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This study investigates the identification and inference of quantile treatment effects
(QTEs) in a fuzzy regression discontinuity (RD) design under rank similarity.
Unlike Frandsen et al. (2012, Journal of Econometrics 168, 382–395), who focus
on QTEs only for the compliant subpopulation, our approach can identify QTEs and
average treatment effect for the whole population at the threshold. We derived a new
set of moment restrictions for the RD model by imposing a local rank similarity
condition, which restricts the evolution of individual ranks across treatment status in
a neighborhood around the threshold. Based on the moment restrictions, we derive
closed-form solutions for the estimands of the potential outcome cumulative distri-
bution functions for the whole population. We demonstrate the functional central
limit theorems and bootstrap validity results for the QTE estimators by explicitly
accounting for observed covariates. In particular, we develop a multiplier bootstrap-
based inference method with robustness against large bandwidths that applies to
uniform inference by extending the recent work of Chiang et al. (2019, Journal of
Econometrics 211, 589–618). We also propose a test for the local rank similarity
assumption. To illustrate the estimation approach and its properties, we provide a
simulation study and estimate the impacts of India’s 40-billion-dollar national rural
road construction program on the reallocation of labor out of agriculture.

The four authors contributed to the paper equally. We are grateful to the Editor (Peter C.B. Phillips), the Co-Editor, and
two anonymous referees for their very useful and insightful comments. This research is supported by the National
Science Foundation of China (Grant Nos. 72103126, 71873080, 72273076, and 71833004) and the Fundamental
Research Funds for the Central Universities (Grant No. 2023110077). Address correspondence to Zhengyu Zhang,
Shanghai University of Finance and Economics, Shanghai, China; e-mail: zy.zhang@mail.shufe.edu.cn.

© The Author(s), 2023. Published by Cambridge University Press. 1

https://doi.org/10.1017/S026646662300021X Published online by Cambridge University Press

https://www.doi.org/10.1017/S026646662300021X
mailto:zy.zhang@mail.shufe.edu.cn.
https://doi.org/10.1017/S026646662300021X


2 ZEQUN JIN ET AL.

1. INTRODUCTION

Thistlethwaite and Campbell (1960) introduced the concept of regression disconti-
nuity (RD), which is now widely used in studies including those on labor markets,
political economy, health, environment, and development. Imbens and Lemieux
(2008), van der Klaauw (2008), and Lee and Lemieux (2010) surveyed the applied
and theoretical literature on RD. Most of these studies focus on estimating average
treatment effects (ATEs); however, the mean treatment effect is not the only object
of interest in many contexts. We might be interested in the distribution of effects
for outcomes such as student achievement or earnings. Frandsen et al. (2012; FFM
hereafter) provided the first extension to quantile treatment effects (QTEs) in the
RD framework.

FFM studied the identification and estimation of quantiles of the potential
outcomes in an RD design based on the local average treatment effect (LATE)
framework (Imbens and Angrist, 1994; Abadie, Angrist, and Imbens, 2002).
In the LATE framework, identification is usually achieved through a certain
monotonicity assumption on the selection equation, and only the QTE for the
subpopulation called “local compliers” are identified. Local compliers are the
units that switch treatment status at the discontinuity, and monotonicity means
that all units that switch treatment at the discontinuity do it in the same direction.
The goal and main contribution of this study are to develop a new nonparametric
approach for estimating QTEs for an entire population at the threshold. Instead
of maintaining a monotonicity condition, we impose on the outcome equation a
local rank similarity condition that restricts the evolution of individual ranks across
treatment status in a neighborhood around the threshold.

The statistical framework we developed in this study and the local quantile
treatment effect (LQTE) framework in FFM are generally non-nested. Neither
one is more general than the other. Our model imposes restrictions mainly on
the outcome equation, such as rank similarity (Assumption 2.3) and a full-rank
Jacobian matrix condition (Assumption 3.2.1(ii)) while leaving the structure of the
selection equation free. However, FFM works with a general outcome equation but
at the cost of a restricted selection equation by imposing a monotonicity condition.1

In some applications of the RD, assuming local rank similarity may be reasonable.
For example, the disturbance in the earnings equation is often considered an innate
ability. Local rank similarity requires that the distributions of people’s innate
abilities do not change across treatment status within some neighborhood of the
cutoff point while not ruling out a certain degree of noisy variations of ability
across persons. Moreover, having a rich set of covariates makes rank similarity
a more plausible approximation, which we explicitly recognize in our estimation
and inference developed later. As another example, in the study of the effect of
retirement on household expenditures (e.g., Li, Shi, and Wu, 2016), rank similarity
means that the distribution of unobserved individual consumption preferences does

1Appendix C provides a detailed discussion of the key identifying assumptions in this study.
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not change systematically before and after retirement, which is likely to hold if
retirement is a predictable event.

Chernozhukov and Hansen (2005; CH05 hereafter) propose exploiting rank
similarity to identify QTEs in the instrumental variable quantile regression (IVQR)
model. Rank similarity does not imply nor is implied by the assumptions of
the LQTE framework. Moreover, the two frameworks have different estimands.
While FFM’s approach can identify QTEs for the compliant subpopulation, our
approach can identify QTEs and ATE for the whole population at the threshold.
In particular, instead of forming the estimator directly based on the moment
conditions originated in CH05 (see Theorem 1 in CH05), we propose a new
representation of the moment restrictions implied by the model. We derive closed-
form expressions for the cumulative distribution functions (CDFs) of the potential
outcomes based on these moment restrictions. These closed-form expressions are
compositions of identifiable conditional CDFs and probabilities and can thus be
estimated using a plug-in approach.

We then develop a systematic inferential procedure for the proposed QTE
estimands. Recall that RD studies routinely employ local linear estimators to
construct confidence intervals (e.g., in FFM). However, as Calonico, Cattaneo, and
Titiunik (2014) point out, the performance of these confidence intervals may be
seriously hampered by their sensitivity to the bandwidth employed. The available
bandwidth selectors typically yield a large bandwidth, leading to potentially biased
data-driven confidence intervals that may be biased. Here, we propose a multiplier
bootstrap-based inference method with robustness against large bandwidths that
applies to uniform inference by extending the recent work of Chiang, Hsu, and
Sasaki (2019). In particular, we develop the limit process of a specific and more
complicated local Wald estimator, which can be seen as a generalization to the
class of local Wald estimands analyzed by Chiang et al. (2019). Our analysis differs
from Chiang et al. (2019) in two regards. First, our estimator cannot be expressed
in the form of the class of local Wald estimators in Chiang et al. (2019, Sect.
4, eqn. (4.1)). Second, we explicitly account for the presence of covariates in a
fully nonparametric manner. In particular, to establish robust uniform inference
with large bandwidth, one should employ the local polynomial kernel regression
to estimate unconditional CDFs by taking the average conditional CDFs over the
distribution of covariates, which is novel in this study.2

Our idea partially builds on Wuthrich’s (2019) insight after deriving closed-
form solutions for CH05’s IVQR estimands with a binary endogenous variable
and binary instruments. As Hahn, Todd, and van der Klaauw (2001) suggest, the
mean RD estimator is closely related to instrumental variables (IV) type estimators.
This insight suggests that the closed-form estimators Wuthrich (2019) derive for
the IVQR model might have an analog in the RD context. However, extending
Wuthrich’s (2019) estimator to the RD context is not straightforward. Compared
with Wuthrich (2019), our study has three novelties. First, we do not directly work

2See Remark 5.1.1 for more discussion.
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with the moment condition in Chernozhukov and Hansen (2005, 2006). Instead, we
derive a new set of moment restrictions (Lemma 3.1) based on which we can form
closed-form estimators. Second, our plug-in estimators are fully nonparametric,
whereas Wuthrich specifies parametric models for the conditional CDFs and the
conditional probabilities. Third, we systematically handle the uniform inference
of QTEs by extending the idea of Calonico et al. (2014) and Chiang et al.
(2019). We also note that Guiteras (2008), in his unpublished work, proposes
an inverse quantile regression (IQR) estimator in the spirit of Chernozhukov
and Hansen (2006; CH06 hereafter) for the RD model. In Guiteras (2008), the
RD model is specified as linear-in-parameters. Moreover, Guiteras (2008) did
not derive the limiting distribution of his estimator, and does not address the
issue of uniform inference. In contrast, we consider the quantile RD model (with
covariates) in a fully nonparametric way and propose a complete inferential
procedure.

In Appendix B, we also introduce a test of local rank similarity as one of
the key identifying conditions of our model. As an application, we estimate the
impacts of India’s 40-billion-dollar national rural road construction program on
the reallocation of labor out of agriculture using the data in Asher and Novosad
(2020; hereafter AN20). We find that constructing a new road has heterogeneous
effects in facilitating workers’ movement out of the agricultural sector. Such effects
are significant for villages in the middle of the agricultural production index
distribution. In contrast, the effect is negligible for villages at the lowest and
highest ends of agricultural production distribution.

The remainder of this article is organized as follows: Section 2 sets up the
statistical framework and discusses the key identifying assumptions. We establish
the identification results in Section 3. Section 4 describes the estimation procedure.
Section 5.1 derives the asymptotic distribution of the proposed QTE estimator. Sec-
tion 5.2 develops a multiplier bootstrap-based inference method with robustness
against large bandwidths that applies to uniform inference.

Section 6 reports the Monte Carlo simulation results. Section 7 presents
the application. Section 8 concludes. We provide the proofs of main theorems
in Appendix A and propose the test for local rank similarity in Appendix B.
Appendix C provides further discussion of the main assumptions used for
identification. The proofs of lemmas in Appendix A, additional Monte Carlo
simulation results, and the discussion on bandwidths selection in applications are
presented in the Supplementary Material.

2. THE MODEL

We are interested in the causal effect of a binary treatment D on an absolutely
continuous outcome variable Y. We observe n units, indexed by i = 1, . . . ,n,
drawn randomly and independently from a large population. Let Y1i and Y0i be the
potential outcomes of individual i under treatment and no treatment, respectively,
so the observed outcome is Yi = Y0i(1 − Di) + Y1iDi. According to CH05, by
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the Skorohod representation of random variables, we can represent the potential
outcomes as

Y1 = q1
(
R,X,U1

)
, Y0 = q0

(
R,X,U0

)
, (2.1)

where R is a running variable that influences the probability of treatment discontin-
uously and R is not necessarily independent of (U0,U1). X is a vector of covariates
with dimension L. Ud determines the relative ranking of observationally equivalent
individuals in the distribution of potential outcomes, and we thus refer to it as the
rank variable in CH05. One may think of Ud as representing some unobserved
characteristic, for example, ability or proneness. Like CH05, we maintain the
following strict monotonicity. Let SA be the support of a generic random variable A.

Assumption 2.1. q1(r,x,u) and q0(r,x,u) are strictly increasing with respect to
u for each (r,x) ∈ SR ×SX .

Assumption 2.2.

(i) For any x ∈ SX ,

lim
r→r+0

P
(
D = 1

∣∣R = r,X = x
) �= lim

r→r−0
P
(
D = 1

∣∣R = r,X = x
)

. (2.2)

(ii) Treatment status is determined by

D = ρ(1{R > r0},R,X,V), (2.3)

where ρ is an indicator function and V is the unobserved random vector. Moreover,
ρ(1,r,x,v) is right-continuous in r at r0 and ρ(0,r,x,v) is left-continuous in r at
r = r0.

Assumption 2.2(i) is the defining feature of an RD design: the probability of
treatment changes discontinuously at the threshold value of the running variable.
The so-called sharp RD design has one difference in the probability of treatment
across the threshold: treatment status is completely determined by location relative
to the threshold. In the fuzzy RD design, the difference in treatment probability
is less than one but still strictly positive, so other factors influence selection into
treatment besides the running variable. We focus on the more general fuzzy design,
treating the sharp design as a special case. The intuition behind Assumption 2.2(ii)
is that once we control the side of the cutoff on which the unit falls, the probability
of receiving treatment relies on the value of the running variable in a neighborhood
around the threshold. We note here that we impose no structural restriction in
equation (2.3). For example, V can be multidimensional, and monotonicity with
respect to V is not required.

Assumption 2.3 (Rank similarity). For any positive sequence δs → 0, U1 and
U0 are identically distributed conditional on R ∈ (r0 − δs,r0 + δs), X and V;
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namely, limr→r0 FU1|R,X,V(u,r,x,v) = limr→r0 FU0|R,X,V(u,r,x,v) for any (u,x,v) ∈
SU ×SX ×SV .3

Assumption 2.3 is the principal identifying assumption of our model, which
restricts the evolution of individual ranks across treatment status in a neighborhood
around the threshold. The idea is that each unit possesses an underlying proneness
or ability, for example, to die early, learn fast, or grow taller, which does not
change with the treatment. In some applications, such rank preservation (RP) is
natural because it seems unlikely that the treatment makes weak units robust and
strong units weak. CH05 show that RP can be weakened to rank similarity (RS).
Formally, RS requires that conditional on observed covariates and the disturbance
in the selection equation, U1 and U0 are identically distributed. Consider studies
on the effects of summer school on educational achievement, where students who
did not meet the end-of-year test score threshold were required to attend summer
school (Jacob and Lefgren, 2004). Imagine two students, A and B, with the same
end-of-year test, score R, but student A is more able than student B. RP predicts
that student A will outperform student B on an end-of-summer test whether both
do or do not attend summer school, while RS indicates that if we expect student
A to outperform student B on an end-of-summer test if neither attends summer
school, we would also expect student A to outperform student B if both attend
summer school. It is important to note that this prediction can still be satisfied if
student A has a bad day on the end-of-summer test date, that is, outperformed by
student B in the end. In other words, RS allows for unsystematic slippages from
an individual’s rank level. For in-depth discussions of the RS condition, interested
readers can refer to CH05 and the reviews by Chernozhukov and Hansen (2013)
and Chernozhukov, Hansen, and Wuthrich (2017).

