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Abstract

Let 0 ≤ α ≤ ∞, 0 ≤ a ≤ b ≤ ∞ and ψ be a positive function defined on (0,∞). This paper is concerned
with the growth of Ln(x), the largest digit of the first n terms in the Lüroth expansion of x ∈ (0, 1]. Under
some suitable assumptions on the function ψ, we completely determine the Hausdorff dimensions of the
sets

Eψ(α) =
{
x ∈ (0, 1] : lim

n→∞

log Ln(x)
logψ(n)

= α
}

and

Eψ(a, b) =
{
x ∈ (0, 1] : lim inf

n→∞

log Ln(x)
logψ(n)

= a, lim sup
n→∞

log Ln(x)
logψ(n)

= b
}
.
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1. Introduction

It is well known that every x ∈ (0, 1] admits an infinite Lüroth expansion of the form

x =
1

d1(x)
+
∑
n≥2

1
d1(x)(d1(x) − 1) · · · dn−1(x)(dn−1(x) − 1)dn(x)

, (1.1)

where dn(x) ∈ N for all n ≥ 1, which we write as x = [d1(x), d2(x), . . .]. Lüroth [12]
showed that the Lüroth expansion can be induced by the Lüroth map T : [0, 1]→ [0, 1]
defined by

T(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x = 0,⌊1

x

⌋((⌊1
x

⌋
+ 1
)
x − 1

)
if x ∈ (0, 1].
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[2] The largest digit in Lüroth expansions 205

The digits dn := dn(x) in (1.1) are defined by

d1(x) =
⌊1

x

⌋
+ 1 and dn(x) = d1(Tn−1(x)) for all n ∈ N,

where �·� denotes the integer part of some real number and Tn stands for the nth iterate
of T (T0 = Id(0,1]).

Clearly, the above algorithm gives dn ≥ 2 for each n ≥ 1. Conversely, it is shown in
[6] that any sequence of integers {dn}n≥1 with dn ≥ 2 for each n ≥ 1 must be the Lüroth
expansion of some x ∈ (0, 1]. The Lüroth expansion has been studied extensively in the
representation theory of real numbers, probability theory and dynamical systems (see
[1, 2, 5, 7] and the monograph of Dajani and Kraaikamp [3]).

Given x ∈ (0, 1], let Ln(x) = max{d1(x), d2(x), . . . , dn(x)} be the largest digit among
the first n terms of the Lüroth expansion of x. The first metrical result on Ln(x) was
given by Galambos [6] in 1976: for Lebesgue almost all x ∈ (0, 1],

lim
n→∞

log Ln(x)
log n

= 1. (1.2)

That is, log Ln(x) tends to infinity steadily with the speed log n.
From the point of view of multifractal analysis, Shen et al. [14] studied the level

sets {
x ∈ (0, 1] : lim

n→∞

log Ln(x)
log n

= γ
}
, γ ≥ 0, (1.3)

and showed that they have full Hausdorff dimension. Recently, Lin and Li [11]
generalised this result by considering the size of the sets for which the limit in (1.3)
may not exist. More precisely, they proved that for 0 ≤ α ≤ β ≤ ∞, the set

{
x ∈ (0, 1] : lim inf

n→∞

log Ln(x)
log n

= α, lim sup
n→∞

log Ln(x)
log n

= β
}

(1.4)

has Hausdorff dimension one.
After (1.3) and (1.4), it is natural to wonder how large the sets are when log Ln(x)

tends to infinity at a different rate. We will investigate the Hausdorff dimension of the
sets when log Ln(x) grows with slowly increasing speed as defined below.

DEFINITION 1.1 [8, 9]. Let f (x) be a function defined on the interval [c,∞) such
that f (x) > 0, limx→∞ f (x) = ∞ and with continuous derivative f ′(x) > 0. We say the
function f (x) is slowly increasing if limx→∞ x f ′(x)/ f (x) = 0.

