( ( Imagle((d”)) L ) 2r—g=1

f Ker(y: CHn—pya (V. Y@= 5 CH, _, (Y ?r—a=D))
Imagey:CHy,—p 1 (Y @ =0+t 5 CH,,_, 11 (Y@~ q)

QY 2r—q=2

Ker(i* i-:CHyp 1 (Y D) 5 CH" (v () -
Image(y: CHyp—p11(Y @) =CHp—pya( Y(l) ®Q 2r q= 1.

Then, the claim follows from Conjecture 2.1 as we showed in Section 2.
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4. A bigraded complex with monodromy for the closed fiber at infinity

Let X be a smooth projective variety of dimensieoverC or R. In this paragraph

we define a bigraded complex, endowed with a monodromy-type Maphich
should be interpreted as the archimedean analogue of the comiplestudied

in the last section. In particular, we show that real Deligne cohomology can be
described as the homology of the mapping cone of this bigraded complex. Our
construction is intended to stress some similarities occurring at the semistable
and the archimedean places. In particular, the symmetry between cohomologi-
cal I-invariants and coinvariants at the semistable places described in Section 3,
corresponds here to the (already known!) isomorphisms

HY(X,R(p)) ~ HL'Y (X, R(g+1—p)), q>2p>0.

In this section, we will prove thatd}(X,R(p)) is in fact symmetric to

HS™ (X, R(g + 1 — p)), with respect to the mafp-2r+/—1)dde. This result will
be taken up again at the end of the next paragraph where we show that, by means
of a non degenerate pairing, these two groups are dual.

We write (A%* 4 A%%),, for the abelian group of real differential forms of type
(a,b) + (b,a) on X. By the expressioiA®® + A%%)(p)(p € Z), we mean the
pth-Tate twist off A%° 4 A%) g i.e. (A%0 + AP) g (p) = (2m/—1)P(A%D + AD%)g.

Lets, j, k € Z.We define the following complex:

D A <w> if n+j—i=0(2)
Ki,j,k — a+b=j+n 2

la—b|<2k—i R andk > max0, 1) 4.1)

0 otherwise

SetK" = EBkKi’j’k andK* = @H_j:*Ki’j. B B
Consider the real differential operatats= (0 + 0) andd® = —/—1(0 — 0).
One defines the following maps:

d" Ki,j,k _>Ki+1,j+l,k
. o (4.3)
d"(a) = —d®(a) (projected ontdg*+Li+1k)
and
N: KWk o g2kt N(a) = (2nv/~1)"1a (4.4)

foranya € K",

On K%, letd = d' 4+ d". The complex Cone(N)=Co(®& : K* — K*) is
defined to beK™* @ K*[—1] endowed with the differentiaD (a, b) = (da, N (a) —
db).

Using the same arguments presented in the proof of Proposition 3.2, one gets
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PROPOSITION 4.1Let p be a fixed non negative integer. Then, the complex
CondN: K9=2pa—n _y K4=20+24-1)(q ¢ 7,)is quasi-isomorphic to the ‘Deligne-
complex'(C’% (p), dp)

B AY| -1 ifg<2p-1

a+b=j—1
la—b|<2p—q-1 R

CH(p) =
b A if g > 2p

a+b=q
\ \la—bl<q—2p R

for a € C%(p), the differentialdp is given by

d"(a) ifg<2p—1
dp(a) = ¢ 2rv/-1d'd"(a) fqg=2p—1
&(a) g2

@ 4’| p-15- | D A p-1
a+b=2p—-3

a+b=qg—1
la—b|<1 R

la—bl<2p—q—1 R

o (AP (p - 1) EYEL

2y/—1d'd" d'

—— (A")(p) = | P A )
a+b=2p+1
la—b|<1 R

NN @ Aa7b (p)_>

a+b=q
la—bl<g—2p R

In particular, CZ*(p) = (AP~Lr~1);(p — 1), CZ (p) = (APP)x(p). The map
2r/—1d'd" is the composite af’ followed by (the identityv and) the map!’.