Remark 2.1. Assumption 2.3 is analogous to the RS condition in an IV setting
(CH05). There, the RS condition is

U1 ∼d U0, conditional on Z,X and V, (2.4)

where Z is an instrumental variable independent of (U1,U0). Clearly, Assumption
2.3 is stated in parallel with (2.4) but differs in two aspects. First, (2.4) is
conditioning on Z, X, and V. However, the RD design has no instrument: R can
be arbitrarily correlated with (U0,U1). Second, Assumption 2.3 is a local version
of (2.4) in that it is required to hold only within a small neighborhood around
R = r0, which is weaker than to hold for each R = r, r ∈ SR.

3. IDENTIFICATION

Our identification proceeds in two steps. First, we present a set of nonlinear
conditional moment restrictions containing the parameters of interest. Next, we

3According to Assumption 3.1.1 in the next section, we conclude that SU = (0,1).
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show, under a full rank condition of the Jacobian of the moment functions, the
potential outcome CDFs, namely,

FYd |R,X(y,r0,x) = P
(
Yd ≤ y

∣∣R = r0,X = x
)

(3.1)

are identified for d = 0,1. Based on these results, we can also identify
many other smooth functionals of the potential outcome CDFs, such as
conditional/unconditional QTEs, average treatment effects, and distributional
treatment effects.

3.1. Moment Restrictions

Besides those introduced in Section 2, we have the following additional assump-
tions for identification.

Assumption 3.1.1. The random variables U0 and U1 conditional on R = r0 and
X = x are uniformly distributed on (0,1).

Remark 3.1.1. Assumption 3.1.1 is a normalization condition, under which
FYd |R,X(y,r0,x) is the inverse function of qd(r0,x,u) with respect to u, because for
any τ ∈ (0,1),

FYd |R,X
(
qd
(
r0,x,τ

)
,r0,x

) = P
(
Yd ≤ qd

(
r0,x,τ

)∣∣R = r0,X = x
)

=P
(
qd
(
r0,x,Ud

) ≤ qd
(
r0,x,τ

)∣∣R = r0,X = x
)

=P
(
Ud ≤ τ

∣∣R = r0,X = x
) = τ,

where the last equality is by Assumption 3.1.1.

Assumption 3.1.2. (i) fR|VX(r|v,x) is continuous in r at r = r0 for each (v,x) ∈
SV ×SX . (ii) q0(r,x,u) and q1(r,x,u) are continuous in r at r = r0 for each (x,u) ∈
SX × SU . (iii) For d = 0,1, the distribution of Ud conditional on R = r, X = x and
V = v, namely, FUd |RXV(u,r,x,v) is continuous in u and r at r0, for each (x,v) ∈
SX ×SV .

Assumption 3.1.2 consists of a set of smoothness conditions, analogous to
Assumption I2 in FFM. Intuitively, these smooth conditions ensure that after
controlling smoothly for the running variable R, differences in the distribution
of outcomes on either side of the threshold occur because of the change in the
treatment status D. We emphasize here that these smoothness conditions are
essential to proving the moment conditions below (Lemma 3.1). This setting
contrasts with the IV quantile model in CH05, which requires no smoothness
condition to obtain the moment condition (Theorem 1 in CH05).

Lemma 3.1. Suppose that (2.1), (2.3), and Assumptions 2.1–2.3, 3.1.1, and 3.1.2
hold; then, for each τ ∈ (0,1) and x ∈ SX,

lim
ε→0+ P

(
Y ≤ qD(r0,x,τ )

∣∣∣∣r0 < R < r0 + ε,X = x

)
= τ (3.1.2a)
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and

lim
ε→0+ P

(
Y ≤ qD(r0,x,τ )

∣∣∣∣r0 − ε < R < r0,X = x

)
= τ, (3.1.2b)

where qD(r,x,τ ) = Dq1(r,x,τ )+ (1−D)q0(r,x,τ ).

Remark 3.1.2. Compared with the moment condition described in Guiteras
(2008, eqn. (9)), Lemma 3.1 here is novel in two aspects. First, (3.1.2a)
and (3.1.2b) explicitly contain the parameters we intend to identify; that is,
(q1(r0,x,τ ),q0(r0,x,τ )) (via qD(r0,x,τ ) = Dq1(r0,x,τ ) + (1 − D)q0(r0,x,τ )).
Recasting the moment restriction as (3.1.2a) and (3.1.2b) facilitates a closed-
form representation of the potential outcome CDF. Second, we provide a new and
more formal proof of these moment conditions. Compared with CH05’s Theorem
1 and Guiteras (2008), the proof of Lemma 3.1 highlights the role of the local RS
and the smoothness conditions in the RD context.

3.2. Closed-Form Solution for CDFs

Moment conditions (3.1.2a) and (3.1.2b) alone do not point-identify the potential
outcome CDF without additional assumptions. For example, to ensure point
identification, CH05 imposes a full-rank condition on the Jacobian matrix of the
moment functions (Theorem 2 in CH05). To introduce a similar full-rank-type
condition for the RD design, define

p(r+
0 ,x) = lim

ε→0+ P(D = 1|r0 < R < r0 + ε,X = x) = lim
r→r+0

P(D = 1|R = r,X = x),

p(r−
0 ,x) = lim

ε→0− P(D = 1|r0 − ε < R < r0,X = x) = lim
r→r−0

P(D = 1|R = r,X = x),

FY|DRX(y,d,r+
0 ,x) = lim

r→r+0
P(Y ≤ y|D = d,R = r,X = x),

FY|DRX(y,d,r−
0 ,x) = lim

r→r−0
P(Y ≤ y|D = d,R = r,X = x).

Define the moment functions

�(y1,y0,x) = lim
ε→0+

[
P
(
Y < Dy1 + (1−D)y0

∣∣r0 < R < r0 + ε,X = x
)

P
(
Y < Dy1 + (1−D)y0

∣∣r0 − ε < R < r0,X = x
) ]

.

For notational simplicity, we suppress the dependence of qd(r,x,τ ) on r when it is
evaluated at r = r0. Thus, we let qd(x,τ ) = qd(r0,x,τ ) for d = 0,1. It follows from
Lemma 3.1 that for each τ ∈ (0,1) and x ∈ SX ,

�
(
q1
(
x,τ

)
,q0

(
x,τ

)
,x
) = 0,

because

lim
ε→0+ P

(
Y < Dy1 + (1−D)y0

∣∣r0 < R < r0 + ε,X = x
)

=FY|DRX
(
y1,1,r

+
0 ,x

)
p
(
r+

0 ,x
)+FY|DRX

(
y0,0,r

+
0 ,x

)(
1−p

(
r+

0 ,x
))

,
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the Jacobian of �(y1,y0,x) with respect to (y1,y0), is

�′(y1,y0,x) =
[

fY|DRX
(
y1,1,r

+
0 ,x

)
p
(
r+

0 ,x
)

fY|DRX
(
y0,0,r

+
0 ,x

)(
1−p

(
r+

0 ,x
))

fY|DRX
(
y1,1,r

−
0 ,x

)
p
(
r−

0 ,x
)

fY|DRX
(
y0,0,r

−
0 ,x

)(
1−p

(
r−

0 ,x
)) ]

.

We make an assumption similar to the full-rank and completeness conditions given
by CH05 (the conditions in CH05’s Theorem 2.)

Assumption 3.2.1.

(i) There exists a positiveδ > 0 such that �′(y1,y0,x) is continuous in (y1,y0) in
the support of (Y1,Y0)

∣∣R ∈ (r0 − δ,r0 + δ),X = x.
(ii) There exists a positive δ > 0 such that �′(y1,y0,x) is of full-rank for all (y1,y0)

in the support of (Y1,Y0)
∣∣R ∈ (r0 − δ,r0 + δ),X = x.

Remark 3.2.1. In Appendix A, we prove that the discontinuity condition (equa-
tion (2.2)) is necessary for the full-rank Jacobian condition (Assumption 3.2.1(ii))
to hold. Specifically, we show that if combining p(r+

0 ,x) = p(r−
0 ,x) = p(r0,x) with

the smoothness conditions in Assumption 3.1.2, the determinant of �′(y1,y0,x) is
zero.

Remark 3.2.2. The full-rank Jacobian matrix condition does not rule out the
existence of defiers. In Appendix B of the Supplementary Material, we provide
a numerical example in which the monotonicity is violated, but the full-rank
condition still holds. Furthermore, Assumption 3.2.1(ii) is equivalent to that the
derivative of F̃1(y,x) and F̃0(y,x) with respect to y are nonzero for any (y,x) ∈
SY ×SX , which we define in (3.2.1) and (3.2.2). Appendix C provides further
discussions and sufficient interpretable conditions for this full rank condition.

The next lemma establishes an important relationship between the parameters
of interest (q1(x,τ ),q0(x,τ )), based on which we can obtain a closed-form repre-
sentation of (q1(x,τ ),q0(x,τ )).

Lemma 3.2. Under the same assumptions as Lemma 3.1 and Assumption 3.2.1,
we have:

(i) For each τ ∈ (0,1) and x ∈ SX,

F̃1
(
q1
(
x,τ

)
,x
) = F̃0

(
q0
(
x,τ

)
,x
)
,

where

F̃1(y,x) = FY|DRX
(
y,1,r+

0 ,x
)

p
(
r+

0 ,x
)−FY|DRX

(
y,1,r−

0 ,x
)

p
(
r−

0 ,x
)

(3.2.1)

and

F̃0(y,x) = FY|DRX
(
y,0,r−

0 ,x
)(

1−p
(
r−

0 ,x
))−FY|DRX(y,0,r+

0 ,x)(1−p(r+
0 ,x)).
(3.2.2)

(ii) F̃1 (y,x) and F̃0 (y,x) are strictly monotone with respect to y.
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For notational simplicity, we suppress the dependence of FYd |RX(y,r0,x) on r
when evaluated at r = r0. Thus, we write Fd|X(y,x) = FYd |RX(y,r0,x) for d = 0,1.

Theorem 1. Under the same assumptions as Lemma 3.1 and Assumption 3.2.1,

F1|X(y|x) = FY|DRX
(
y,1,r+

0 ,x
)

p
(
r+

0 ,x
)

+FY|DRX
(̃
q0

(
F̃1 (y,x),x

)
,0,r+

0 ,x
)(

1−p
(
r+

0 ,x
))

, (3.2.3)

F0|X(y,x) = FY|DRX
(̃
q1

(
F̃0 (y,x),x

)
,1,r−

0 ,x
)

p
(
r−

0 ,x
)

+FY|DRX
(
y,0,r−

0 ,x
)(

1−p
(
r−

0 ,x
))

, (3.2.4)

where q̃d(·,x) denotes the inverse function of F̃d(·,x) for d = 0,1, which is well
defined by Lemma 3.2(ii).

Assumption 3.2.2. fX|R(x|r) is continuous in r at r = r0.4

Corollary 3.1. Under the same assumptions as Theorem 1 and Assumption
3.2.2,

F1(y) =
∫

F1|X(y|x)fX|R(x|r0)dx,

F0(y) =
∫

F0|X(y|x)fX|R(x|r0)dx.

Remark 3.2.3. By similar reasoning, we can show the distributional treatment
effects (DTEs, denoted by δDTE(y)) and the ATE (denoted by δATE) are also iden-

tifiable. Specifically, δDTE(y) = F1(y)−F0(y) and δATE =
∫

SY

yd (F1(y)−F0(y)).

4. ESTIMATION

In this section, we propose a plug-in estimation approach based on the closed-form
solutions derived from Theorem 1 and Corollary 3.1. We focus on the estimation
of the unconditional QTE at a particular quantile, namely

δ(τ ) = q1(τ )−q0(τ ) = F−1
1 (τ )−F−1

0 (τ ),

for τ ∈ (0,1). The estimation procedure is straightforward: we first estimate F1(y)
and F0(y) by replacing the CDFs and conditional probabilities with their empirical
counterparts, and then invert F1(y) and F0(y) to obtain the estimate of δ(τ ).

4Assumption 3.2.2 is not necessary for the identification of F1(y), and we assume F0(y) for notation simplicity. We
can follow Frölich and Huber (2019), in the absence of this continuity assumption, to establish the identification of
F1(y) and F0(y) by weighting the conditional density of X at r0. (In the limit, the density of X conditional on R being
within a symmetric neighborhood around r0 is

(
fX|R

(
x|r+

0

)+ fX|R
(
x|r−

0

))
/2.) Moreover, Assumption 3.2.2 is testable

because both X and R are observable.
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The local linear estimator is commonly used to estimate conditional expec-
tations in RD designs. To make an inference with the local linear estimation,
one often chooses rather large bandwidths, such as h ∝ n−1/5. However, one
consequence of such bandwidth selectors is that they often lead to a non-negligible
bias in the distributional approximation of the estimator, resulting in confidence
intervals with empirical coverage well below their nominal target. To overcome
this disadvantage of local linear estimation, following Chiang et al. (2019; CHS
hereafter), we use local quadratic regression techniques to estimate the CDFs and
conditional probabilities at the discontinuity threshold, which effectively accounts
for the second-order bias estimation.

For any generic random variable W, let m+(W|x) (or m−(W|x)) signify the
conditional mean of W at R = r0 and X = x from above (or below), namely,

m+(W|x) = E
(
W
∣∣R = r+

0 ,X = x
)
, m−(W|x) = E

(
W
∣∣R = r−

0 ,X = x
)

.

