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Abstract

Wu and Shi [‘A note on k-Galois LCD codes over the ring Fq + uFq’, Bull. Aust. Math. Soc. 104(1) (2021),
154–161] studied k-Galois LCD codes over the finite chain ring R = Fq + uFq, where u2 = 0 and q = pe for
some prime p and positive integer e. We extend the results to the finite nonchain ringR = Fq + uFq + vFq +

uvFq, where u2 = u, v2 = v and uv = vu. We define a correspondence between the l-Galois dual of linear
codes over R and the l-Galois dual of their component codes over Fq. Further, we construct Euclidean LCD
and l-Galois LCD codes from linear codes over R. We prove that any linear code over R is equivalent to a
Euclidean code over Fq with q > 3 and an l-Galois LCD code over R with 0 < l < e and pe−l + 1 | pe − 1.
Finally, we investigate MDS codes over R.

2020 Mathematics subject classification: primary 94B05; secondary 94B99.
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1. Introduction

An LCD code (shortened form for linear complementary dual code) is a linear
code which intersects its dual trivially. LCD codes were defined and characterised
by Massey [13] over finite fields. For a two-user binary adder channel, an optimal
linear coding solution is obtained by LCD codes. LCD codes have applications in
many areas including consumer electronics, data storage communication systems and
cryptography. Yang and Massey [16] derived LCD cyclic codes. Carlet and Guilley [2]
constructed several LCD codes and presented an implementation of binary LCD codes
against fault injection and side channel attacks.

Carlet et al. [5] demonstrated that any linear code over Fq (q > 3) is equivalent
to a Euclidean LCD code and any linear code over Fq2 (q > 2) is equivalent to a
Hermitian LCD code. Carlet et al. [4] characterised binary LCD codes in terms of
their orthogonal or symplectic basis and proved that almost all binary LCD codes
are odd-like codes with odd-like duals. Fan and Zhang [7] generalised Euclidean
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and Hermitian inner products to the l-Galois inner product over finite fields and
studied self-dual constacyclic codes for the l-Galois inner product over finite fields.
Liu et al. [11] obtained l-Galois LCD codes over finite fields, where they characterised
λ-constacyclic codes as l-Galois LCD codes. In [12], some criteria for a linear code to
be an LCD code over a finite commutative ring were obtained.

A linear code C with parameters [n, k, d] over a finite field is said to be a maximum
distance separable (MDS) code if the minimum distance d of the code C attains the
Singleton bound, that is, d = n − k + 1. MDS codes have very good theoretical and
practical properties. Jin [8] used generalised Reed–Solomon codes to create numerous
classes of LCD MDS codes. Extending this work, Chen [6] proposed an alternative
method to construct new LCD MDS codes from generalised Reed–Solomon codes.
Carlet et al. [3] discussed the existence of Euclidean LCD MDS codes over a finite
field and gave several constructions of Euclidean and Hermitian LCD MDS codes. Li
et al. [10] studied linear codes over the ring Z4 + uZ4 + vZ4 + uvZ4 for the Euclidean
inner product and discussed some properties of Euclidean dual and MDS codes.
Several authors investigated skew cyclic codes, constacyclic codes and quantum error
correcting codes over the ring R [1, 9, 17]. Prakash et al. [14] enumerated self-dual
and LCD double circulant codes over a class of finite commutative nonchain rings
Rq and investigated the algebraic structure of 1-generator quasi-cyclic (QC) codes
over Rq for q = 3. The l-Galois LCD codes over the finite chain ring Fq + uFq are
studied in [15], showing that for any linear code over Fq + uFq, there exist equivalent
Euclidean and l-Galois LCD codes. Taking inspiration from [15], we consider l-Galois
linear codes over the finite nonchain ring, R = Fq + uFq + vFq + uvFq and characterise
l-Galois LCD codes over this ring.

Section 2 contains the basic mathematical background we require. We define an
inner product which is a generalisation of Euclidean and Hermitian inner products
over R. In Section 3, we construct l-Galois LCD codes over R. We also discuss basic
results on the Gray image of an l-Galois LCD code and its dual. In Section 4, we
construct Euclidean and l-Galois LCD codes from linear codes over R. Moreover, we
demonstrate that a linear code over R is equivalent to a Euclidean and an l-Galois LCD
code over R. In Section 5, we look at MDS codes over R and give results connecting
C⊥l and C whenever one of them is an MDS code. The l-Galois LCD MDS codes over
R seem worthy of further study.