When X is defined ovelC, the homology of this complex computes the real
Deligne cohomology oX (cf. [4] Theorem 1.10). We recall that the real Deligne
cohomology ofX}, (i.e. a variety defined oveR) is defined as

Hy(Xw,R(p)) := Hp(X¢, R(p))Fw —id
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F., being the De-Rham conjugation. Therefore, taking Fhg-invariants of the
homology of the above complex yields a descriptioHgf( Xz, R(p)).
In analogy with the properties stated in [2] Lemma 1, we have

LEMMA 4.2.

() 2=0=dd" +d"d.
(i) N commutes witl’ andd”, henceN, d] = 0.
(i) Foranyi,j € Z,i > 0the map

N': K™% — K%

is an isomorphism.
(iv) Foranyi,j € Z,i >0

Ker(Ni-l-l) n K—i,j — K—i,j,O _ @ Aa’b <%> .
a+b=j+n
la—b|<i R

Proof. For (i): let f be a differential form of pure typ&s, b) with a < b. Let
g = f+ fbeanelementadk*/F. Then,a+b = j+n. If |a—b| < 2k —i, thenthe
statement follows from the well known equality + d°d = 0. If |a — b| = 2k — i,
then
d'd"(g) = —/=1d'(0f — df) = —/—1(—9f + dOf).
On the other hand, sine# (0f + df) = 0 anddd = —dd
d"d (g) = d"(0f + 8f) = —/—=1(d0f — dOf) = V—1(—0df + dOf).
(i), (iii) and (iv) are direct consequences of the definitions by checking degrees.
Sinced? = 0 = [N, d], d defines a differential on the bigraded groups:
Ker(N) =Ker(K~ - K2, Coke(N) =Coke(K" - K +27)
as well as on the mapping cone §f
CondN)™ = Cond K~ s K2
We define asin (3.2)(3.5) the groupsY, . H(X*), grl .HI(X*),grlV. . HI(Y)

andgrﬂrH{é(X). These groups fit into exact sequences like (3.6) and (3.7). In
analogy with Lemma 3.3 of Section 3 we hawyeq 7).
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LEMMA 4.3.

(i)

gros HI(Y)
Ker| d" P A | (»- ) A®b | (p)

== |a,aj’;l|):g T |aaf+bl|7:qftil

T - r<latr=2
0 otherwise
In particular,

grig H¥(Y) =Ker [ d': (APP)z(p) = | P A*"| ()

a+b=2p+1
la—bl<1 R
(i)
w q
gqurrHY(X)
Ker| d": P Art| (p-1)— P At ] (»-1)
a+b=q—2 a+b=qg—1
== la—=bl<—7 - la—b|<r—1 o o
7|mage(d”) r 2 07 q +r= Zp
0 otherwise
In particular,
W rr2p
9r2p HY (X)

=Coker|d":| P A*"| (p—1) = (AP r(p-1)

a+b=2p—-3
la—b|<1 R
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(i) The mapgr)V H].(X) — ngHq(Y) in the exact sequend®.7) is zero
unlessm = g = 2p. Ongry, WH ”( ) this map coincides with the morphism:

(AP~ Ye(p — 1)

. ! gl .
2nV/= L 2"

— Ker|d: (A"P)z(p) > | €@ A“"]| (p)

a+b=2p+1
la—b|<1 R

(iv) gry",HY(X*) = Ounlessy + r = 2p, in which case

QTZqu(X )
(g7 By () Tg<2p-1,
Ker(@ny/=1d " (A7 12 1 (p=1)(AP?):(p) i o _ 9y _ 1

Imagdd'")

Ker(d": (APP): (p)— D A | )

a+b=2p+1
la—b|<1 _

Image2r+/—1d'd"") - it g = 2p,
grszq(Y) fg>2p+1

Note that forp > 0 one gets isomorphisms
H} (X, R(p)) = gry, HI(X*)
(resp H(Xx, R(p)) = gry, H(X*)==)
The statement which corresponds to Corollary 3.4 in this context is.
COROLLARY 4.4.grﬁqu(X*) = O unlessy + r = 2p, in which case