Let m̂+(W|x) (or m̂−(W|x)) denote a local quadratic estimate of m+(W|x) (or
m−(W|x)). That is, m̂+(W|x) is estimated by the first component of a that solves

argmin
a

n∑
i=1

(
Wi −νi(r0,x)

′a
)2

K

(
Xi − x

hx

)
K

(
Ri − r0

h

)
1
{
Ri > r0

}
, (4.1.1)

where νi(r0,x) = (
1,
(
Ri − r0

)
/h,

(
Ri − r0

)2
/h2,

(
Xi − x

)
/hx,

(
Xi − x

)2
/

h2
x,
(
Ri − r0

)(
Xi − x

)
/hhx

)′
, and m̂−(W|x) is estimated by the first component of a

that solves5

argmin
a

n∑
i=1

(
Wi −νi(r0,x)

′a
)2

K

(
Xi − x

hx

)
K

(
Ri − r0

h

)
1
{
Ri < r0

}
. (4.1.2)

According to Theorem 1, F1|X(y|x) can be rewritten as

F1|X(y|x) = E(1{Y < y}D|R = r+
0 ,X = x)

+E(1{Y < q̃0(F̃1(y,x),x)}(1−D)|R = r+
0 ,X = x), (4.1.3)

and thus it can be estimated by

F̂1|X(y|x) = m̂+(1{Y < y}D|x)+ m̂+(1{Y <̂̃q0(
̂̃F1(y,x),x)}(1−D)|x), (4.1.4)

wherễq0(τ,x) = inf{a : ̂̃F0(a,x) ≥ τ },̂̃F0(y,x) and ̂̃F1(y,x) are consistent estimators of F̃0(y,x) and F̃1(y,x), given by
(3.2.1) and (3.2.2), respectively. Since F̃1(y,x) can be rewritten as

5If X has discrete components, such that X = (
Xc,Xd

)
, we replace K

(
Xi−x

hx

)
with K

(
Xc

i −xc

hx

)
1{Xd

i = xd}, and

νi(r0,x) with
(

1,
(
Ri − r0

)
/h,

(
Ri − r0

)2
/h2,

(
Xc

i − xc
)
/hx,

(
Xc

i − xc
)2

/h2
x,
(
Ri − r0

)(
Xc

i − xc
)
/hhx

)′
. Similar modifi-

cations apply to the multiplier bootstrap procedure.
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F̃1(y,x) = E

(
1
{
Y < y

}
D

∣∣∣∣R = r+
0 ,X = x

)
−E

(
1
{
Y < y

}
D

∣∣∣∣R = r−
0 ,X = x

)
,

(4.1.5)

a consistent estimator of ̂̃F1(y,x) is

̂̃F1(y,x) = m̂+
(
1

{
Y < y

}
D

∣∣∣∣x)− m̂−
(
1

{
Y < y

}
D

∣∣∣∣x) . (4.1.6)

Similarly, a consistent estimator of ̂̃F0(y,x) is

̂̃F0(y,x) = m̂−
(
1

{
Y < y

}
(1−D)

∣∣∣∣x)− m̂+
(
1

{
Y < y

}
(1−D)

∣∣∣∣x) . (4.1.7)

Applying the same reasoning, F0|X(y|x) can be estimated by

F̂0|X(y|x) = m̂−
(
1
{

Y <̂̃q1

(̂̃F0(y,x),x
)}

D

∣∣∣∣x)+ m̂−
(
1

{
Y < y

}
(1−D)

∣∣∣∣x) .

(4.1.8)

We then estimate F1(y) by averaging F̂1|X(y|Xi) over Xi given R = r0, that is, F1(y)
is estimated by the first component of a that solves

argmin
a

n∑
i=1

(
F̂1|X(y|Xi)− ν̃i(r0)

′a
)2

K

(
Ri − r0

hr

)
. (4.1.9)

Similarly, F0(y) is estimated by the first component of a that solves and

argmin
a

n∑
i=1

(
F̂0|X(y|Xi)− ν̃i(r0)

′a
)2

K

(
Ri − r0

hr

)
, (4.1.10)

where ν̃i(r0) =
(

1,
(
Ri − r0

)
/hr,

(
Ri − r0

)2
/h2

r

)′
.

Remark 4.1.1. The basic purpose of (4.1.9) and (4.1.10) is to take the average
over Xi given R = r0 through the local quadratic method to reduce bias as long as
fX|R(x|r) is continuous at r0.6 CHS use this idea, establishing the bias reduction in
RD designs without X. Frölich and Huber (2019) used a boundary kernel to reduce
the bias and improve the convergence rate if X is discontinuously distributed at the
threshold. Compared with Frölich and Huber (2019), the local quadratic regression
approach has at least two advantages. First, it reduces bias without affecting the
optimal convergence rate achieved by the estimator, which facilitates the devel-
opment of test statistics. Second, it provides a unified framework for researchers
to compute the bias of higher orders by including higher-order polynomials in the
regressors.

6Note that (4.1.9) and (4.1.10) still consistently estimate F1(y) and F0(y) if Assumption 3.2.2 is violated. See
equations (7) and (13) in Frölich and Huber (2019) for more details.
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Based on the estimates of F̂0(y) and F̂1(y), we estimate δ(τ ) by

δ̂(τ ) = q̂1(τ )− q̂0(τ ), (4.1.11)

where

q̂1(τ ) = inf
{
a : F̂1(a) ≥ τ

}
, q̂0(τ ) = inf

{
a : F̂0(a) ≥ τ

}
.

Remark 4.1.2. The estimation procedure described above involves inverting
several CDFs to obtain the quantile functions. In finite samples, these estimated
conditional CDFs can be non-monotonic step functions. To refine the finite-
sample performance, we follow the same procedure as in FFM: we monotonize the
estimated distribution functions by rearrangement. As Chernozhukov, Fernandez-
Val, and Galichon (2010) suggest, this rearrangement procedure will not affect the
asymptotic properties of the estimators, and we keep them implicit throughout the
study.

Remark 4.1.3. By similar reasoning, we can also propose the estimators of
the DTEs and ATE, respectively. For the DTEs, we can estimate δDTE(y) by
δ̂DTE(y) = F̂1(y) − F̂0(y), where F̂1(y) and F̂0(y) are the first components of a
that solves (4.1.9) and (4.1.10), respectively. For the ATE, we construct a grid
of y values: y0 < y1 < y2 < · · · < yK−1 < yK .7 The estimator of ATE is δ̂ATE =∑K

k=1 yk
[(

F̂1(yk)− F̂0(yk)
)− (

F̂1(yk−1)− F̂0(yk−1)
)]

.

5. ASYMPTOTIC PROPERTIES AND INFERENCE

This section provides the asymptotic properties and inference for the QTE estima-
tor. Section 5.1 establishes the uniform Gaussianity for the QTE estimator based on
a set of regular conditions. In Section 5.2, we apply the multiplier bootstrap method
to construct uniform confidence bands for the QTE estimator. We summarize
the algorithm detailing the comprehensive procedure for practitioners, including
estimation, inference, and bandwidth selection, in Section 5.3.

5.1. Limiting Distribution for QTE

In this section, we study the asymptotic properties of δ̂(τ ) in (4.1.11). We impose
the following regularity assumptions.

Assumption 5.1.
{
Yi,Di,Ri,Xi

}n

i=1 are n i.i.d. copies of random vector
(Y,D,R,X) defined on a probability space (�υ,Fυ,Pυ).

Assumption 5.2. The density fRX(r,x) is continuously differentiable and
bounded away from zero and infinity (i) with respect to the continuous component
of x at r0; (ii) with respect to r in an interval around r0.

7Similar to Remark 3.1 in Chernozhukov, Fernandez-Val, and Melly (2013), the number of grid points K and the
observations n should satisfy

√
n/K → 0.
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Assumption 5.3. For d ∈ {0,1}, j ∈ {0,1,2,3}, the left and right limits of the

functions
∂ j

∂rj
E
[
1
{
Y ≤ y,D = d

}|R = r,X = x
]

and
∂ j

∂rj
E
[
1
{
D = d

}|R = r,X = x
]

are Lipschitz in r at r0 and x ∈ SX , respectively.

Assumption 5.4. Let �p = limr→r+0
E
(
D
∣∣R = r

)− limr→r−0
E
(
D
∣∣R = r

)
. �p is

strictly positive.

Assumption 5.5. K(·) is Borel measurable, bounded, continuous, symmetric,
nonnegative-valued on [−1,1], and integrates to one.

{
K(·/h) : h > 0

}
is of VC

type. Define

�̃ =
∫

(1 u u2)′ ·K(u) · (1 u u2)du,

�+ =
∫

(1 u u2 s s2 us)′ ·K(u)K(t) · (1 u u2 s s2 us)1
{
u > 0

}
duds,

�− =
∫

(1 u u2 s s2 us)′ ·K(u)K(t) · (1 u u2 s s2 us)1
{
u < 0

}
duds.

�̃, �+, and �− are positive definite. Let h/hr = γ 2 with 0 < γ < ∞. Moreover,
the bandwidth should satisfy nhhL

x / logn → ∞ and
√

nhmax{h3,h3
x} → 0.8

Assumptions 5.1–5.5 are standard regularity conditions that ensure the func-
tional central limit theorems can apply to the conditional expectations involved
in the estimation procedure. Most of the prior work includes Assumption 5.1.
Assumption 5.2 ensures that the joint distribution of the running variable and
covariates is well behaved near the threshold. Assumption 5.3 ensures that the
underlying conditional distributions of potential outcomes are sufficiently smooth
at discontinuity. Assumption 5.4 requires that the probability of the treatment
changes discretely at the threshold. Assumption 5.5 imposes standard conditions
on the kernel function, which are satisfied by many frequently used kernel
functions, such as uniform, triangular, and Epanechnikov kernels.

Moreover, Assumption 5.5 specifies admissible rates of bandwidths. Suppose
that h and hx depend on the sample size, as follows:

h ∝ n−ζ and hx ∝ n−ζx,

then, the bandwidth conditions in Assumption 5.5 require that

ζ +Lζx < 1, ζ +6min{ζ,ζx} > 1,

in which the first and second inequalities restrict the rate of variance and bias,
respectively. We can choose ζ = ζx = 1/5 when X contains at most three continu-
ous components, and the resulting convergence rates are consistent with common
MSE minimizing selectors of bandwidths (e.g., Imbens and Kalyanaraman, 2012;

8Compared with the results in Frölich and Huber (2019), the local polynomial regression simultaneously reduces the
bias through h and hx, while the higher-order kernel only reduces the bias generated by hx.
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Calonico et al., 2014, 2016, 2018; Arai and Ichimura, 2016, 2018; Frölich and
Huber, 2019). If 4 ≤ L ≤ 5, then we can still choose ζ = 1/5, but hx must converge
to zero at a slower rate than h, such that

2

15
< ζx <

4

5L
.

If X contains more than six continuous components, then one should use local
polynomial regression estimators with higher order. Following CHS, applying
general pth order local polynomial regression requires

ζ +Lζx < 1, ζ +2(1+p)min{ζ,ζx} > 1.

Then, we choose ζ = 1/5 as usual and a slower rate of ζx satisfying

2

5(1+p)
< ζx <

4

5L
.

In practice, one can set the bandwidths as hr = crn−ζ , h = cn−ζ , and hx = cxn−ζx ,
where the choice rule of ζ and ζx is given above. The remaining step is to select the
constants cr, c, and cx, which can be determined by a grid search. For example, we
construct a grid of cr values: cr < c1

r < c2
r < · · · < cL

r < cr. Then, we choose c∗
r in

this grid that minimizes objective functions (4.1.9) or (4.1.10), where we replace a
by its estimator. For cx, we let cx = c̃σ̂x, where σ̂x is a vector of standard deviation
of X, and c̃ is a constant to be determined. Similarly, with the choice of cr, we can
determine c̃ and c simultaneously by conducting a two-dimensional grid search.

Assumption 5.6. For d ∈ {0,1}, F̃d(y,x) ((3.2.1) and (3.2.2)) admits a nonzero
derivative f̃d(y,x) with respect to y, which is uniformly bounded and uniformly
continuous on SY ×SX .

FFM and CHS do not require Assumption 5.6. It strengthens the condition of
the full-rank Jacobian (Assumption 3.2.1), which implies that f̃d(y,x) is nonzero to
guarantee Hadamard differentiability of the closed-form solutions in Theorem 1.
Asymptotic normality of δ̂(τ ) follows from the weak convergence as a process of
the potential outcome CDF estimators, and the functional delta method (van der
Vaart, 1998).

Theorem 2. Under the same assumptions as Theorem 1 and Assumptions 5.1–
5.6,√

nhr

(
q̂1(τ )−q1(τ )

q̂0(τ )−q0(τ )

)
→d

(
Zq1(τ )

Zq0(τ )

)
,

where Zq1 and Zq0 are tight zero-mean Gaussian processes in �∞ (T )2, in which
T ⊂ (0,1) is a compact interval. The covariance functions �q (τ,τ̃ ) are, for j,k ∈
{1,2},

�
q
jk (τ,τ̃ ) = �F

jk

(
q2−j

(
τ
)
,q2−k

(̃
τ
))/

f2−j
(
q2−j

(
τ
))

f2−k
(
q2−k

(̃
τ
))

, (5.1.1)
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where

�F
jk (y,̃y) = c′σjk (y,̃y)c

and c = (1,1,1,1,1)′. Moreover, let

λ̃ = ẽ′
1�̃

−1�̃2�̃
−1ẽ1,

λ̄ = ẽ′
1�̃

−1 (1,0,μ2)
′ · (1,0,μ2) �̃

−1ẽ1,

�+ =
∫ [∫

e′
1

(
�+)−1 (

1,t,t2,u,u2,tu
)

K(u)du

]2

K2(t)1{t > 0}dt,

�− =
∫ [∫

e′
1

(
�−)−1 (

1,t,t2,u,u2,tu
)

K(u)du

]2

K2(t)1{t < 0}dt.

v+
1 (y,x) =

(
1+ω+

0 (y,x),1+ω+
0 (y,x)

)
, v−

1 (y,x) =
(

−ω+
0 (y,x), −ω+

0 (y,x)

)
,

and

v+
0 (y,x) =

(
−ω−

1 (y,x), −ω−
1 (y,x)

)
, v−

0 (y,x) =
(

1+ω−
1 (y,x),1+ω−

1 (y,x)

)
where e1 = (1,0,0,0,0,0)′, ẽ1 = (1,0,0)′, μ2 = ∫

t2K(t)dt,

�̃2 =
∫

(1 u u2)′ ·K2(u) · (1 u u2)du,

and

ω+
0 (y,x) =fY|DRX

(̃
q0

(
F̃1(y,x),x

)
,0,r+

0 ,x
)(

1−p
(
r+

0 ,x
))/

f̃0
(̃
q0

(
F̃1(y,x),x

)
,x
)
,

ω−
1 (y,x) =fY|DRX

(̃
q1

(
F̃0(y,x),x

)
,1,r−

0 ,x
)
p
(
r−

0 ,x
)/

f̃1
(̃
q1

(
F̃0(y,x),x

)
,x
)
.