2. Preliminaries

Throughout, q denotes a prime power, that is, q = pe for some integer e > 0, and
Fq the finite field of order q. Let us consider the ring R = Fq + uFq + vFq + uvFq =

{a + ub + vc + uvd | u2 = u, v2 = v, uv = vu, a, b, c, d ∈ Fq}. It is easy to see that R is a
commutative principal ideal ring. Since it has four maximal ideals, it is a semi-local
ring and a finite nonchain ring. Let γ1 = 1 − u − v + uv, γ2 = uv, γ3 = u − uv, γ4 =

v − uv, so that
∑4

i=1 γi = 1, γ2
i = γi and γiγj = 0 for i � j. By the Chinese remainder

theorem, R = γ1R ⊕ γ2R ⊕ γ3R ⊕ γ4R and γiR � γiFq for i = 1, 2, 3, 4. For any a ∈ R,
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a can be uniquely written as a =
∑4

i=1 γiai, where ai ∈ Fq for i = 1, 2, 3, 4. Hence,
R � γ1Fq ⊕ γ2Fq ⊕ γ3Fq ⊕ γ4Fq.

DEFINITION 2.1. A code C over R of length n is a nonempty subset of Rn. The code
C is said to be linear if it is an R-submodule of Rn.

DEFINITION 2.2. The Hamming weight wtH(x) of x = (x1, x2, . . . , xn) ∈ Fn
q is the

number of nonzero xi for i ∈ {1, 2, . . . , n}. For y ∈ Fn
q, the Hamming distance between

x and y is the Hamming weight of the vector x − y.

DEFINITION 2.3. The Hamming distance of a code C, denoted by dH(C), is the number
dH(C) = min{wtH(x) | x � 0}.

DEFINITION 2.4. For r = a1 + a2u + a3v + a4uv ∈ R, the Lee weight of r is
wtL(r) = wtH(a1, a1 + a2, a1 + a3, a1 + a2 + a3 + a4). The definition of Lee weight
can be extended to Rn: for s = (s1, s2, . . . , sn) ∈ Rn, the Lee weight of s is wtL(s) =∑n

i=1 wtL(si). If t = (t1, t2, . . . , tn) ∈ Rn, then the Lee distance between the two vectors
s and t is dL(s, t) = wtL(s − t) =

∑n
i=1 wtL(si − ti).

DEFINITION 2.5. The Lee distance of the code C, denoted by dL(C), is the number
dL(C) = min{dL(s − t) | s � t}.

A function ρ : R �→ F4
q is a Gray map if it is bijective and distance preserving. From

[17], the function ρ : R → F4
q defined by

ρ(r) = ρ(a1 + a2u + a3v + a4uv) = (a1, a1 + a2, a1 + a3, a1 + a2 + a3 + a4)

is a Gray map. An equivalent Gray map for r =
∑4

i=1 γiri ∈ R, where ri ∈ Fq for
i = 1, 2, 3, 4, is

ρ(r) = ρ
( 4∑

i=1

γiri

)
= (r1, r2, r3, r4).

We can easily extend this to a map from Rn to F4n
q . By the definition of the Gray map,

ρ is linear over Fq and it preserves distance from (Rn, dL) to (F4n
q , dH), where dL is the

Lee distance and dH is the Hamming distance. The following result can be obtained
directly from the definition of ρ.

PROPOSITION 2.6. For a linear code C of length n over the ring R with cardinality qk

and Lee distance d, ρ(C) is a [4n, k, d] linear code over Fq.

Define a Frobenius operator F : R → R over R by

F(a1 + a2u + a3v + a4uv) = ap
1 + uap

2 + vap
3 + uvap

4 .

Equivalently, F(r) = γ1rp
1 + γ2rp

2 + γ3rp
3 + γ4rp

4 for r =
∑4

i=1 γiri ∈ R.
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For s = (s1, s2, . . . , sn) and t = (t1, t2, . . . , tn) ∈ Rn and 0 ≤ l ≤ e − 1, define the
l-Galois inner product,

[s, t]l =

n∑
i=1

siFl(ti).

REMARK 2.7. This inner product is a generalisation of the Euclidean and Hermitian
inner products for l = 0 and l = e/2 (when e is even), respectively.

From now on, we write [s, t], [s, t]H and [s, t]l for the Euclidean, Hermitian and
l-Galois inner product over R and 〈s, t〉, 〈s, t〉H and 〈s, t〉l for the Euclidean, Hermitian
and l-Galois inner product over Fq, respectively. The l-Galois dual code C⊥l of C over
R is defined by

C⊥l = {s ∈ Rn | [t, s]l = 0 for all t ∈ C}.

Clearly, C⊥l is a linear code over R. A linear code over R is said to be l-Galois LCD
if C ∩ C⊥l = {0}. It is well known that for a Frobenius ring R and a linear code C over
the ring R of length n, the product of the cardinalities of C and C⊥l is equal to the
cardinality of Rn, that is, |C||C⊥l | = |Rn|.