N: gry H‘I(X*)—>gr§g_2H‘1(X*)

injective  ifg<2p—1
bijective if¢g=2p—1
surjective ifg > 2p
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Furthermore,
ifq<2p—1,
HY(X
CoketN = (X,0) ~ HS™ (X, R(p))

FPHI(X,C) + HL (X, R(p))
ifg>2p, KerN = grgZHq(X*).
fg=2p:

griy H?(X*) = FPH?(X,C) N HY (X, R(p)) ~ HZ (Xc, R(p)).

Finally, for X3, we have the corresponding statements by takingthenvariants.
In particular

gry H?(X*)F==id ~ g2(Xg,R(p)).

SinceX is projective overC (or R), the fundamental redlL, 1)-form w on it
defines the Lefschetz operator

1: KWk g2k (g) = (2nv~1)a Aw (4.5)

This operator satisfies the following properties.
LEMMA 4.5.
() [[,N]=]l,d]=[l,d"] = 0and henceél, d] = 0.
(i) For any integeri andVj > 0,1 induces isomorphisms
VKb K
(i) For any non negative integefs;
(K)o
=K %I n(Ker/TYn (Ker N1
=K 90 (Keriitt

= Ker | 1711: P a4 <7n+;_‘7>

a+b=—j+n
la—b|<i R

+i+j
S @ ) (M)

atb=j+n+2
la—b|<i R
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Proof. It is immediate thafl, N] = 0.[/,d'] = 0 = [I,d"] follow from the
definitions and the property thatis d’-closed. (i) is the hard Lefschetz theorem
on the level of differential forms (cf. [23] Chapt. V, Sect. 2 and Theorem 3.12(c)).
Finally, (iii) follows from Lemma 4.2(iv). O

We set, form € Z

m(m+1)
2

e(m) = (~1)
Let denote byC' the Weil operator: on a differential forghof type (a, b)
C(f) = (V=D""(f).

(cf. op. cit.Chapt. V, Sect. 1).
Define pairings

¢ K=H70k @ Kiik+i 5 R(n)

v = (5=) ctn=i)-2* [z ncy

xr € K_i7_j7k

(4.6)

Y oo
= Aa,b (L) Kz,j,k—l—z
D >— )y e

a+b=—j+n
la—b|<2k+i R

o a,b n+]_Z
| @ 4 <72 )

a+b=j+n
la—b|<2k+1 R

One extends) by zero: i.e.;p vanishes onK/F @ K%V unlessi + u =
j+v=w+1i—k=0.Hence, we get a pairing

Y K@ K" — R(n).

LEMMA 4.6. The following identities hold

() P(z,y) = (—1)"p(y, ).
(i) w(Nx y) +¢(z, Ny) = 0.
(i) p(lz,y) +Y(z,ly) = 0.
(V) Y(d'z,y) = p(x,d"y).
V) p(d"z,y) = Y(z,d'y).
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Proof. (i) is a direct consequence of the equalityl) e(n—75) = (—1)**+ie(n+
7)(—1)7. Note that it follows from the definition of the complég®¥ given in
(4.1) thatyp(z,y) = (=1)"(y, ) = (—1)"(y, z). (ii) is immediate from the
definitions. (iii) is a consequence efn — j) = —e(n — 7 — 2). For (iv): let
z € K7L i-Lk=1 andy € K%*+i Sinced® = C~1d'C, it follows from
Stokes’s theorem and the definitionsdbgndd”

Y(d'z,y) = ( h)nﬁ 1)k [y d'z A Cy

= ( l)ne (n— ) (=) I+k [z A C(C™H'O)y

- (zﬂr)" ln =)D [z A Cd'y
= (. d"y)
(v) is a direct consequence of (iv) and (i). O