For j,k ∈ {0,1}, also define

σjk (y,̃y) = 1

fR(r0)

[
λ̃Cov

(
F2−j|X(y,X),F2−k|X (̃y,X)|R = r0

)
0

0 σ̃jk (y,̃y)

]
,

where

σ̃jk (y,̃y) = λ̄

γ 2

[
σ̃+

jk (y,̃y) 0
0 σ̃−

jk (y,̃y)

]
,

with

σ̃+
jk (y,̃y)

= �+E
[
v+′

2−j(y,X)Cov
(
W2−j|X(y,X),W2−k|X (̃y,X)|R,X

)
v+

2−k(y,X)|R = r+
0

]
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and

σ̃−
jk (y,̃y)

= �−E
[
v−′

2−j(y,X)Cov
(
W2−j|X(y,X),W2−k|X (̃y,X)|R,X

)
v−

2−k(y,X)|R = r−
0

]
,

in which

W1 =
⎛⎝ 1

{
Y ≤ y

}
D

1
{
Y ≤ q̃0

(
F̃1(y,x),x

)}
(1−D)

⎞⎠, W0 =
⎛⎝1

{
Y ≤ q̃1

(
F̃0(y,x),x

)}
D

1
{
Y ≤ y

}
(1−D)

⎞⎠ .

From Theorem 2, we can easily establish the limiting process for the QTE
estimator.

Corollary 5.1. Under the same assumptions as Theorem 2, we have√
nhr

(̂
δ(τ )− δ(τ )

) → Zδ = Zq1(τ )−Zq0(τ ),

where δ(τ ) = q1(τ )−q0(τ ). The covariance function of Zδ is

�δ (τ,τ̃ ) = �
q
11 (τ,τ̃ )+�

q
22 (τ,τ̃ )−�

q
12 (τ,τ̃ )−�

q
21 (τ,τ̃ ),

with �
q
jk (τ,τ̃ ) given by (5.1.1).

Remark 5.1.1. Generally, asymptotic analysis by explicitly accounting for the
presence of covariates is more complicated than CHS in three aspects. First,
we must address the “local empirical process” when controlling for X = x.
Technically, one cannot establish the Gaussian process uniformly over x because
the uniform convergence rate of the standard kernel estimator should be adjusted
by

√
logn. See Chernozhukov, Chetverikov, and Kato (2014) for more discussion.

Second, including covariates complicates the choice of optimal bandwidth. Third,
averaging over Xi in (4.1.9) and (4.1.10) gives rise to U-statistics of order 2.
Related techniques, such as, U-statistic projection, are applied to represent each
as a degenerate U-statistic, contributing to the asymptotic variance.

5.2. Multiplier Bootstrap

In practice, inference based on estimating the asymptotic variance of the limit
process can be overly complicated. In such cases, bootstrap methods can effec-
tively construct uniform confidence bands. We propose to approximate the limit
process Zδ =Zq1(τ )−Zq0(τ ) derived in Corollary 5.1 by the multiplier bootstrap,
analogously to the wild bootstrap approximation of Bartalotti, Calhoun, and
He (2017). CHS establishes an approximation procedure based on a general
framework of local Wald estimands. In particular, we develop the limit process
of a specific and more complicated local Wald estimator, which can be seen as a
generalization and an extension to the class of local Wald estimands analyzed by
CHS.
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Let {ξ}n
i=1 be a random sample drawn from the standard normal distribution

defined on
(
�ξ,F ξ,Pξ

)
, that is independently of the data {Zi}n

i=1 = {Yi,Di,Ri,Xi}n
i=1

defined on (�υ,Fυ,Pυ). To simplify notation, we choose h = hr, which is
permitted by the bandwidth selection in Assumption 5.5. We define the estimated
multiplier processes for F1(y) and F0(y) by

ν̂
ξ

1 (y) = 1√
nh

n∑
i=1

ξĩe
′
1

(
�̃̂fR(r0)

)−1 Q̂1(Zi,y)K

(
Ri − r0

h

)
and

ν̂
ξ

0 (y) = 1√
nh

n∑
i=1

ξĩe
′
1

(
�̃̂fR(r0)

)−1 Q̂0(Zi,y)K

(
Ri − r0

h

)
,

where f̂R(r0) estimates fR(r0), and

Q̂1(Zi,y) =̂̃εi(y)̃νi(r0)+ Q̂11(Zi,y)1
{
Ri > r0

}+ Q̂12(Zi,y)1
{
Ri > r0

}
+ Q̂13(Zi,y)1

{
Ri < r0

}+ Q̂14(Zi,y)1
{
Ri < r0

}
,

Q̂0(Zi,y) =̂̃εi(y)̃νi(r0)+ Q̂01(Zi,y)1
{
Ri > r0

}+ Q̂02(Zi,y)1
{
Ri > r0

}
+ Q̂03(Zi,y)1

{
Ri < r0

}+ Q̂04(Zi,y)1
{
Ri < r0

}
.

Let ν̄i(r0,u) =
(

1,
(
Ri − r0

)
/h,

(
Ri − r0

)2
/h2,u,u2,

(
Ri − r0

)
u/h

)′
and

�̄+
i =

∫
e′

1

(
�+)−1

ν̄i(r0,u)K(u)du · (1,0,μ2)
′ ,

�̄−
i =

∫
e′

1

(
�−)−1

ν̄i(r0,u)K(u)du · (1,0,μ2)
′ .

Moreover, let

ε̃i(y) = F1|X(y|Xi)−E
[
F1|X(y|X)|R = Ri

]
,

ε̃i(y) = F0|X(y|Xi)−E
[
F0|X(y|X)|R = Ri

]
,

εi(y) = 1{Yi ≤ y}Di −E[1{Y ≤ y}D|R = Ri,X = Xi],

εi(y) = 1{Yi ≤ y}(1−Di)−E[1{Y ≤ y}(1−D)|R = Ri,X = Xi],

and

Q11(Zi,y) = εi(y)
(
1+ω+

0 (y,Xi)
)
�̄+

i ,

Q12(Zi,y) = εi
(̃
q0

(
F̃1(y,Xi),Xi

))(
1+ω+

0 (y,Xi)
)
�̄+

i ,

Q13(Zi,y) = −εi(y)ω
+
0 (y,Xi)�̄

−
i ,

Q14(Zi,y) = −εi
(̃
q0

(
F̃1(y,Xi),Xi

))
ω+

0 (y,Xi)�̄
−
i ,
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Q01(Zi,y) = −εi
(̃
q1

(
F̃0(y,Xi),Xi

))
ω−

1 (y,Xi)�̄
+
i ,

Q02(Zi,y) = −εi (y)ω
−
1 (y,Xi)�̄

+
i ,

Q03(Zi,y) = εi
(̃
q1

(
F̃0(y,Xi),Xi

))(
1+ω−

1 (y,Xi)
)
�̄−

i ,

Q04(Zi,y) = εi (y)
(
1+ω−

1 (y,Xi)
)
�̄−

i .

Thus, for (j,k) ∈ {1,2}×{1,2,3,4}, ̂̃εi(y), ̂̃εi(y), ε̂i(y), ε̂i(y) and Q̂jk(Zi,y) estimate
ε̃i(y), ε̃i(y), εi(y), εi(y), and Qjk(Zi,y), respectively. By the Hadamard derivative,
we construct the approximate estimated multiplier process

Ẑδ(τ ) =Ẑq1(τ )− Ẑq1(τ ) = Ẑ0
(̂
q0(τ )

)/̂
f0
(̂
q0(τ )

)− Ẑ1
(̂
q1(τ )

)/̂
f1
(̂
q1(τ )

)
,

where Ẑ1(y) = ν̂
ξ

1 (y) and Ẑ0(y) = ν̂
ξ

0 (y).
In the following, we discuss the estimation procedure for the multiplier bootstrap

method. Specifically, we propose to use the kernel density estimator for f̂R(r0):

f̂R(r0) = 1

nhfR

n∑
i=1

K

(
Ri − r0

hfR

)
.

For d ∈ {0,1}, the conditional expectation pd(y,Ri) = E
[
Fd|X(y|X)|R = Ri

]
can be

estimated by

p̂d(y,Ri) =
n∑

j=1

F̂d|X(y|Xj)K

(
Rj −Ri

hp

)/ n∑
j=1

K

(
Rj −Ri

hp

)
.

Now, we consider p̃(y,d,Ri,Xi) = E[1{Y ≤ y}1{D = d}|R = Ri,X = Xi] for d ∈
{0,1}. Notice that p̃(y,d,r,x) is discontinuous at r = r0, we should jointly estimate

̂̃p(y,d,Ri,Xi)1{Ri > r0}

= 1{Ri > r0}
∑n

j=11{Yj ≤ y}1{Dj = d}1{Rj > r0}K
(

Rj−Ri
h̃p

)
K
(

Xj−Xi
h̃p

)
∑n

j=11{Rj > r0}K
(

Rj−Ri
h̃p

)
K
(

Xj−Xi
h̃p

)
and

̂̃p(y,d,Ri,Xi)1{Ri < r0}

= 1{Ri < r0}
∑n

j=11{Yj ≤ y}1{Dj = d}1{Rj < r0}K
(

Rj−Ri
h̃p

)
K
(

Xj−Xi
h̃p

)
∑n

j=11{Rj < r0}K
(

Rj−Ri
h̃p

)
K
(

Xj−Xi
h̃p

) .
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The remaining terms can be estimated as follows:

ω̂+
0

(
y,x

) = f̂YD|RX
(̂̃
q0

(̂̃F1(y,x),x
)
,0,r+

0 ,x
)/̂̃f 0

(̂̃
q0

(̂̃F1(y,x),x
)
,x
)
,

ω̂−
1

(
y,x

) = f̂YD|RX
(̂̃
q1

(̂̃F0(y,x),x
)
,1,r−

0 ,x
)/̂̃f 1

(̂̃
q1

(̂̃F0(y,x),x
)
,x
)
,

f̂1|X(y|x) = f̂YD|RX
(
y,1,r+

0 ,x
)+ f̂YD|RX

(̂̃
q0

(̂̃F1(y,x),x
)
,0,r+

0 ,x
)
,

f̂0|X(y|x) = f̂YD|RX
(
y,0,r−

0 ,x
)+ f̂YD|RX

(̂̃
q1

(̂̃F0(y,x),x
)
,1,r−

0 ,x
)
,̂̃f 1(y,x) = f̂YD|RX

(
y,1,r+

0 ,x
)− f̂YD|RX

(
y,1,r−

0 ,x
)
,̂̃f 0(y,x) = f̂YD|RX

(
y,0,r−

0 ,x
)− f̂YD|RX

(
y,0,r+

0 ,x
)
,

and

f̂1(y) =
n∑

i=1

f̂1|X(y|Xi)K

(
Ri − r0

hf

)/ n∑
i=1

K

(
Ri − r0

hf

)
,

f̂0(y) =
n∑

i=1

f̂0|X(y|Xi)K

(
Ri − r0

hf

)/ n∑
i=1

K

(
Ri − r0

hf

)
,

f̂YD|RX
(
y,d,r+

0 ,x
) =

h−1
fx

∑n
i=1 K

(
Yi−y
hfx

)
K
(

Ri−r0
hfx

)
K
(

Xi−x
hfx

)
1
{
Di = d

}
1
{
Ri > r0

}
∑n

i=1 K
(

Ri−r0
hfx

)
K
(

Xi−x
hfx

)
1
{
Ri > r0

} ,

f̂YD|RX
(
y,d,r−

0 ,x
) =

h−1
fx

∑n
i=1 K

(
Yi−y
hfx

)
K
(

Ri−r0
hfx

)
K
(

Xi−x
hfx

)
1
{
Di = d

}
1
{
Ri < r0

}
∑n

i=1 K
(

Ri−r0
hfx

)
K
(

Xi−x
hfx

)
1
{
Ri < r0

} .

Under suitable conditions, with probability approaching one, the process Ẑδ(τ )

weakly converges to the limit process, Zδ(τ ), of interest conditionally on the data
{Yi,Di,Ri,Xi}n

i=1. Similarly, in the CHS model, we could apply this result to test
several hypotheses, such as uniform treatment nullity and treatment homogeneity
across quantiles. In our case, we can use the approximate estimated multiplier
process to construct uniform confidence bands for the QTE. In summary, we
provide a step-by-step procedure below.

Algorithm 1. (Practical guidelines for constructing uniform confidence bands
for QTE).

Step 1. Pick a finite set Y⊆ SY of grid points of outcome values and a finite set
T ⊆ [a, 1 − a] of grid points of quantiles for some 0 < a < 1/2. Estimate Fˆ1(y)
and Fˆ0(y) for all y ∈Y.

Step 2. Calculate qˆ1(τ ) and qˆ0(τ ) for each τ ∈T, and then compute δˆ(τ )
=qˆ1(τ ) −qˆ0(τ ) for each τ ∈T.

Step 3. Compute f ˆR(r0), f ˆ1(qˆ1(τ )), f ˆ0(qˆ0(τ )), ε~ î(y), ε~ î(y), ε î(y), ε î(y),
and Q ĵk(Zi, y) for (j, k) ∈ {1, 2}×{1, 2, 3, 4}.
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Step 4. For each bootstrap iteration b = 1, 2, . . ., B, generate independent
standard normal ξb = {ξ i

b}i=1
n independently from the data, and compute νˆ1, b

ξ (y)
and νˆ0, b

ξ (y) for each y ∈Y.
Step 5. Construct Z δ̂, b(τ ) for each τ ∈T:

Ẑδ,b(τ ) = ν̂
ξ

0,b

(̂
q0(τ )

)/̂
f0
(̂
q0(τ )

)− ν̂
ξ

1,b

(̂
q1(τ )

)/̂
f1
(̂
q1(τ )

)
.

Step 6. Set CˆB(a, 1 − a;l) equal to the (1 − l)th quantile of {maxτ∈T|Z
δ̂, b(τ )|}b=1

B, and construct an asymptotically valid 100(1 − l)% uniform confi-
dence band over [a, 1 − a] by[̂
δ(τ )± 1√

nh
ĈB(a,1−a;l) : τ ∈ T

]
.