Slowly increasing functions were used recently by Jakimczuk [8, 9] as a tool to study
the asymptotic properties of Bell numbers. Typical slowly increasing functions are
log x, log log x, log2 x, log x/log log x. The elementary properties of slowly increasing
functions will be presented in Section 2.
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206 M. J. Zhang and W. L. Wang [3]

We complement the limit theorem (1.2) by studying the following two sets:

Eψ(α) :=
{
x ∈ (0, 1] : lim

n→∞

log Ln(x)
logψ(n)

= α
}
,

Eψ(a, b) :=
{
x ∈ (0, 1] : lim inf

n→∞

log Ln(x)
logψ(n)

= a, lim sup
n→∞

log Ln(x)
logψ(n)

= b
}
,

where 0 ≤ α ≤ ∞, 0 ≤ a ≤ b ≤ ∞ and ψ is a positive function defined on (0,∞). We
will establish the following two main theorems. We use dimH to denote the Hausdorff
dimension.

THEOREM 1.2. If the function logψ is slowly increasing, then dimH Eψ(α) = 1 for any
real number α with 0 ≤ α ≤ ∞.

THEOREM 1.3. If the function logψ is slowly increasing, then dimH Eψ(a, b) = 1 for
any real numbers a, b with 0 ≤ a ≤ b ≤ ∞.

In particular, we can take ψ(x) = xγ (γ > 0), ψ(x) = xlog x and ψ(x) = log x in
Theorem 1.3 to give the following result.

COROLLARY 1.4. If 0 ≤ a ≤ b ≤ ∞ and γ > 0, then

dimH E{nγ}(a, b) = dimH E{nlog n}(a, b) = dimH E{log n}(a, b) = 1.

Notice that if we take ψ(n) = n in Theorems 1.2 and 1.3, then we obtain the special
results dimH Eψ(α) = dimH Eψ(a, b) = 1 given in [11, 14]. Theorem 1.3 also implies
the following result.

COROLLARY 1.5. If the function logψ is slowly increasing, the set{
x ∈ (0, 1] : lim inf

n→∞

log Ln(x)
logψ(n)

< lim sup
n→∞

log Ln(x)
logψ(n)

}

has full Hausdorff dimension.

For more results concerning the largest digits in Lüroth expansions and continued
fraction expansions, see [10, 15–17]. For the definitions and elementary properties of
Hausdorff dimension, Falconer’s book [4] is recommended.

2. Preliminaries

In this section, we will list some elementary results related to Lüroth expansions
and present some notation and basic facts that will be used later.

Let {dn}n≥1 be a sequence of integers not less than 2. We call

In(d1, . . . , dn) = {x ∈ (0, 1] : dk(x) = dk for 1 ≤ k ≤ n}

a cylinder of level n, whose endpoints and length denoted by |In(d1, . . . , dn)| are
determined by the following lemma.
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[4] The largest digit in Lüroth expansions 207

LEMMA 2.1 [6]. Let In(d1, . . . , dn) be a cylinder of level n. Then the left and right
endpoints are

1
d1
+

1
d1(d1 − 1)d2

+ · · · +
n−1∏
k=1

1
dk(dk − 1)

1
dn

and

1
d1
+

1
d1(d1 − 1)d2

+ · · · +
n−1∏
k=1

1
dk(dk − 1)

1
dn
+

n∏
k=1

1
dk(dk − 1)

.

As a result,

|In(d1, . . . , dn)| =
n∏

k=1

1
dk(dk − 1)

.

For m ∈ N with m ≥ 2, write Σm = {2, 3, . . . , m}. Let Em be the set consisting of all
points in (0, 1] whose digits are less than m, that is,

Em = {x ∈ (0, 1] : dn(x) ∈ Σm for all n ≥ 1}.
It is known that the set Em can be regarded as a self-similar set generated by contracting
similarities {x/a(a − 1) + 1/a}ma=2. The following lemma is a classic result which gives
the dimension of Em.

LEMMA 2.2 [7, 13]. For any m ≥ 2, dimH Em = sm, where sm is the solution s of the
equation ∑

2≤a≤m

( 1
a(a − 1)

)s
= 1.