PROPOSITION 4.7The bilinear formy(-, 1/ N'-) induces onk; ™ a polariza-
tion i.e. the bilinear form

Q: Ky" @Ky o R
defined as
Q(z,y) = ¢(z, I/ N'y),

is symmetric and positive definite.
Proof. Let

T,y € (K_i,_j)o

72'7' a n_+'L
(= | @ A ().

a+b=n—j
la—b|<i R

then

@2rV—) 7w, 2nV/=D) T ye| @ A

a+b=n—j
la—b|<i R
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SinceN (a) = (2rv/—1)"1a, andi(a) = (27rv/—1)a A w, One has

Qa.y) = (Tj—_l) (=) [ enivicy

=€(n —j) /X(Zﬂ'\/—_l) =5 A C(2rv/-1) 7n+2j7iy.

Hence, the claim follows from classical Hodge theory: cf. [23] Chapt. V, Sect. 6,
Theorem 6.1(d). O

From Lemmas 4.2, 4.5, 4.6 and Proposition 4.7 we deducd &at N, [, 1)
is a polarized bigraded Lefschetz module in the sense of Saito (cf. [17]). Hence,
via the one-to-one correspondence between bigraded Lefschetz modules and rep-
resentations of the Lie groufi.>(R) x SL»(R), we associate toK >, N, [, ) the
representation of SL,(R) x SLy(R) defined as

Ao ) (o )

and

w[(2 B.d-w
wlo (3 2=t

It follows from the notations introduced in Lemma 4.5(iii), that one has a
Lefschetz decomposition

(r) = a'b’x, e Kb

Ki,j — @ NTZS(Ki72r,j72S)O.

r,s>0

The Weyl element

0 1
w = <_1 O) ESLz(R),
defines the element; = (w,w) € SLy(R) x SL»(R) and since the bilinear form

1 defined in (4.6) induces a polarization Bt (i.e. v satisfies the properties (i)
and (iii) of Lemma 4.6 and Proposition 4.7), it is not difficult to see that the pairing

¢($, y) = z/)('II’" wa),

https://doi.org/10.1023/A:1000362027455 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000362027455

DOUBLE COMPLEXES ANDL-FACTORS 351

is symmetric and positive definite ki (cf. [11] p. 151 for a proof). It follows
from Lemma 4.6 that the differentidl = d' + d” admitsw, Ydw, as transposkl
relative tog¢. Then, the Laplace operator ¢

0 :=d(‘d) + (‘d) d,

commutes with the action & Ly(R) x SLy(R) (cf. op. cit Lemma at p. 153).
Using the properties af mentioned above, one gets

H*(K*,d) = Ker d/Image d= Kerd N Ker‘d = Kero

ando is invariant for the action af L (R) x S L2 (R). Then, from the isomorphism
of complexes

K* ~ Kero & Imager,

where d= 0 on (KerO) and the complex (Imagg) is d-acyclic, one deduces

an induced action 0§ Ly(R) x SL»(R) on H*(K*,d). Hence, the cohomology
H*(K*,d) of K*, equipped with the endomorphismi¥sand/ and the polarization

1, IS a polarized bigraded Lefschetz module. In particular, that means that both
N and! satisfy hard Lefschetz theorems on the bigraded moHulgs™, d) as in
Lemmas 4.2(iii) and 4.5(iii). Therefore, one has the following.

PROPOSITION 4.8For all ¢, r € Z, q > 0the operatorN induces isomorphisms
Nt gri' JHY(X*) =5 griV \HU(X*)

This result, together with exact sequences as in (3.6) and (3.7) impliexp(cf.
cit. Theorem (5.3) for the arguments) the following Clemens—Schmidt type exact
sequence.