Before formally establishing the validity of the multiplier bootstrap, we first intro-
duce some useful notations. Let →p• denote the convergence in probability with
respect to the probability measure P

•, let Eξ |υ denote the expectation with respect
to the probability measure P

υ ×P
ξ given the events in Fυ , and let Eυ denote the

expectation with respect to the probability measure P
υ . We define the conditional

weak convergence in probability, or convergence of the conditional limit laws of
bootstraps, denoted by Zn �

p
ξ Z, by supT∈BL1

∣∣Eξ |υT(Zn)−ET(Z)
∣∣ →p

υ 0, where
BL1 is the set of functions with Lipschitz constant and supremum norm bounded
by 1.

Assumption 5.7. {ξ}n
i=1 is a random sample drawn from the standard

normal distribution defined on
(
�ξ,F ξ,Pξ

)
, that is independently of the data

{Yi,Di,Ri,Xi}n
i=1 defined on (�υ,Fυ,Pυ).

Assumption 5.8. The bandwidths should satisfy:

1. h̃ → 0 for h̃ ∈ {hfR,hp,h̃p,hf ,hfx}.
2. nhfR → ∞, nhf → ∞, logn

nhp
→ 0, logn

nh1+L
x

→ 0, and logn

nh2+L
p̃

→ 0.

Assumption 5.7 is the standard assumption for the multiplier, score, and wild
bootstrap methods (cf. Kosorok, 2003, 2008). Assumption 5.8 imposes standard
bandwidth conditions to ensure the first-stage estimators’ uniform consistency,
which are required to derive the uniform validity of the multiplier bootstrap.

Theorem 3. Under the same assumptions as Theorem 1 and Assumptions 5.1–
5.8,(

ν̂
ξ

1 (y)
ν̂

ξ

0 (y)

)
�

p
ξ

(
Z1(y)
Z0(y)

)
and(

Ẑq1(τ )

Ẑq0(τ )

)
�

p
ξ

(
Zq1(τ )

Zq1(τ )

)
.
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Corollary 5.2. Under the same assumptions as Theorem 1 and Assumptions
5.1–5.8,

Ẑδ(τ ) �
p
ξ Zδ(τ ).

Corollaries 5.1 and 5.2 show that we can use the estimated multiplier process
Ẑδ(τ ) to approximate the limit process of

√
nh

(̂
δ(τ )− δ(τ )

)
in practice.

Remark 5.2.1. We can similarly construct uniform confidence bands for the
DTEs and ATE through the multiplier bootstrap. For the DTEs, Steps 1–4 are
identical, and Step 5 can be discarded. Step 6 changes as follows: we replace
Ẑδ,b(τ ) and δ̂(τ ) with ν̂

ξ

1,b(y) − ν̂
ξ

0,b(y) and F̂1(y) − F̂0(y), respectively. For the
ATE, set Y = {y0,y1, . . . ,yK}, where the grids are defined in Remark 4.1.3. Steps
1–4 are identical. We calculate

Ẑb =
K∑

k=1

yk

[(̂
ν

ξ

1,b(yk)− ν̂
ξ

0,b(yk)
)

−
(̂
ν

ξ

1,b(yk−1)− ν̂
ξ

0,b(yk−1)
)]

,

for b = 1,2, . . . ,B. Let std
(
Ẑb

)
be the standard error of

{
Ẑb

}B

b=1. The 100(1− l)%
confidence interval of δ̂ATE is then given by[̂
δATE ± std

(
Ẑb

)
�−1

(
1− l

2

)]
,

where �−1 is the inverse of �, and � is the CDF of standard normal distribution.

5.3. Detailed Algorithm for Estimation and Inference

Sections 4 and 5.2 describe the estimation and the multiplier bootstrap procedure
for constructing uniform confidence bands for QTE. This subsection summarizes
practical guidelines on estimation and inference for QTEs. Additionally, we use
this procedure for both simulation studies and empirical applications.

Algorithm 2 (Practical guidelines on estimation and inference for QTE).
Step 1. Pick a finite set Y⊆ SY of grid points of outcome values and a finite set

T ⊆ [a, 1 − a] of grid points of quantiles for some 0 < a < 1/2. For any y ∈Y and
W ∈ {

1{Y < y}D,1{Y < y}(1−D)
}
, estimate m+(W|Xi) and m−(W|Xi) by (4.1.1)

and (4.1.2), respectively. The bandwidth h and hx are chosen as h = cn−ζ and hx =
cxn−ζx ,respectively, where ζ = 1/5, and

ζx =

⎧⎪⎨⎪⎩
1
5, if L ≤ 3,(

2
15,

4
5L

)
, if 4 ≤ L ≤ 5,(

2
5(1+p)

, 4
5L

)
, if L ≥ 6.

The constants c and cx are determined by a grid search, formally stated before
Assumption 5.6.
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Step 2. For any y ∈Y, calculate F~ˆ1(y, Xi) and F~ˆ0(y, Xi) by (4.1.6), (4.1.7),
and Step 1. For any τ ∈T, calculate q~ˆ1(τ , Xi) and q~ˆ0(τ , Xi) by inverting F~ˆ1(y,
Xi) and F~ˆ0(y, Xi) with respect to y.

Step 3. For any y ∈Y, calculate Fˆ1|X(y|Xi) and Fˆ0|X(y|Xi) by (4.1.4) and (4.1.8),
respectively.

Step 4. For any y ∈Y, estimate F1(y) and F0(y) by (4.1.9) and (4.1.10),
respectively. The bandwidth hr is chosen as hr = crn−ζr , where ζr = 1/5, and cr

is determined by a grid search.
Step 5. For any τ ∈T, calculate qˆ1(τ ) and qˆ0(τ ) by inverting Fˆ1(y) and Fˆ0(y),

respectively.
Step 6. For any τ ∈T, calculate δˆ(τ ) by (4.1.11).
Step 7. Construct uniform confidence bands for δˆ(τ ) by Algorithm 1. The

bandwidths hfR , hp, hp~, hf , and hfx are determined by rule of thumb, for example,
Section 1.7 in Li and Racine (2007, p. 26).

6. MONTE CARLO SIMULATION

In this section, we conduct a set of Monte Carlo simulations to evaluate the finite-
sample performance of the proposed estimator and the effectiveness of the uniform
confidence bands. We consider the following data-generating process (DGP):{

Yi = μ(Ri)+β1Di + (1+γ1Di) ·Ui +0.1Xi +0.1X2
i ,

Di = 1{α ·1{Ri ≥ 0}−1 ≥ Vi},
where β1=0.2 and γ1=1. We define the functional form of μ(r) as in Lee (2008):

μ(r) =
{

1.27r +7.18r2 +20.21r3 +21.54r4 +7.33r5, if r < 0,
0.84r −3.00r2 +7.99r3 −9.01r4 +3.56r5, if r ≥ 0.

We generate (Ri,Xi,Ui,Vi) by⎛⎜⎜⎝
Ri

Xi

Ui

Vi

⎞⎟⎟⎠ ∼ N

⎛⎜⎜⎝
⎛⎜⎜⎝

0
0
0
0

⎞⎟⎟⎠,

⎛⎜⎜⎝
0.17822 0 0 0

0 0.52 0 0
0 0 0.12952 0
0 0 0 0.52

⎞⎟⎟⎠
⎞⎟⎟⎠ .

Note that the threshold r0 is 0 under this DGP. The sample size n, and the jump in
the probability of treatment at the threshold, denoted as �p, are two key parameters
that influence the estimator’s performance. The parameter α controls the jump in
the probability:

�p = �(α - 1) - �( - 1) .

We conduct the simulations for several designs based on 2,500 multiplier boot-
strap replications and 500 Monte Carlo replications for each sample size n ∈
{2,000,b3,000,5,000}. We investigate the performance of the estimator with α = 2
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Table 1. Uniform coverage probability of the true quantile treatment effects by
the uniform confidence bands

n = 2,000 n = 3,000 n = 5,000

α = 2 0.948 0.954 0.956

α = 4 0.948 0.952 0.952

as small �p, and α = 4 as large �p. We use a uniform kernel, and the nominal
acceptance probability is 95%.

Figures 1 and 2 show the estimation results for each design, as well as the
95% confidence interval, spanned by the 2.5th and 97.5th percentile estimates.
Figure 1 plots the results for the small �p, which imply a jump in the probability
of treatment at the threshold of about 68.27%. We observe that the confidence
intervals are somewhat wider than other cases in Figure 2, but the bias is small
enough to be neglected. Figure 2 plots the results for the large �p, which imply
a jump in the probability of treatment at the threshold of about 84%. The bias
remains negligible and appears to be quite precise. Moreover, the confidence
intervals are substantially narrower than small �p. We can see that the estimators
become more accurate, and the confidence intervals become narrower as the
sample size increases. Overall, the estimator performs better for the case with a
large sample size and large jump at the threshold than the case with a small sample
size and small jump.

Table 1 summarizes the results for the uniform coverage probability across
sample sizes of n ∈ {2,000,3,000,5,000} and α ∈ {2,4}. The uniform coverage
probability almost keeps the nominal size 95% across all cases. This confirms the
effectiveness of the uniform confidence bands.

7. APPLICATION: THE PRIME MINISTER’S VILLAGE ROAD
PROGRAM IN INDIA

Rural road construction promotes farm and nonfarm economic growth, as well as
poverty reduction. However, the causal impact of rural roads is difficult to assess
because of the endogeneity of road placement: the high costs and potentially large
benefits of infrastructure investments mean that the placement of new roads is typ-
ically correlated with both the economic and political characteristics of locations.
To overcome this endogeneity challenge, AN20 exploit the implementation rule
in the Indian Prime Minister’s Village Road Program, or PMGSY, which targeted
roads at villages with population exceeding certain thresholds to identify the causal
impact of rural roads using a fuzzy RD design. The main finding of AN20 is that
there exist no large effects of this program on agricultural outcomes, income, or
assets in villages; the main effect of new feeder roads is to facilitate the movement
of workers out of agriculture. In other words, the new rural roads make it easier for
workers to access non-agricultural opportunities. In this section, we will employ
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Figure 1. The figures show estimators and 95% confidence intervals from Monte Carlo simulations
with a small �p.
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Figure 2. The figures show estimators and 95% confidence intervals from Monte Carlo simulations
with a large �p .
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Table 2. Summary statistics and balance tests

Mean SD RD estimate p-value

Normalized population −24.052 128.816

New road 0.356 0.479

Agricultural occupation index −0.013 0.988

Control variables

Literate (share) 0.452 0.155 −0.008 0.724

Scheduled caste (share) 0.141 0.171 −0.022 0.467

Subsistence agriculture (share) 0.437 0.266 0.021 0.609

HH > INR 250 (share) 0.755 0.279 −0.026 0.570

Medical center 0.170 0.376 −0.091 0.152

Note: Normalized village population is the reported population minus the threshold, either 500 or
1,000. An indicator for a new road would equal one if the village had access roads built before 2012. The
agricultural occupation index comprises the share of workers in agriculture and the opposite of the share
of workers in manual labor generated, according to Anderson (2008). The regression discontinuity
estimators use a uniform kernel and a bandwidth of 84 with heteroskedasticity robust standard errors.

our method to complement the findings by AN20 and explore the heterogeneous
effects of new road construction on the reallocation of labor.

Until 2001, approximately 49% of Indian villages were still not accessible to all-
season roads. To remedy this, the Government of India launched the PMGSY in
2000. The program envisaged connecting all habitations with a population of 1,000
or more by 2003, a population of 500 or more by 2007, and a population of 250
or more after that. This population-based eligibility standard was lower in some
states, such as hill states, tribal areas, desert areas, and districts affected by left-
wing extremism. Moreover, they allowed the implementation of a few other rules to
help decide on the allocation of roads at the same time. The program’s guidelines
indicate a discontinuous increase in the probability of new road construction at
the population threshold, making it possible to perform the analysis under an RD
framework.

The dataset combines village-level variables from the PMGSY program, house-
hold and individual characteristics from the 2011 Population Census based on
names, and microdata from the Socioeconomic and Caste Census of 2012. Fol-
lowing AN20, we restrict the sample to villages in Chhattisgarh, Gujarat, Madhya
Pradesh, Maharashtra, Orissa, and Rajasthan, with population thresholds of 500 or
1,000. The final dataset comprises a sample of 29,426 villages that did not have an
all-weather road in 2001 and were matched across all primary datasets. The main
variables include village population (running variable), an indicator for new road
construction (treatment variable), sectoral allocation of labor measured by agri-
cultural occupation index (outcome variable), and village-level variables (control
variable), including the literacy rate, share of inhabitants that belong to a scheduled
caste, share of households who are subsistence farmers, share of households
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Figure 3. This figure presents the impact of population on new road construction. It shows the
discontinuity in the probability of receiving a new road at the treatment threshold. We find a discrete
large jump occurring at the threshold by 21.35 percentage points (from 23.06% to 44.41%).

earning over 250 INR cash per month, and an indicator for a medical center.
The agricultural occupation index comprises the share of workers in agriculture
and the opposite of the share of workers in manual labor generated, according to
Anderson (2008). Table 2 reports the summary statistics and balancing tests of the
variables used in our empirical study. The balancing tests are based on running RD
estimations with each village-level variable as the outcome variable, respectively,
while controlling for the remaining village-level variables. We can see that all
covariates are balanced around the threshold.

Figure 3 shows the discontinuity in the probability of new road construction
before 2012 at the treatment threshold. We obtain the curve by regressing the
dummy variable for receiving a new road on the dummy variable for villages of the
population over the threshold while controlling for the piecewise linear function
of the population relative to the threshold. There is a discrete large jump occurring
at the threshold by 21.35 percentage points (from 23.06% to 44.41%). The sudden
jump at the threshold shows that the village population can strongly predict the
probability of receiving new roads.

We first estimate the LATE with the following equation using 2SLS with an
indicator for villages with the populations above the threshold as the instrument.