Moreover, limm→∞ sm = 1.

Next, we present a key tool which indicates that the Hausdorff dimensions of some
specific sets are stationary to the dimension of Em under certain Hölder mappings
defined below.

Let J = {n1 < n2 < · · · } ⊂ N and fJ : (0, 1]→ (0, 1] be a mapping satisfying

fJ : x = [d1(x), d2(x), . . .] �→ x := [d1(x), d2(x), . . .] = [d1(x), d2(x), . . .],

where the number x is obtained by deleting all {dnk (x)}k≥1 in the Lüroth expansion of x.
For m ≥ 2 and {an}n≥1 a sequence of integers, set

Fm(J, {ak}) := {x ∈ (0, 1] : dnk (x) = ak, dn(x) ∈ Σm for n � nk for all k ≥ 1}.

LEMMA 2.3. Fix m ≥ 2 and a set of positive integers J = {n1 < n2 < · · · }. Let {ak}k≥1
be an increasing positive integer sequence satisfying ak → ∞ as k → ∞ and

lim
k→∞

k log ak

nk
= 0. (2.1)

Then dimH Fm(J, {ak}) = dimH fJ(Fm(J, {ak})) = dimH Em = sm.
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PROOF. The main idea of the proof of Lemma 2.3 comes from [16]. Here we will
modify the calculations in [14] and give a sketch of the proof of this argument.

To estimate the dimension of Fm(J, {ak}), we shall use the terminology of symbolic
space. For each n ≥ 1, let

Dn = {(σ1, . . . ,σn) ∈ Nn : σnk = ak and σi ∈ Σm, 1 ≤ i � nk ≤ n}.
For any n ≥ 1 and (σ1, . . . ,σn) ∈ Dn, we call

Jn(σ1, . . . ,σn) =
⋃
σn+1

In+1(σ1, . . . ,σn,σn+1)

the fundamental interval of level n, where the union is taken over all σn+1 such that
(σ1, . . . ,σn,σn+1) ∈ Dn+1. Clearly,

Fm(J, {ak}) =
⋂
n≥1

⋃
(σ1,...,σn)∈Dn

In(σ1, . . . ,σn) =
⋂
n≥1

⋃
(σ1,...,σn)∈Dn

Jn(σ1, . . . ,σn).

By the definition of fJ with J = {nk}k≥1, we can assume that nk ≤ n < nk+1 for some
k ∈ N. Then (σ1, . . . ,σn) := fJ((σ1, . . . ,σn)) is obtained by deleting the k terms
{σni}ki=1 in (σ1, . . . ,σn). Write

In(σ1, . . . ,σn) := In−k(σ1, . . . ,σn).

Then we have the following claim.

Claim 1. For any ε > 0, there exists N0 > 0 such that for all n ≥ N0 and (σ1, . . . ,σn) ∈
Dn, we have

|In(σ1, . . . ,σn)| ≥ |In(σ1, . . . ,σn)|1+ε.
In fact, (2.1) implies that for any ε > 0, there exists N0 > 0 such that for all k > N0,

we have k log ak <
1
2ε log 2nk. We can assume that nk ≤ n < nk+1 and obtain

|In(σ1, . . . ,σn)|ε ≤ 1
2(n−k)ε ≤

1
2nkε
≤ 1

a2k
k

. (2.2)

Since {ak} is increasing, (2.2) and Lemma 2.1 give

|In(σ1, · · · ,σn)| = |In(σ1, . . . ,σn)|/σn1 (σn1 − 1) · · ·σnk (σnk − 1)

≥ |In(σ1, . . . ,σn)|/a2k
k

≥ |In(σ1, . . . ,σn)|1+ε.
Let x and y belong to the set Fm(J, {ak}) with x � y. It follows that there exists a

largest integer n such that x and y are both contained in the same cylinder of level n.
The next claim is devoted to estimating the distance between x and y, which is very
similar to [14, Lemma 3.3], so we omit the details.