REMARK 2.8. For l = 0 and l = e/2 (when e is even), this construction gives the
Euclidean and the Hermitian dual code, respectively.

3. l-Galois linear codes over R
In this section, we derive a necessary and sufficient condition for C to be an l-Galois

LCD code over R with respect to its component codes. Also, we give a relationship
between an l-Galois LCD code and its Gray image.

A linear code C over R can be decomposed into four component codes over the
finite field Fq as follows:

C1 = {x ∈ Fn
q | γ1x + γ2y + γ3z + γ4w ∈ C for some y, z, w ∈ Fn

q},
C2 = {y ∈ Fn

q | γ1x + γ2y + γ3z + γ4w ∈ C for some x, z, w ∈ Fn
q},

C3 = {z ∈ Fn
q | γ1x + γ2y + γ3z + γ4w ∈ C for some x, y, w ∈ Fn

q},
C4 = {w ∈ Fn

q | γ1x + γ2y + γ3z + γ4w ∈ C for some x, y, z ∈ Fn
q}.

The Ci are linear codes over Fq for 1 ≤ i ≤ 4 and C = γ1C1 ⊕ γ2C2 ⊕ γ3C3 ⊕ γ4C4.
We say C1,C2,C3 and C4 are component codes of the linear code C. The cardinality of
a linear code C is the product of the cardinalities of its component codes, that is,

|C| = |C1||C2||C3||C4|.

The Lee distance of a linear code C is the minimum of the Hamming distances of its
component codes,

dL(C) = min
1≤i≤4
{dH(Ci)}.
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Let Cpl
= {(Fl(c1), Fl(c2), . . . , Fl(cn)) | (c1, c2, . . . , cn) ∈ C} and Fl(G) = (Fl(gij)) for a

matrix G = (gij) over R. For 1 ≤ i ≤ 4, let Gi be the generator matrix for Ci. Then the
generator matrices for C and ρ(C) are

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1G1
γ2G2
γ3G3
γ4G4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and ρ(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(γ1G1)
ρ(γ2G2)
ρ(γ3G3)
ρ(γ4G4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ρ(γiGi) is a matrix over Fq for 1 ≤ i ≤ 4. Since γiγj = 0 for i � j and γ2
i = γi for

i = 1, 2, 3, 4,

G(Fe−l(G))T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1G1Fe−l(G1)T 0 0 0
0 γ2G2Fe−l(G2)T 0 0
0 0 γ3G3Fe−l(G3)T 0
0 0 0 γ4G4Fe−l(G4)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We call C an [n, k, d] code over R if C is a code of length n, |C| = qk and d is the
Lee distance. If the Ci are the component codes of C, with parameters [n, ki, di] for
i = 1, 2, 3, 4, then k =

∑4
i=1 ki and d = min1≤i≤4{di}.

In the following lemma, we observe that the Euclidean dual of Cp(e−l)
is equal to the

l-Galois dual code of C.

LEMMA 3.1. If C is an [n, k, d] linear code over R, then Cp(e−l)
is an [n, k, d] linear code

over R and C⊥l = (Cp(e−l)
)⊥. Moreover, if C has generator matrix G, then Fe−l(G) is a

generator matrix of Cp(e−l)
.

The next theorem gives the decomposition of the l-Galois dual code into its
component codes. Consequently, we obtain a relation between l-Galois LCD codes
over R and l-Galois LCD component codes over Fq.

THEOREM 3.2. For a linear code C =
⊕4

i=1 γiCi over R:

(1) C⊥l =
⊕4

i=1 γiC⊥l
i ;

(2) C is an l-Galois LCD code over R if and only if all its component codes Ci are
l-Galois LCD codes over Fq for 1 ≤ i ≤ 4;

(3) C is an l-Galois self-orthogonal linear code over R if and only if all its component
codes Ci are l-Galois self-orthogonal codes over Fq and C is a self-dual code if
and only if all its component codes Ci are self-dual codes over Fq for 1 ≤ i ≤ 4.

PROOF. (1) If x = γ1x1 + γ2x2 + γ3x3 + γ4x4 ∈ C⊥l , then [ y, x]l = 0 for any y = γ1y1 +

γ2y2 + γ3y3 + γ4y4 ∈ C. Since γ2
i = γi and γiγj = 0 for i � j, [ y, x]l = γ1〈y1, x1〉l +