Agricultural occupation index = γ0 +γ1New road +γ2Normalized pop

+γ31{Normalized pop ≥ 0}×Normalized pop+γ4Control+ ε.
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Figure 4. This figure plots the estimated quantile treatment effects without covariates and 90%
confidence intervals (based on multiplier bootstrap) of new road construction on the distribution of
all employment shares in India. A uniform kernel and bandwidths ranging from 51 to 300 were used.

The optimal bandwidth, according to Imbens and Kalyanaraman’s (2012) method,
is 84. The LATE (captured by γ1) is −0.339, with a heteroskedasticity robust
standard error of 0.181. This result means receiving a new road leads to a
significant reallocation of workers away from agriculture. We then use QTE to
examine the heterogeneity of the treatment effect as a function of subgroups
located differently on the outcome distribution. Figure 4 presents the estimated
QTEs without covariates using a uniform kernel and MSE-minimizing bandwidths
ranging from 51 to 300. The optimal bandwidths are selected according to the
procedure described in Appendix C of the Supplementary Material. The figure also
plots the 90% uniform confidence band based on the multiplier bootstrap method.
The effects of rural roads on agricultural employment share as a function of the
percentile of the outcome distribution show a U-shaped relationship. The figure
indicates a significant negative effect of new road construction in the central parts
of the agricultural employment share distribution. However, there is no evidence
of a significant effect of new road construction in the lower and upper parts of
the agricultural employment share distribution. Figure 5 graphs the QTE estimates
with covariates using a uniform kernel and bandwidths ranging from 92 to 172,
which yields a similar pattern across quantiles.
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Figure 5. This figure plots the estimated quantile treatment effects with covariates and 90%
confidence intervals (based on multiplier bootstrap) of new road construction on the distribution of
all employment shares in India. A uniform kernel and bandwidths ranging from 92 to 172 were used.

AN20 provide evidence in their Appendix Table A5 that participation in non-
agricultural occupations is lower for laborers in households with more land.
Cultural obligation (the expectation of occupational succession) and transaction
costs in the market for land may lead to persistent work in agriculture owning
more land (Fernando 2018). To understand the reasons for the heterogeneous
effects of new road construction, we divide the total sample into five subgroups
based on the empirical quantiles of the agricultural occupation index (outcome
variable). We calculate the average proportion of households owning more than
2 acres of agricultural land in each subsample. In Table 3, we see that households
in the villages with a higher share of agricultural employment own relatively more
agricultural land on average. Thus, we argue that workers in villages with a high
share of agriculture employment are less likely to move out of the agricultural
sector because of their greater landholdings and high transfer costs. On the other
hand, according to Fernando (2018), laborers with small landholdings are those
with the highest returns for their labor in the non-agricultural sector. They are
likely to have left of the village before the program was implemented. Thus, the
probability of moving out of agriculture for laborers in villages with a low share
of agricultural employment will decline, even if the new roads lower the transport
cost.
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Table 3. Mean of the proportion of households owning more than 2 acres of
agricultural land of different agricultural occupation index levels

Quantile Proportion of household owning

intervals more than 2 acres of agricultural land (%)

0–20% 17.403

20%–40% 23.602

40%–60% 29.059

60%–80% 33.266

80%–1 34.614

Note: Intervals are sorted by the level of agricultural occupation index in ascending order.

8. CONCLUSION

This study proposes a new and constructive approach for estimating QTEs in the
RD model under a local RS condition, which restricts the evolution of individual
ranks across treatment status in a neighborhood around the threshold. The feature
that distinguishes our study from the prior work is that our approach directly
estimates QTEs and the ATE for a whole population instead of for only the
compliant subpopulation at the threshold. We derive closed-form solutions for
the estimands of the potential outcome CDFs for the whole population, which are
compositions of conditional CDFs and probabilities of observed variables, and can
thus be estimated with a plug-in approach.

We demonstrate the functional central limit theorems and bootstrap validity
results for the QTE estimators by explicitly accounting for observed covariates.
In particular, we develop a multiplier bootstrap-based inference method with
robustness against large bandwidths that applies to uniform inference. We also
propose a test for the local RS assumption. To illustrate the estimation approach
and its properties, we provide a simulation study and estimate the impacts of India’s
40-billion-dollar national rural road construction program on the reallocation of
labor out of agriculture.

SUPPLEMENTARY MATERIAL
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“Identification and Inference in a Quantile Regression Discontinuity Design under
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To view, please visit: https://doi.org/10.1017/S026646662300021X

Appendix A. Proofs

Proof of Lemma 3.1. We only prove the first moment condition; the second is similar.
For d = 0,1, let ηd(r,x,y) denote the inverse of qd(r,x,u) with respect to u, namely,
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ηd (r,x,qd(r,x,u)) = u for each r, x, and u.

lim
ε→0+ P

(
Y ≤ qD(r0,x,τ )

∣∣∣∣r0 < R < r0 + ε,X = x

)
=(1) lim

ε→0+ P

(
qD(R,x,UD) ≤ qD(r0,x,τ )

∣∣∣∣r0 < R < r0 + ε,X = x

)
=(2) lim

ε→0+ P

(
UD ≤ ηD (R,x,qD(r0,x,τ ))

∣∣∣∣r0 < R < r0 + ε,X = x

)

=(3) lim
ε→0+

∫ +∞
−∞

∫ r0+ε

r0
P

(
UD ≤ ηD (R,x,qD(r0,x,τ ))

∣∣∣∣R = r,X = x,V = v

)
fRV|X(r,v|x)drdv

P(r0 < R < r0 + ε|X = x)

=(4) lim
ε→0+

∫ +∞
−∞

∫ r0+ε

r0
P
(
Uρ(1,r,x,v) ≤ ηρ(1,r,x,v)

(
r,x,qρ(1,r,x,v)(r0,x,τ )

) ∣∣R = r,X = x,V = v
)

fRV|X(r,v|x)drdv

P(r0 < R < r0 + ε|X = x)

=(5) lim
ε→0+

∫ +∞
−∞

∫ r0+ε

r0
P

(
U0 ≤ ηρ(1,r,x,v)

(
r,x,qρ(1,r,x,v)(r0,x,τ )

) ∣∣∣∣R = r,X = x,V = v

)
fRV|X(r,v|x)drdv

P(r0 < R < r0 + ε|X = x)

=(6)

∫ +∞

−∞
lim

ε→0+

∫ r0+ε

r0
P

(
U0 ≤ ηρ(1,r,x,v)

(
r,x,qρ(1,r,x,v)(r0,x,τ )

) ∣∣∣∣R = r,X = x,V = v

)
fRV|X(r,v|x)dr∫ r0+ε

r0
fR|X(r|x)dr

dv

=(7)

∫ +∞

−∞
lim

ε→0+

P

(
U0 ≤ ηρ(1, r̄,x,v)

(
r̄,x,qρ(1, r̄,x,v)(r0,x,τ )

) ∣∣∣∣R = r̄,X = x,V = v

)
fRV|X(r̄,v|x)

fR|X(r̆|x) dv

=(8)

∫ +∞
−∞ P

(
U0 ≤ ηρ(1,r0,x,v)

(
r0,x,qρ(1,r0,x,v)(r0,x,τ )

) ∣∣∣∣R = r0,X = x,V = v

)
fRV|X(r0,v|x)dv

fR|X(r0|x)

=(9)

∫ +∞
−∞ P

(
U0 ≤ τ

∣∣∣∣R = r0,X = x,V = v

)
fRV|X(r0,v|x)dv

fR|X(r0|x)

=(10)

∫ +∞

−∞
P

(
U0 ≤ τ

∣∣∣∣R = r0,X = x,V = v

)
fV|RX(v|r0,x)dv =(11) P

(
U0 ≤ τ

∣∣R = r0,X = x
) =(12) τ,

where (1) by DGP; (2) is by the definition of ηd(r,x,y); (3) is by the formula of conditional
probability; (4) is by equation (3); (5) is by Assumption 2.3; (6) is by the dominated
convergence theorem; (7) is by the integral mean value theorem, where r̄ and ř lie between
r0 and r0 +ε; (8) is by a number of smooth conditions, that is, Assumptions 2.2(ii) and 3.1.2;
(9) is by ηd(r,x,qd(r,x,u)) = u for each d, r, x, and u; (10) and (11) are by the formula of
the conditional probability; and (12) is by Assumption 3.1.1. �

Proof of Remark 3.2.1. Notice that p(r+0 ,x) = p(r−0 ,x) = p(r0,x) implies that

det
(
�′(y1,y0,x)

) = fY|DRX

(
y1,1,r

+
0 ,x

)
p
(

r+0 ,x
)

fY|DRX

(
y0,0,r

−
0 ,x

)(
1−p

(
r−0 ,x

))
−fY|DRX

(
y0,0,r

+
0 ,x

)(
1−p

(
r+0 ,x

))
fY|DRX

(
y1,1,r

−
0 ,x

)
p
(

r−0 ,x
)

=
[
fY|DRX

(
y1,1,r

+
0 ,x

)
fY|DRX

(
y0,0,r

−
0 ,x

)
− fY|DRX

(
y0,0,r

+
0 ,x

)
fY|DRX

(
y1,1,r

−
0 ,x

)]
×p(r0,x)(1−p(r0,x)).

By definition, we have

fY|DRX

(
y1,1,r

+
0 ,x

)
= fU1|DRX

(
η1

(
r+0 ,x,y

)
,1,r+0 ,x

) ∂

∂y
η1

(
r+0 ,x,y

)
.
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Notice that if R and X are given, D is determined by V from equation (3). Thus, according
to Assumption 3.1.2, we have that both fU1|DRX(u,d,r,x) and η1(r,x,y) are continuous in r
at r0, which leads to

fY|DRX

(
y1,1,r

+
0 ,x

)
= fU1|D(1)RX (η1 (r0,x,y),1,r0,x)

∂

∂y
η1 (r0,x,y),

where D(1) = ρ(1,r0,x,V). By similar reasoning,

fY|DRX

(
y1,1,r

−
0 ,x

)
= fU1|D(0)RX (η1 (r0,x,y),1,r0,x)

∂

∂y
η1 (r0,x,y) .

Moreover, notice that D(1) = D(0) if there is no jump. Then

fY|DRX

(
y1,1,r

+
0 ,x

)
= fY|DRX

(
y1,1,r

−
0 ,x

)
.

Similarly,

fY|DRX

(
y0,0,r

+
0 ,x

)
= fY|DRX

(
y0,0,r

−
0 ,x

)
.

Combining these results, we know det
(
�′(y1,y0,x)

) = 0, which contradicts the full-rank
condition. �

Proof of Lemma 3.2. By the formula of total probability, (3.1.2a) is equivalent to

FY|DRX

(
q1(x,τ ),1,r+0 ,x

)
p
(

r+0 ,x
)

+FY|DRX

(
q0(x,τ ),0,r+0 ,x

)(
1−p

(
r+0 ,x

))
= τ .

Similarly, (3.1.2b) is equivalent to

FY|DRX

(
q1(x,τ ),1,r−0 ,x

)
p
(

r−0 ,x
)

+FY|DRX

(
q0(x,τ ),0,r−0 ,x

)(
1−p

(
r−0 ,x

))
= τ .

Rearranging terms yields

FY|DRX
(
q1(x,τ ),1,r+0 ,x

)
p
(
r+0 ,x

)−FY|DRX
(
q1(x,τ ),1,r−0 ,x

)
p
(
r−0 ,x

)
= FY|DRX

(
q0(x,τ ),0,r−0 ,x

)(
1−p

(
r−0 ,x

))−FY|DRX
(
q0(x,τ ),0,r+0 ,x

)(
1−p

(
r+0 ,x

))
,

which proves (i).
Substituting τ = F0|X(y0,x) in F̃1

(
q1

(
x,τ

)
,x
) = F̃0

(
q0

(
x,τ

)
,x
)

gives

F̃1
(
q1

(
x,F0|X(y0,x)

)
,x
) = F̃0

(
q0

(
x,F0|X(y0,x)

)
,x
) = F̃0 (y0,x) .

Taking the derivative of both sides of the above equation with respect to y0 gives

f̃1
(
q1

(
x,F0|X(y0,x)

)
,x
) · (q1 ◦F0)′ (y0,x) = f̃0 (y0,x),

where f̃d and (q1 ◦F0)′ are understood as the derivative of F̃d and (q1 ◦F0) with respect
to y0. Because q1(x,·) and F0|X(·,x) are strictly increasing for any given x, the above
implies that f̃1

(
q1

(
x,F0|X(y0,x)

)
,x
)

and f̃0 (y0,x) must be either positive, negative, or zero
simultaneously for any given y0 and x.

Next, we show f̃1
(
q1

(
x,F0|X(y0,x)

)
,x
) �= 0 and f̃0 (y0,x) �= 0 for any given y0 and x by

contradiction. Suppose not; then there exists y∗
0 such that f̃1

(
q1

(
x,F0|X(y∗

0,x)
)
,x
) = 0 and

f̃0
(
y∗

0,x
) = 0 for some given x. Direct computation of the derivative of F̃1(y,x) and F̃0(y,x)
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with respect to y gives

f̃1(y,x) = fY|DRX(y,1,r+0 ,x)p(r+0 ,x)− fY|DRX(y,1,r−0 ,x)p(r−0 ,x)

and

f̃0(y,x) = fY|DRX(y,0,r−0 ,x)(1−p(r−0 ,x))− fY|DRX(y,0,r+0 ,x)(1−p(r+0 ,x)).

Then

fY|DRX(y∗
0,0,r

−
0 ,x)(1−p(r−0 ,x)) = fY|DRX(y∗

0,0,r
+
0 ,x)(1−p(r+0 ,x)),

and

fY|DRX(q1
(
x,F0|X(y∗

0,x)
)
,1,r+0 ,x)p(r+0 ,x) = fY|DRX(q1

(
x,F0|X(y∗

0,x)
)
,1,r−0 ,x)p(r−0 ,x),

which implies that

det(�(q1
(
x,F0|X(y∗

0,x)
)
,y∗

0,x)) = 0,

and contradicts Assumption 3.2.1(ii). Moreover, by the continuity condition, namely
Assumption 3.2.1(i), f̃1(q1

(
x,F0|X(y,x)

)
,x) and f̃0 (y,x) must be positive or negative for all

y ∈ {
q0

(
x,τ

)
,x ∈ SX,τ ∈ (0,1)

}
, which completes the proof of (ii). �

Proof of Theorem 1. Substituting F1|X(y|x) = τ in Lemma 3.2(i) gives

F̃1 (y,x) ≡ F̃1

(
q1

(
x,F1|X(y,x)

)
,x

)
= F̃0

(
q0

(
x,F1|X(y|x)

)
,x

)
,

or equivalently

q̃0
(
x,F̃1 (y,x)

) = q0

(
x,F1|X(y|x)

)
.