PROPOSITION 4.9For r € Z the following sequence is exact
= grng;I/(X) — grngHq(Y) 22, grngHq(X'*)
N > 2
— grﬁr_qu(X ) A, gr(H_,J‘IqJr (X) — gr}ﬁ_,H‘I"'Z(Y) — e

sp is the compositgr!’ . HY(Y) — grl¥ HY(X*) — grl¥ [H(X*) and X is the
compositeyr)¥,_,HY(X*) — grlt HIH(X*) — gr(‘IKTHqJ“z(X) as described
in the sequencg8.6) and(3.7).

Let define, following the notations used in [2] € Z), the groups
HYP = Cokel(d'd": griy H¥ (X) — gryy H?(Y))
HYP = Ker(d'd": gryy ,HE (X)) — griy ,HPY2(Y)).

From Lemma 4.3 and Proposition 4.9 it is easy to deduce
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COROLLARY 4.10.

(i) Hif =gry, H?(X*) = Ker(N: gry, H¥(X*) = gry, ,H?(X"))

(i) HPP=gry oH?PTHX*)=Coke(N: gryy ,H?(X*)—gry H?(X*)).
This Corollary together with Proposition 4.8 implies, arguing as in [2] (6.3).

COROLLARY 4.11.

PP PP
Hpp ~ Hp

gray H? (X*) = griy o HPTHX).

Whenp > 0, using the results established in Lemma 4.3(vi) and Corollary 4.4
we deduce an equivalent way to express this isomorphism.

COROLLARY 4.12.

HZ (Xc,R(p) ~ HE ™ (Xc, R(p + 1)),
resp. for Xp

HZ (Xr,R(p)) ~ HE Xz, R(p + 1)).

Proposition 4.8, together with Lemma 4.3 and Corollary 4.4 permit us to extend
the isomorphismg7?? ~ H?* to higher analogs. The symmetry already estab-

lished in Corollary 4.11 by mean of the isomorphid: gry erl)HZJ”()N(*) =
grz(pil)HZp(X*) represents only the first piece of the following more general
result.

Let suppose that > 2p, for ¢, p € Z and q non negative. Then, the isomorphism
(g—2p+2>2)
NT252: gryfy prnyHUX), = gry, 1 HI(X™),

decomposes into the following sequence of maps

0— gryf, prnyHIX* )—>97“2( o HY(XY)
NN grgqu(X*) X, grz( )Hq(X ) — 0. 4.7)
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According to Corollary 4.4, the first homomorphiskhon the left is injective
and the last one on the right is surjective. Further,

NI=2P: grg(VH)Hq(X ) = gryy HY(X™),

is also an isomorphism. Therefore putting together these two facts one gets the
following decomposition ongHq(X*) as direct sum

gra, HI(X)
= grszq( ) ® Imagg N 2+1: grggquJrl)Hq(X*)
— gry, HI(X)).
Finally, noting that

Image N?=2*1 : griy HY(X*) = gry, HI(X"))

q—p+1)

ImagqN 97'2((1 p-}—l)Hq(X*) - grg‘(/q—p)Hq(X*))?
we have
Wa(x+
gray HI(Y) = k. )

Imagg N7—2p+1: grz( Hq(X ) —>gr2qu(X*))

q—p+1)

grggq—p)Hq(X*)
Image N : grgv_ 41 Hq(f(*) —>g7"gV_ Hq()?*))
(g—p+1) (a—p)

l

+2
- gTZ(q p+1)Hq (X)-

Summarizing, the theory developed in this section also allows one to recover
the following results about Deligne cohomology groups.

PROPOSITION 4.13For q,p € Z,q > 2p,(q > 0)
gTZpH (Y) - g’rZ(q p+1)Hq+2(X) = HqD+l(XCa ]R(q +1- p))
resp.
g,rzp HQ(Y)Foo:id ~ H%+1(XC, ]R(q +1-— p))(fl)QFoo:id‘
In particular, whenp > 0 these isomorphisms show
H(Xc, R(p)) ~ HE ™ (Xc,R(g + 1 - p))
resp.

H%(XRa ]R(p)) =~ H%+1(XC, ]R(q +1-— p))(—l)qﬁ‘oo:id.
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The assertions about Deligne cohomology follow from Proposition 4.1, Lemma
4.3 and Corollary 4.4.