Claim 2. Let n be the largest level of the cylinders which contain both x and y. Then

|y − x| ≥ min
{ |In(σ1, . . . ,σn)|

m2 · an
,
|In(σ1, . . . ,σn)|

m3

}
.
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Therefore, when x, y ∈ Fm(J, {ak}) with

|x − y| < min
(σ1,...,σN0 )∈DN0

{ IN0 (σ1, . . . ,σN0 )
m2aN0+2

,
IN0 (σ1, . . . ,σN0 )

m3

}
,

we have

| f (x) − f (y)| ≤ max{m2aN0+2, m3}1+ε · |x − y|1/ε.

From these two claims and [4, Proposition 2.3], we obtain

dimH Fm(J, {ak}) ≥
1

1 + ε
dimH fJ(Fm(J, {ak})) =

1
1 + ε

dimH Em

and so dimH Fm(J, {ak}) ≥ dimH fJ(Fm(J, {ak})) by letting ε→ 0.
To see that dimH Fm(J, {ak}) ≤ dimH fJ(Fm(J, {ak})), it suffices to show that the

mapping

f −1
J

: fJ(Fm(J, {ak}))→ Fm(J, {ak})

is 1-Hölder. For any y1, y2 ∈ fJ(Fm(J, {ak})), let y1, y2 ∈ In(σ1, . . . ,σn) with σn+1(y1) �
σn+1(y2). Let x1 = f −1

J
(y1), x2 = f −1

J
(y2). By the definition of f −1

J
, we know that x1 and

x2 are obtained by inserting the sequence {ak}k≥1 in the Lüroth expansions of y1 and
y2 at the positions {nk}k≥1, respectively. Let M ∈ N be such that we can insert just M
integers {ai}Mi=1 into the block (σ1, . . . ,σn). Then x1 and x2 have at least n +M common
digits in their Lüroth expansions. By Lemma 2.1,

|x1 − x2| ≤ |In+M(σ1, . . . ,σn+M)|
≤ |In(σ1, . . . ,σn)|/σn1 (σn1 − 1) · · ·σnk (σnk − 1)

≤ 1
2 |In(σ1, . . . ,σn)|.

However, similar to the argument in Claim 2, we also have

|y1 − y2| ≥ min
{ |In(σ1, . . . ,σn)|

m2 · an
,
|In(σ1, . . . ,σn)|

m3

}
.

It follows that

| f −1
J

(y1) − f −1
J

(y2)| = |x1 − x2| ≤ 1
2 max{m2aN0+2, m3} · |y1 − y2|,

showing that f −1
J

is 1-Hölder and dimH Fm(J, {ak}) ≤ dimH fJ(Fm(J, {ak})).

We end this section by presenting the following lemma which exhibits some basic
properties of slowly increasing functions.

LEMMA 2.4 [8]. Let the functions f (x) and g(x) be slowly increasing and γ be a
positive constant. Then,

(1) the function f (xγ) is slowly increasing;
(2) the function f (xγg(x)) is slowly increasing;
(3) limn→∞ log f (x)/log x = 0;
(4) limn→∞ f (x + 1)/ f (x) = 1.
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3. Proofs

This section is devoted to the proofs of our main results. To prove Theorem 1.2, we
will construct a suitable subset Fm(J, {ak}) of Eψ(α), so that the result can be established
by using Lemma 2.3. As for the proof of Theorem 1.3, since the nonexistence of
the limit in Eψ(a, b) describes the essence of the question compared with the known
results, we need to carefully construct a nice Cantor subset in the lower bound
estimations for the Hausdorff dimension. Our proof provides a convenient method
to estimate the lower bound for the Hausdorff dimension, which is very different from
the method used in [11].

PROOF OF THEOREM 1.2. The proof is divided into three cases according as α = 0,
0 < α < ∞ and α = ∞.

Case 1: α = 0. In this case, it is clear that Em ⊂ Eψ(0). Therefore the result follows
directly by Lemma 2.2.