Moreover, substituting F1|X(y|x) = τ in

FY|DRX

(
q1(x,τ ),1,r+0 ,x

)
p
(

r+0 ,x
)

+FY|DRX

(
q0(x,τ ),0,r+0 ,x

)(
1−p

(
r+0 ,x

))
= τ

gives

F1|X(y|x) = FY|DRX
(
q1

(
x,F1|X

(
y|x)),1,r+0 ,x

)
p
(
r+0 ,x

)
+FY|DRX

(
q0

(
x,F1|X

(
y|x)),0,r+0 ,x

)(
1−p

(
r+0

))
= FY|DRX

(
y,1,r+0 ,x

)
p
(
r+0 ,x

)+FY|DRX
(
q0

(
x,F1|X

(
y|x)),0,r+0 ,x

)(
1−p

(
r+0

))
= FY|DRX

(
y,1,r+0 ,x

)
p
(
r+0 ,x

)+FY|DRX
(̃
q0

(
x,F̃1

(
y,x

))
,0,r+0 ,x

)(
1−p

(
r+0

))
.

Similar reasoning applies to deriving the expression of F0|X(y|x).
Without loss of generality, we assume that X is a single continuous variable with compact

support SX to simplify notation. �
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Lemma A.1. Under the same assumptions as Theorem 2, then for any given x ∈ SX,

√
nhhx

⎛⎜⎜⎝
m̂+(

1
{
Y < y

}
D
∣∣x)−m+(

1
{
Y < y

}
D
∣∣x)

m̂+(
1
{
Y < y

}
(1−D)

∣∣x)−m+(
1
{
Y < y

}
(1−D)

∣∣x)
m̂−(

1
{
Y < y

}
D
∣∣x)−m−(

1
{
Y < y

}
D
∣∣x)

m̂−(
1
{
Y < y

}
(1−D)

∣∣x)−m−(
1
{
Y < y

}
(1−D)

∣∣x)
⎞⎟⎟⎠ →d

⎛⎜⎜⎜⎜⎝
Zm+

D
(y|x)

Zm+
1−D

(y|x)
Zm−

D
(y|x)

Zm−
1−D

(y|x)

⎞⎟⎟⎟⎟⎠,

where Zm+
D

, Zm+
1−D

, Zm−
D

, and Zm−
1−D

are tight zero-mean Gaussian processes in �∞ (SY )4.

Lemma A.2. Under the same assumptions as Theorem 2, then for any given x ∈ SX,√
nhhx

(
F̂1|X(y|x)−F1|X(y|x)
F̂0|X(y|x)−F0|X(y|x)

)
→d

(
ZF1(y|x)
ZF0(y|x)

)
,

where ZF1 and ZF0 are tight zero-mean Gaussian processes in �∞ (SY )2.

Lemma A.3. Assume h/hr = γ 2 with 0 < γ < ∞. Under the same assumptions as
Theorem 2, then√

nhr

(
F̂1(y)−F1(y)
F̂0(y)−F0(y)

)
→d

(
Z1(y)
Z0(y)

)
,

where Z1 and Z0 are tight zero-mean Gaussian processes in �∞ (SY )2.

Proof of Theorem 2. Using the results established in Lemma A.3 and noting that the
quantile operator is Hadamard differentiable, it follows from the functional delta method
that√

nhr

(
q̂1(τ )−q1(τ )

q̂0(τ )−q0(τ )

)
→d

(
Zq1(τ )

Zq0(τ )

)
,

where Zq1 and Zq0 are tight zero-mean Gaussian processes in �∞ (T )2, and

Zq1(τ ) = −ZF1

(
q1(τ )

)
/f1

(
q1(τ )

)
,

Zq0(τ ) = −ZF0

(
q0(τ )

)
/f0

(
q0(τ )

)
,

with fd(·) denoting the derivative of Fd(·). Moreover, the covariance function �q (τ,τ̃ ) can
be written as, for j,k ∈ {1,2},

�
q
jk (τ,τ̃ ) = �F

jk
(
q2−j(τ ),q2−k (̃τ )

)/
f2−j

(
q2−j(τ )

)
f2−k

(
q2−k (̃τ )

)
. �

Proof of Corollary 5.1. The result directly follows from Theorem 2 and the functional delta
method. �

From now on, we provide detailed proof of Theorem 3 and Corollary 5.2 accompanied
by several preliminary lemmas. Lemmas A.4–A.8 show that the first-stage estimators are
uniformly consistent. Lemma A.9 establishes the relationship between convergence in
probability in supremum norm and convergence in probability concerning the semi-metric
T induced by the limiting Gaussian process. Specifically, we use this lemma to ensure that
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the asymptotically equicontinuous process, ν̂
ξ
1 (y) and ν̂

ξ
0 (y), evaluating q̂1(τ ) and q̂0(τ )

can nicely approximate this process evaluating q1(τ ) and q0(τ ), respectively.

Lemma A.4. Under the same assumptions as Theorem 3,

f̂R(r0)− fR(r0) = oυ
p (1).

Lemma A.5. Under the same assumptions as Theorem 3, then for d ∈ {0,1},
sup

(y,r)∈SY×SR

|̂pd(y,r)−pd(y,r)| = oυ
p (1).

Lemma A.6. Under the same assumptions as Theorem 3, for d ∈ {0,1},

sup
(y,x)∈SY×SX

∣∣∣̂fYD|RX

(
y,d,r+0 ,x

)
− fYD|RX

(
y,d,r+0 ,x

)∣∣∣ = oυ
p (1),

sup
(y,x)∈SY×SX

∣∣∣̂fYD|RX

(
y,d,r−0 ,x

)
− fYD|RX

(
y,d,r−0 ,x

)∣∣∣ = oυ
p (1)

and

sup
(y,r,x)∈SY×SR×SX

∣∣̂̃p(y,d,r,x)1{r > r0}− p̃(y,d,r,x)1{r > r0}∣∣ = oυ
p (1),

sup
(y,r,x)∈SY×SR×SX

∣∣̂̃p(y,d,r,x)1{r < r0}− p̃(y,d,r,x)1{r < r0}∣∣ = oυ
p (1).

Lemma A.7. Under the same assumptions as Theorem 3, then (i)

sup
(y,x)∈SY×SX

∣∣∣̂̃f 1 (y,x)− f̃1 (y,x)
∣∣∣ = oυ

p (1),

sup
(y,x)∈SY×SX

∣∣∣̂̃f 0 (y,x)− f̃0 (y,x)
∣∣∣ = oυ

p (1),

(ii)

sup
(y,x)∈SY×SX

∣∣̂f1|X (y|x)− f1|X (y|x)∣∣ = oυ
p (1),

sup
(y,x)∈SY×SX

∣∣̂f0|X (y|x)− f0|X (y|x)∣∣ = oυ
p (1),

and (iii)

sup
(y,x)∈SY×SX

∣∣∣ω̂+
0 (y,x)−ω+

0 (y,x)
∣∣∣ = oυ

p (1),

sup
(y,x)∈SY×SX

∣∣∣ω̂−
1 (y,x)−ω−

1 (y,x)
∣∣∣ = oυ

p (1).

Lemma A.8. Under the same assumptions as Theorem 3, then for d ∈ {0,1},
sup
y∈SY

∣∣̂fd (y)− fd (y)
∣∣ = oυ

p (1).
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Lemma A.9. Define

T (t1(τ ),t2(τ )) = lim
n→∞

⎛⎝ n∑
i=1

E

∣∣∣∣fni
(
t1(τ )

)− fni
(
t2(τ )

)∣∣∣∣2
⎞⎠1/2

,

where

fni
(
y
) = 1√

nh
ẽ′

1
(
�̃fR(r0)

)−1Q1(Zi,y)K

(
Ri − r0

h

)
or

fni
(
y
) = 1√

nh
ẽ′

1
(
�̃fR(r0)

)−1Q0(Zi,y)K

(
Ri − r0

h

)
.

Under the same assumptions as Theorem 3, then

sup
τ∈T

∣∣∣∣t1(τ )− t2(τ )

∣∣∣∣ →p
υ 0

implies

sup
τ∈T

T(t1(τ ),t2(τ )) →p
υ 0.

Proof of Theorem 3. For the first part, we will only show that ν̂
ξ
1 (y) �p

ξ Z1(y), and the
proof of the remaining term is similar. First, define

ν
ξ
1 (y) = 1√

nh

n∑
i=1

ξĩe
′
1
(
�̃fR(r0)

)−1Q1(Zi,y)K

(
Ri − r0

h

)
.

Applying Theorem 2 of Kosorok (2003) (which is also the same as Theorem 11.19 of
Kosorok (2008)), we obtain

ν
ξ
1 (y) �p

ξ Z1(y).

According to Lemma 2 in CHS, we can conclude

ν̂
ξ
1 (y) �p

ξ Z1(y)

if the condition

sup
y∈SY

∣∣∣̂νξ
1 (y)−ν

ξ
1 (y)

∣∣∣ →p
υ×ξ 0 (A.1)
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holds. Thus, we need to verify condition (A.1). Note that

ν̂
ξ
1 (y)−ν

ξ
1 (y)

= 1

fR(r0)̂fR(r0)

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

){
Q̂1(Zi,y)fR(r0)−Q1(Zi,y)̂fR(r0)

}

= fR(r0)

f 2
R(r0)+oυ×ξ

p (1)

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

){
Q̂1(Zi,y)−Q1(Zi,y)

}

− oυ×ξ
p (1)

f 2
R(r0)+oυ×ξ

p (1)

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

)
Q1(Zi,y)

=†1 −†2 ,

where the second equality holds by the fact that f̂R(r0)− fR(r0) = oυ×ξ
p (1) in Lemma A.4.

It can be shown following the same procedures in the proof of Lemma A.1 that

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

)
→d

Z
ξ
1,

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

)
Q1(Zi,y) →d

Z
ξ
1(y),

for some zero-mean Gaussian processes in R× �∞(SY ). By Prohorov’s theorem, weak
convergence implies asymptotic tightness and therefore implies that

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

)
= Oυ×ξ

p (1),

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

)
Q1(Zi,y) = Oυ×ξ

p (1)

uniformly over y. Thus,

†2 = oυ×ξ
p (1)

f 2
R(r0)+oυ×ξ

p (1)
Oυ×ξ

p (1) = oυ×ξ
p (1)

uniformly over y. We then consider †1. Lemmas A.4–A.7 imply that

Q̂1(Zi,y)−Q1(Zi,y) = oυ×ξ
p (1)

uniformly over Zi and y. This property implies

†1 = fR(r0)

f 2
R(r0)+oυ×ξ

p (1)

n∑
i=1

ξi
ẽ′

1

(
�̃
)−1

√
nh

K

(
Ri − r0

h

)
×oυ×ξ

p (1)

= fR(r0)

f 2
R(r0)+oυ×ξ

p (1)
Oυ×ξ

p (1)×oυ×ξ
p (1) = oυ×ξ

p (1)
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uniformly over y. Consequently, we conclude that condition (A.1) holds. Applying Lemma
2 in CHS, we have

ν̂
ξ
1 (y) �p

ξ Z1(y).

Applying similar arguments, we can also derive

ν̂
ξ
0 (y) �p

ξ Z0(y).

Next, we will show that(
Ẑq1(τ )

Ẑq0(τ )

)
�

p
ξ

(
Zq1(τ )

Zq1(τ )

)
.

By the functional delta method for bootstrap (Theorem 2.9 of Kosorok (2008)),(
Z̃q1(τ )

Z̃q0(τ )

)
=

(
−ν̂

ξ
1

(
q1(τ )

)/
f1
(
q1(τ )

)
−ν̂

ξ
0

(
q0(τ )

)/
f0
(
q0(τ )

) )
�

p
ξ

(
Zq1(τ )

Zq0(τ )

)
.

Moreover, we can conclude that

sup
τ∈T

∣∣Ẑq1(τ )− Z̃q1(τ )
∣∣ →p

υ×ξ 0

and

sup
τ∈T

∣∣Ẑq0(τ )− Z̃q0(τ )
∣∣ →p

υ×ξ 0,

which are true by the asymptotic T-equicontinuity of ν̂
ξ
1 and ν̂

ξ
0 in Lemma A.9, the uniform

consistency of q̂d and f̂d for d ∈ {0,1} in Theorem 2 and Lemma A.8. Again, by applying
Lemma 2 in CHS,(

Ẑq1(τ )

Ẑq0(τ )

)
�

p
ξ

(
Zq1(τ )

Zq0(τ )

)
. �

Proof of Corollary 5.2. The result follows from Theorem 3 and the functional delta method
for the bootstrap. �

Appendix B. Testing for Local RS

Local RS (Assumption 2.3) is a critical identifying assumption of this study. In this section,
we propose a simple test for this assumption in the RD context. While a failure to reject RS
may justify the use of our method, a rejection implies that, at a minimum, the model should
include more control variables if researchers must have RS hold for the dataset using the
method in our study.

The intuition underlying our testing procedure is similar to Frandsen and Lefgren (2018),
who test for RS using pre-determined covariates in the context of a binary endogenous
treatment. Our testing procedure builds on their work and generalizes it to the RD context.
The equivalence between an RD design estimator and an IV estimator, using an indicator
for exceeding a threshold in the running variable as the instrument, is already well known in
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the literature (Hahn et al., 2001). Our test procedure exploits this unique feature in the RD
design and proposes a weighted 2SLS method to compute the regression-based statistic.