The isomorphisms between Deligne cohomology groups shown in the Propo-
sition can easily be seen a priori by simply working out the definitions of those
groups. The above Proposition shows therefore that the theory developed in this
chapter behaves correctly.

Finally, our construction shows explicitly a symmetry between homology groups
ofthe right and left hand sides of the ‘Deligne compl€% (p) introduced in Propo-
sition 4.1. There, the map in the middle—1d'd" = —2rv/—1dd° replaces in
the archimedean case the composiié - i, studied in the non archimedean case:
cf. Sect. 3 Proposition 3.2 and Lemma 3.3.

5. Applications: on Deninger infinite determinants

Let X be a smooth projective variety over a global fiégléindr be a place ok.

Let denote byH?(X,)(X, = X x Spe¢k,)) the classical g-th Betti cohomology

(g > 0) if v is an archimedean place and the gHhdic cohomology « t )
otherwise. In[7], [8] and [9] Deninger proved that the loE&factorL, (H1(X,), s)

can be described as it follows, using a suitable definition of an infinite determinant

deto (5 (s — ©)|H&(X,)) L, if v]oo

L,(H(Xy),s) :{ e
deto (5 (s — ©)|D(HY(X,))) 1 if vis finite.

At an archimedean place, the vector spatf X,) (the ‘archimedean coho-
mology’) is infinite dimensional ovek and it carries a natural endomorphigmif
v is a non archimedean place of good reducti@in» D(HY(X,)) is a cohomol-
ogy theory on pure good reduction motives okgrIn generalD(HY(X,)) is an
object in the category of regular-singular algebraic differential equatiofis,oiC
or equivalently into the category of finite-dimensional complex representations of
m1(C*, 1) ~ Z. Finally, N, is the number of elements of the residue field of the
local fieldk,,.

In this paragraph we deal with the ‘archimedean cohomology’ and we prove
that the Euler factor at infinity can be completely recovered using the definition
of the infinite determinant introduced in [7] on the infinite dimensidkakector
spaceH?(X*)N=0 = @,grll H7(X*) studied in the last section. Q?(X*) we
define a linear operatap acting Ongrgqu(X*) as a multiplication by. The
main result proved in this section are the equalities

(H&(Xc),0) = (HY(X*)N=0, @)
(H&(Xw),0) = (HIUX*)N=0Fe=id g),

Unfortunately, one cannot expect a similar result at a finite placesemistable
reduction and recover there the local L-fackg H%(X, ), s) using again Deninger
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formal construction by the infinite determinants applied to the spHdéi*) we

introduced in Sect. 3, the main reason being the finite rank of those vector spaces.
From now on we indicate by a smooth, projective variety ovéf = C or R.
Following [7] (cf. p. 253), the ‘archimedean cohomology’ groups are defined as

Hi(Xk) = D(Hg (Xc,C)),

where the Betti conomology groups}, (X, C) = Héing(X (C),C) are viewed as
real Hodge structures ovéf.D(-) is a functor from the abelian category of pure
Hodge structures ovek to the additive categorp whose objects are couples
(D,B®p).D is afreeLg -module of finite rank ané is anR-linear endomorphism
on D satisfying some module-type compatibility conditions a$)|in cit (cf. p.
249).Lx is anR-algebra isomorphic tB[T1] if K = C and toR[T?] if K = R,
beingT an indeterminateL i is endowed with a derivation map, = T— and
the morphisms in the additive categdpy, areL-linear maps commuting with
the ©'s. According to the properties of the functdr D(Hg (X¢,C)) is a free
(L, ©1,)-module of rank equal to theth Betti number ofX.

The main result 0bp. cit(cf. Theorem (4.1)) is the following:

THEOREM 5.1 (Deninger).

O -1
det. (50 — 5o 14X = Lic(H(Xe,0)5).