Case 2: 0 < α < ∞. Let m ≥ 2 and {an}n≥1 be a sequence of integers and recall the set

Fm(J, {ak}) := {x ∈ (0, 1] : dnk (x) = ak, dn(x) ∈ Σm for n � nk for all k ≥ 1}

defined in Lemma 2.3. Here we take nk = k2 and ak = �ψ(k2)α� for each k ≥ 1.
On the one hand, for any x ∈ Fm(J, {ak}), if k2 ≤ n < (k + 1)2 for some integer k,

then
log�ψ(k2)α�

logψ((k + 1)2)
≤ log Ln(x)

logψ(n)
≤ log�ψ(k2)α�

logψ(k2)
.

From Lemma 2.4(1) and (4),

lim
n→∞

logψ(k2)
logψ((k + 1)2)

= 1.

Consequently,

lim
n→∞

log Ln(x)
logψ(n)

= α,

which yields Fm(J, {ak}) ⊂ Eψ(α).
On the other hand, since logψ is slowly increasing, Lemma 2.4(3) implies that

lim
k→∞

log logψ(k)
log k

= 0,

which ensures that for any ε with 0 < ε < 1
2 and sufficiently large k,

logψ(k) < kε. (3.1)

This gives

lim
k→∞

k log�ψ(k2)α�
k2 ≤ lim

k→∞

α · k1+2ε

k2 = 0,
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that is, (2.1) in Lemma 2.3 holds. From Lemma 2.3,

dimH Eψ(α) ≥ dimH Fm(J, {ak}) = dimH Em = sm

and we obtain the result in Theorem 1.2 by letting m→ ∞.

Case 3: α = ∞. In this case, for each k ≥ 1, we take

nk = �k2 log k� and ak = �(ψ(k2 log k))(log k)1/2�

in the definition of the set Fm(J, {ak}) in Lemma 2.3.
We show first that Fm(J, {ak}) ⊂ Eψ(∞). For every x ∈ Fm(J, {ak}), since the functions

logψ(x) and log x are slowly increasing, Lemma 2.4(2) and (4) give

lim
n→∞

log(ψ(k2 log k))
log(ψ((k + 1)2 log(k + 1)))

= 1.

So if �k2 log k� ≤ n < �(k + 1)2 log(k + 1)� for some integer k, then

lim
n→∞

log Ln(x)
logψ(n)

≥ lim
k→∞

(log k)1/2 · log(�ψ(k2 log k)�)
log(ψ(�(k + 1)2 log(k + 1)�))

= lim
k→∞

(log k)1/2 = ∞,

which means Fm(J, {ak}) ⊂ Eψ(∞).
Next, (3.1) holds for any ε with 0 < ε < 1

2 as in the last case, and we can check that
(2.1) still holds here, namely

lim
k→∞

k log�(ψ(k2 log k))(log k)1/2�
�k2 log k�

≤ lim
k→∞

logψ(k2 log k)
k(log k)1/2 ≤ lim

k→∞
k2ε−1(log k)ε−1/2 = 0.

Hence, by Lemma 2.3,

dimH Eψ(∞) ≥ dimH Fm(J, {ak}) = dimH Em = sm.

Then we finish the proof of Theorem 1.2 by letting m→ ∞.

PROOF OF THEOREM 1.3. We give the proof of Theorem 1.3 for the case 0 < a <
b < ∞ in detail. The argument for other cases involves minor modifications. In the
following, we will write φ := logψ for simplicity.

Case 1: 0 < a < b < ∞. Let φ be a slowly increasing function. Our strategy is to find a
nice Cantor subset of Eψ(a, b) with full Hausdorff dimension. To this end, we construct
another slowly increasing function φ̃ satisfying some specific properties with respect
to φ. Then the proof can be completed by using the result mentioned in Theorem 1.2.