Assume that we can observe a pre-determined variable S in addition to any covariates X
required for identification. In other words, S predicts outcomes but is uncorrelated with the
treatment status conditional on X. For example, Deshpande (2016) studies the distributional
effect of removing a cash welfare program on earnings using the estimator proposed by
FFM. In that case, prior earnings are a good candidate for the S variable because it is
correlated with potential outcomes (earnings) in the absence of treatment. For clarity, we
still suppress X in the following discussion. Our test has the power to detect the violation of
the following statement: H0: U1 and U0 are identically distributed, conditional on R = r0
and S = s for each s in the support of S.

As Ud = FYd |R
(
qd

(
r0,Ud

)
,r0

)
for d = 0,1, an individual’s rank in the untreated and

treated distributions conditional on R = r0 is U0 and U1, respectively. By normalization,
the marginal distributions of U0 and U1 conditional on R = r0 are uniform. However,
the conditional distributions of U0 and U1 may not be uniform if S predicts ranks. Thus,
the rank-shifting variable S imposes testable restrictions on observed data: it means that
conditional on S, D does not affect the distribution of ranks. Our test directly examines this
implication via the following procedure.

Step 1. Estimate the potential outcome CDFs F̂1(y) and F̂0(y) for y ∈ SY , conditional on
R = r0.

Step 2. Construct sample ranks

Ûi = DiF̂1(Yi)+ (1−Di)F̂0(Yi). (B.1)

Step 3. Estimate the following linear specification by an appropriate local estimation
method (using only the observations in the h-neighborhood of the cutoff):

Ûi = γ0 +γ1(Ri − r0)1{R ≥ r0}+γ2(Ri − r0)1{R < r0}+α1Di +Siα2 +DiSiη+ εi.
(B.2)

Remark B.1. The above regression (B.2) is flexible to allow testing violations of
similarity for any feature of the rank distribution. For example, to test for differences in
the conditional expectation, we can estimate β = (γ0,γ1,γ2,α1,α2,η)′ by weighted 2SLS
with(
1
{
Ri ≥ r0

}
,1

{
Ri ≥ r0

}
Si

)
as the excluded instrument for

(
Di,DiSi

)
and weights K

(
R−r0

h

)
. Let

Pi =
(

1,1
{
Ri ≥ r0

}
(Ri − r0),1

{
Ri < r0

}
(Ri − r0),Di,Si,DiSi

)′
,

Zi =
(

1,1
{
Ri ≥ r0

}
(Ri − r0),1

{
Ri < r0

}
(Ri − r0),1

{
Ri ≥ r0

}
,Si,1

{
Ri ≥ r0

}
Si

)′
.

The weighted 2SLS estimator of β can be written as

β̂ =
[ n∑

i=1

ZiP
′
iK

(
Ri − r0

h

)]−1[ n∑
i=1

ZiÛiK

(
Ri − r0

h

)]
. (B.3)
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To test for differences in other parts of the rank distribution, one may estimate (B.2) using
quantile regression methods for a range of quantile indices, for example, the IQR estimator
Guiteras (2008) proposes for the RD context. Hence, the proposed test maintains power
against any departure from RS.

Step 4. Perform a Student’s t test of η = 0. Specifically, we compute the test statistic

�̂ = nhβ̂ ′e
(
e′V̂e

)−1 e′β̂, (B.4)

where e = (0, . . . ,0,1)′ and V̂ is the estimated asymptotic variance–covariance matrix of β̂.

Remark B.2. In (B.2), the parameters α1 and α2 reflect different normalizations of each
treatment category, and each subpopulation with S = s. Therefore, α1 and α2 are not free
parameters and are excluded from the test statistic.

Remark B.3. As Frandsen and Lefgren (2018) note, the testing procedure does not
require (B.2) to correspond to a correctly specified structural mean or quantile function of
Ui’s. The least-squares and quantile regression estimators are well known to converge to a
population quantity that linearly approximates the underlying conditional mean or quantile
functions. Under the null hypothesis of RS, these population quantities will be identical to
U1 and U0. The η parameter in (B.2), which corresponds to the treatment–control difference
in those population quantities, will therefore be zero even under misspecification.

Applying an argument similar to Frandsen and Lefgren’s (2018) Theorem 1, we can
show �̂ as a quadratic form of an asymptotically normal estimator, which thus converges
to a χ2(1) random variable. Specifically, the limiting variance–covariance matrix of β̂

consists of an adjustment term resulting from the first-step estimators F̂0(y) and F̂1(y),
whose asymptotic properties can be found in Section 5.1. As the asymptotic variance of β̂

is complicated owing to the effect of estimating F̂0(y) and F̂1(y), in practice, we recommend
using the nonparametric bootstrap to obtain V̂ . As expected, the power of the test grows with
the informativeness of the rank shifter S, that is, the degree of correlation between S and the
outcome. Moreover, as Frandsen and Lefgren (2018) note, in contexts with an endogenous
treatment, the power of the test also grows with the instrument’s strength. In other words, the
power of our test grows with the size of �p = limr→r+

0
E
(
D
∣∣R = r

)− limr→r−
0

E
(
D
∣∣R = r

)
.

Appendix C. Further Discussion of the Full-Rank Jacobian Matrix
Condition

This section consists of two parts. First, we discuss the implication of the full-rank condition
(Assumption 3.2.1(ii)) thoroughly and demonstrate the relationship between the full-rank
condition and Assumption 5.6. Second, we provide sufficient and more interpretable
conditions for the full-rank condition to hold in practice.

To set the idea, we suppress the dependence of notation on X. Recall that

�′(y1,y0) =
⎡⎣ fY|DR

(
y1,1,r

+
0

)
p
(

r+0
)

fY|DR

(
y0,0,r

+
0

)(
1−p

(
r+0

))
fY|DR

(
y1,1,r

−
0

)
p
(

r−0
)

fY|DR

(
y0,0,r

−
0

)(
1−p

(
r−0

)) ⎤⎦
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and

F̃1(y) = FY|DR

(
y,1,r+0

)
p
(

r+0
)

−FY|DR

(
y,1,r−0

)
p
(

r−0
)
,

F̃0(y) = FY|DR

(
y,0,r−0

)(
1−p

(
r−0

))
−FY|DR

(
y,0,r+0

)(
1−p

(
r+0

))
.

Then, the two following statements are equivalent.
C1. There exists a positive δ > 0 such that �′(y1,y0) is of full rank for all (y1,y0) in the

support of (Y1,Y0)
∣∣R ∈ (r0 − δ,r0 + δ).

C2. For d ∈ {0,1}, F̃d(y) admits a nonzero derivative f̃d(y) with respect to y.
We have the sufficiency from the proof of Lemma 3.2 in Appendix A. Now, we prove

the necessity. By the proof of Lemma 3.2, we conclude that f̃1(y) and f̃0(y) have the same
sign. Consider the case where f̃1(y) and f̃0(y) are both strictly positive. Thus,

f̃1(y) = fY|DR

(
y,1,r+0

)
p
(

r+0
)

− fY|DR

(
y,1,r−0

)
p
(

r−0
)

> 0,

f̃0(y) = fY|DR

(
y,0,r−0

)(
1−p

(
r−0

))
− fY|DR

(
y,0,r+0

)(
1−p

(
r+0

))
> 0.

Consequently, we have

fY|DR

(
y,1,r+0

)
p
(

r+0
)

fY|DR

(
y,0,r−0

)(
1−p

(
r−0

))
> fY|DR

(
y,1,r−0

)
p
(

r−0
)

fY|DR

(
y,0,r+0

)(
1−p

(
r+0

))
,

implying that det
(
�′(y1,y0)

) �= 0. The case when f̃1(y) and f̃0(y) are both strictly negative
is similar and thus omitted.

Let the limit of D as r approaches r0 from below (above) be denoted by D0 (D1).
According to FFM, individuals can be categorized into four different types: never takers
(N, D1 = D0 = 0), always takers (A, D1 = D0 = 1), compliers (C, D1 = 1, D0 = 0), and
defiers (F, D1 = 0, D0 = 1). Notice that

F̃1(y) = E

[
1{Y ≤ y}D

∣∣∣∣R = r+0
]

−E

[
1{Y ≤ y}D

∣∣∣∣R = r−0
]

= E

[
1{Y1 ≤ y}D1

∣∣∣∣R = r+0
]

−E

[
1{Y1 ≤ y}D0

∣∣∣∣R = r−0
]

= E

[
1{Y1 ≤ y}D1

∣∣∣∣R = r0

]
−E

[
1{Y1 ≤ y}D0

∣∣∣∣R = r0

]
= E

[
1{Y1 ≤ y}

(
D1 −D0

)∣∣∣∣R = r0

]
= E

[
1{Y1 ≤ y}

∣∣∣∣C,R = r0

]
πC −E

[
1{Y1 ≤ y}

∣∣∣∣F,R = r0

]
πF,

(C.1)

where πC and πF denote the fractions of compliers and defiers conditional on R = r0,
respectively. Similarly,

F̃0(y) = E

[
1{Y0 ≤ y}

∣∣∣∣C,R = r0

]
πC −E

[
1{Y0 ≤ y}

∣∣∣∣F,R = r0

]
πF . (C.2)

From equations (C.1) and (C.2), for d ∈ {0,1}, we know that we can express F̃d(y) as some
mixture distribution of compliers and defiers.
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• Suppose that the monotonicity condition holds; that is, πF = 0. Then, F̃d(y) =
FYd |C,R(y,r0)πC. Moreover, note that the fraction of compliers πC > 0 by the
discontinuity assumption. Thus, in this case, D2 is equivalent to

fYd |C,R(y,r0) > 0,

for d ∈ {0,1}. In other words, under the monotonicity assumption, the nonzero derivative
assumption and the full-rank condition are equivalent to full support of the potential
outcome distributions of compliers.

• However, the monotonicity condition is not always plausible in practice. Let us consider
the implication of the full-rank condition when monotonicity fails (in the presence of
defiers). In this case, we can follow the idea of De Chaisemartin (2017) to provide some
weaker assumptions to show the plausibility of D2.

CD. There exists a subpopulation of compliers CF that satisfies:
(i) πCF = πF , where πCF represents the fraction of CF conditional on R = r0;

(ii) for d ∈ {0,1}, FYd |CF,R(y,r0) = FYd |F,R(y,r0) for any given y.
CD is satisfied if a subpopulation of compliers accounts for the same percentage of

the population as defiers and has the same potential outcome distribution. De
Chaisemartin (2017) states that CD is weaker than the monotonicity assumption.
In the absence of defiers, one can find a zero-probability subset of compliers
with the same potential outcome distribution as defiers. If compliers and defiers
have the same potential outcome distribution, and then we can randomly choose
πF/πC of compliers and denote them as CF .

Let CV = C\CF and πCV = πC −πCF . If CD holds, then we can show that

F̃d(y) =E

[
1{Yd ≤ y}

∣∣∣∣C,R = r0

]
πC −E

[
1{Yd ≤ y}

∣∣∣∣F,R = r0

]
πF

=
(

πCV

πC
E

[
1{Yd ≤ y}

∣∣∣∣CV,R = r0

]
+ πCF

πC
E

[
1{Yd ≤ y}

∣∣∣∣CF,R = r0

])
πC

−E

[
1{Yd ≤ y}

∣∣∣∣F,R = r0

]
πF

=(πC −πF)E

[
1{Yd ≤ y}

∣∣∣∣CV,R = r0

]
.

Again, by the discontinuity condition, πC − πF > 0. Thus, under CD, the nonzero
derivative assumption and the full-rank condition are equivalent to full support of the
potential outcome distributions of CV , which is the subpopulation of compliers.

CD is just an abstract condition and hard to interpret. Furthermore, similar to
De Chaisemartin (2017), we propose a sufficient condition for CD, which is more
interpretable. Let πC|Yd (πF|Yd ) denote the fraction of compliers (defiers) conditional
on Yd and R = r0, for d ∈ {0,1}.

MC. For d ∈ {0,1} and any y ∈ SYd , πF|Yd ≤ πC|Yd .
Condition MC requires that each subgroup of the population Yd comprises more

compliers than defiers. This condition is automatically satisfied if there are no defiers.
See De Chaisemartin (2017) for more discussion. Next, we will show the relationship
between these two conditions. We work with the following lemma to prove that MC
implies CD.
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Lemma C.1. A subpopulation of compliers CF satisfies CD if there is a real-valued
function g defined on SYd such that for d ∈ {0,1}
0 ≤ g(δ,r0) ≤ fYd |C,R(δ,r0)πC for almost every δ ∈ SYd (C.3)∫

SYd

g(δ,r0)dδ = πF, (C.4)

∫
SYd

1{δ ≤ y}g(δ,r0)

πF
dδ = FYd |F,R(y,r0). (C.5)

The proof of Lemma C.1 is similar to Lemma B.1(i) of De Chaisemartin (2017); we
omit here. According to Lemma D.1, the argument that MC implies CD can be proved by
finding a real-valued function g satisfying (C.3)–(C.5) under MC. Let g1 = fYd |F,R ·πF .
Under MC, it is easy to verify that g1 satisfies (C.3)–(C.5), which completes the proof.

To summarize, we demonstrated that the full-rank condition holds if each subgroup of the
population Yd comprises more compliers than defiers for any given r in the neighborhood
of r0, which seems reasonable in practice. To provide a concrete example, let us consider
the DGP, namely,

Y1 = R+ωU1, Y0 = R+U0,

and

D = 1{R > 0} ·1{V1 > 0}+1{R ≤ 0} ·1{V0 > 1}.
By assumption, (V1,V0)|Ud ∼d (V0,V1)|Ud for d ∈ {0,1}; thus,

πF|Yd=y,X=x = P
{
V1 ≤ 0,V0 > 1

∣∣Yd = y,X = x,R = 0
}

= P

{
V1 ≤ 0,V0 > 1

∣∣Ud = y− x

d(ω−1)+1

}
and

πC|Yd=y,X=x = P
{
V1 > 0,V0 ≤ 1

∣∣Yd = y,X = x,R = 0
}

= P

{
V1 > 0,V0 ≤ 1

∣∣Ud = y− x

d(ω−1)+1

}
= P

{
V1 ≤ 1,V0 > 0

∣∣Ud = y− x

d(ω−1)+1

}
,

which satisfies MC.
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