Lik(HE(Xe,C), s) is the complex (or real) Euler factor (cf. [20]) associated to
the real Hodge structudé? (Xc, C). det,, is the infinite determinant definedap.
cit. (cf. pp. 246-7). Since it is known that the order of polelaf( H% (Xc, C), s)
at any integes < 1 is related to the real Deligne cohomologyXj;, a corollary
of this theorem is the following (cbp. cit. Proposition (5.1))

PROPOSITION 5.2 (Deninger)f ¢ > 2m, then
dime HE(Xx)®=™ = dimg HS™ (X5, R(q + 1 —m)).

Let now consider the coupl@‘lq(f(*) N) as defined in the last section. We
recall that HY(X*) = @pgry, W HI(X*) and by constructlorgrgVHq(X*) has
weightp. We define on it the foIIowmg linear operator

D gry, WHI(X) = 9T WHI(X™) ®(a) :=p-a.

Then, we extend this definition on the whole groHp (X*) according to the
decomposition of/7(X*) as above.

Note that on each graded piece, one might vieas the logarithm of a sort of
‘frobenius-type’ operator

Fr:gry, WHI(X*) - g?"szq()?*) Fr(a) := € - a. (5.1)
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These definitions might be interpreted as another hint for a classification of the
fiber at infinity in the context of the ‘bad’ fibers.
From now on we will use the following notation

HI(X)N=0 =

{ HI(X*)N=0 if K=C
(5.2)

HY(X*)N=0F=id if g =R
As a first result we have
PROPOSITION 5.3Foranyq > 0
(HY(Xx),0) = (H(Xj)V=0, ).
Proof. If ¢ > 2m andK = C, then it follows from Deninger definitions that
HY(Xc) O~
= D(H} (Xe, ©) =™

c=id,©®=m
= | F'HL(Xe,0) @ Y R(k)
v

= [F"H(X¢,C) ®c R(m)]*™,

for ¢ being theR-linear involution induced by the complex cojugation on the
coefficients. Itis immediate from the description given in Sect. 4 Corollary 4.4 that
this group is equal tgry HI(X*)N=0 = grlV HI(X*) = HI(X})®=™.

WhenK = R,

HI(Xz)(©=m) .= D(HY (X, C)) " =id:(©=m)
= [F"H(X¢,C) ®c R(m)]Fe=ide=id

where F, is the C-linear involution induced by the complex conjugation on the
variety X¢. Also in this case this group coincides with auy H(X%)N=0 =
HI(X%)®=™: cf. (5.2) above. )

If ¢ < 2m,[F"H(X¢, €)™ = 0 = gr) HY(X3)N=C. Hence, we con-
clude that

Hi(Xk)= P HH(Xk)?™"= @ gram H (X)) " C=H!(X})"=°0
q=2m g=>2m

As a direct consequence of that and the definition of infinite determinant, we can
state our main result
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THEOREM 5.4.
deote (o~ L HI(K3)"0) = Lic(H)(Xe, ), 9)
2t 2w
We end up by remarking that the isomorphism
(HI(XG)N=0) =) =~ HY ™ (Xke, Rlg +1—m)) (5.3)

depends on a choice b= v/—1 (i.e. an orientation af). In our theory this reliance

is a clear consequence of the definition of the weighted opeMtsince (5.3) is
nothing but a way to express the isomorphisms shown in Proposition 4.13, i.e. the
identification ofgri, H(Y) with gryy _  HIF(X) ~ HE™ (X, R(g + 1 -

m)). In [9] (cf. Proposition (6.10)), the corresponding duality isomorphism between
the ‘archimedean cohomolog¥f4(X x)(®=" and (a twist of)H%™ (X &, R(q +
1—m)) is explained by constructing a natural perfect pairing

HE (X, Blg +1—m)) x Hy(Xx)©"™ > &

Because of the Proposition 5.3, that implies the naturality of the corresponding
pairing

HE™ (X i, R(g +1—m)) x (HY(X) V)@= — k.
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