For 0 < a < b < ∞, define φ̃(x) on (0,∞) such that φ̃(x) > 0 and, for any n ∈ N,

φ̃(n) =
a + b

2
φ(n) +

b − a
2

φ(n) sin
( a
b − a

log φ(n)
)
.
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PROPOSITION 3.1. Let φ(n) be slowly increasing and define the function φ̃ as above.
Then φ̃ is also slowly increasing and

lim inf
n→∞

φ̃(n)
φ(n)

= a, lim sup
n→∞

φ̃(n)
φ(n)

= b. (3.2)

PROOF. First, 0 < a · φ ≤ φ̃ ≤ b · φ and φ̃→ ∞ as x→ ∞. Next, we check that the
function φ̃(x) has positive derivative. In fact,

φ̃′(x) =
(a + b

2
φ(x) +

b − a
2

φ(x) sin
( a
b − a

log φ(x)
))′

=
a + b

2
φ′(x) +

b − a
2

φ′(x) sin
( a
b − a

log φ(x)
)

+
b − a

2
φ(x) cos

( a
b − a

log φ(x)
) a
b − a

· φ−1(x) · φ′(x)

≥ a + b
2

φ′(x) − b − a
2

φ′(x) − a
2
φ′(x) =

a
2
φ′(x) > 0,

where the last inequality follows from the fact that φ is slowly increasing. The
calculation also implies that

∣∣∣∣∣xφ̃
′(x)

φ̃(x)

∣∣∣∣∣ ≤
∣∣∣∣∣ x
aφ(x)

(a + b
2

φ′(x) +
b − a

2
φ′(x) +

a
2
φ′(x)
)∣∣∣∣∣→ 0 as x→ ∞.

Therefore, φ̃ is also a slowly increasing function. By the construction of φ̃, (3.2) holds
immediately. �

Let φ̃ = log ψ̃ be the slowly increasing function defined above, where ψ̃ is a positive
function defined on (0,∞). We replace φ̃with φ = logψ and take α = 1 in the set Eψ(α)
in Theorem 1.2. The Hausdorff dimension of the set

Eψ̃(1) :=
{
x ∈ (0, 1] : lim

n→∞

log Ln(x)

φ̃(n)
= 1
}

is full. The lower bound of dimH Eψ(a, b) follows directly by Proposition 3.1 and the
fact that Eψ̃(1) ⊂ Eψ(a, b). To see this, note that for any x ∈ Eψ̃(1),

lim inf
n→∞

log Ln(x)
φ(n)

= lim
n→∞

log Ln(x)

φ̃(n)
· lim inf

n→∞

φ̃(n)
φ(n)

= a,

lim sup
n→∞

log Ln(x)
φ(n)

= lim
n→∞

log Ln(x)

φ̃(n)
· lim sup

n→∞

φ̃(n)
φ(n)

= b,

which means that x ∈ Eψ(a, b).

Case 2: 0 = a < b < ∞. The proof is similar to the case when 0 < a < b < ∞. We only
need to modify the construction of the function φ̃ to make sure that Proposition 3.1
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still holds. We define φ̃(x) on (0,∞) such that φ̃(x) > 0 by taking

φ̃(x) =
bφ(x)

log log φ(x)
+

1
2

bφ(x)(sin(log log φ(x)) + 1).

Equation (3.2) holds directly and we can check that φ̃(x) satisfies φ̃′(x) > 0 and
|xφ̃′(x)/φ̃(x)| → 0 as x→ ∞. Thus φ̃(x) is slowly increasing.

For the remaining cases, the discussions run as before, so we only give the
constructions of the slowly increasing functions φ̃(x) as follows.

Case 3: 0 < a < b = ∞. Take

φ̃(x) = aφ(x) + φ(x) log φ(x)
(

sin
(a
2

log log φ(x)
)
+ 1
)
.

Case 4: 0 = a < b = ∞. Take

φ̃(x) =
φ(x)

log log φ(x)
+

1
2
φ(x) log φ(x)(sin(log log log φ(x)) + 1).

Case 5: 0 < a = b < ∞. Take φ̃(x) = aφ(x).

Case 6: a = b = ∞. Take φ̃(x) = φ(x) log x.

Case 7: a = b = 0. Take φ̃(x) = log φ(x).
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