γ2〈y2, x2〉l + γ3〈y3, x3〉l + γ4〈y4, x4〉l. Thus, 〈yi, xi〉l = 0 for all yi ∈ Ci and i = 1, 2, 3, 4,
that is, xi ∈ C⊥l

i for i = 1, 2, 3, 4. Therefore, x ∈ γ1C⊥l
1 ⊕ γ2C⊥l

2 ⊕ γ3C⊥l
3 ⊕ γ4C⊥l

4 .
Conversely, let w = γ1w1 + γ2w2 + γ3w3 + γ4w4 ∈ γ1C⊥l

1 ⊕ γ2C⊥l
2 ⊕ γ3C⊥l

3 ⊕ γ4C⊥l
4 ,

where wi ∈ C⊥l
i . For any y = γ1y1 + γ2y2 + γ3y3 + γ4y4 ∈ C, where yi ∈ Ci, [ y, w]l =
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γ1〈y1, w1〉l + γ2〈y2, w2〉l + γ3〈y3, w3〉l + γ4〈y4, w4〉l = 0, which implies that w ∈ C⊥l .
Hence, C⊥l = γ1C⊥l

1 ⊕ γ2C⊥l
2 ⊕ γ3C⊥l

3 ⊕ γ4C⊥l
4 .

(2) Suppose that C is an l-Galois LCD code over R, that is, C ∩ C⊥l = {0}.
Let xi ∈ Ci ∩ C⊥l

i for some i = 1, 2, 3, 4, that is, 〈yi, xi〉l = 0 for all yi ∈ Ci. Now
take x = γixi ∈ C. Then for any y = γ1y1 + γ2y2 + γ3y3 + γ4y4 ∈ C, where yj ∈ Cj for
j = 1, 2, 3, 4, [ y, x]l = [γ1y1 + γ2y2 + γ3y3 + γ4y4, γixi]l = γi〈yi, xi〉l = 0, since γ2

i = γi
and γiγj = 0 for i � j. This implies that x ∈ C ∩ C⊥l = {0}, that is, x = 0, consequently,
xi = 0. Hence, Ci is an l-Galois LCD code over Fq.

Conversely, suppose the Ci are l-Galois LCD codes over Fq for i = 1, 2, 3, 4.
Let x = γ1x1 + γ2x2 + γ2x3 + γ4x4 ∈ C ∩ C⊥l . Then xi ∈ Ci ∩ C⊥l

i and Ci ∩ C⊥l
i = {0},

which implies that x = 0. Thus, C is an l-Galois LCD code.
The proof of part (3) follows easily from part (1), so we omit the proof. �

REMARK 3.3. Parts (1) and (3) in Theorem 3.2 have been proved for the Euclidean
dual over the ring Z4 + uZ4 + vZ4 + uvZ4 in [10].

The next corollary gives a necessary and sufficient condition for an l-Galois LCD
code over R in terms of generator matrices.

COROLLARY 3.4. Let C =
⊕4

i=1 γiCi with generator matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1G1
γ2G2
γ3G3
γ4G4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Gi is a generator matrix for Ci over Fq. Then, C is an l-Galois LCD code over
R if and only if the matrix Gi(Fe−l(Gi))T is nonsingular for i = 1, 2, 3, 4 over Fq.

PROOF. By Theorem 3.2, C is an l-Galois LCD code if and only if the Ci are l-Galois
LCD codes over Fq. From [11, Theorem 2.4], Ci is an l-Galois LCD code if and only
if Gi(Fe−l(Gi))T is nonsingular over Fq. �

Now, by using the definition of ρ, we derive some useful properties of the Gray
image of l-Galois dual codes over R.

LEMMA 3.5. If C is an [n, k] linear code over R, then ρ(C⊥l ) = ρ(C)⊥l .

PROOF. If ρ(x) ∈ ρ(C⊥l ), where x ∈ C⊥l , then [z, x]l = 0 for all z ∈ C. Let z =
∑4

i=1 γizi
and x =

∑4
i=1 γixi, where zi ∈ Ci and xi ∈ C⊥l

i , so that [z, x]l = γ1 〈z1, x1〉l + γ2 〈z2, x2〉l +
γ3 〈z3, x3〉l + γ4 〈z4, x4〉l = 0. Hence, 〈zi, xi〉l = 0 for i = 1, 2, 3, 4. Now, 〈ρ(z), ρ(x)〉l =∑4

i=1 zi · xpl

i =
∑4

i=1 〈zi, xi〉l = 0 for all ρ(z) ∈ ρ(C). Thus, ρ(x) ∈ ρ(C)⊥l . Therefore,
ρ(C⊥l ) ⊆ ρ(C)⊥l .

Conversely, the cardinality of ρ(C⊥l ) is equal to C⊥l , that is, |ρ(C⊥l )| = q4n/|C|.
Moreover, |ρ(C)⊥l | = q4n/|ρ(C)| = q4n/|C|. Hence, ρ(C⊥l ) = ρ(C)⊥l . �

LEMMA 3.6. If C is a linear code over R, then ρ(C ∩ C⊥l ) = ρ(C) ∩ ρ(C⊥l ).
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PROOF. If ρ(x) ∈ ρ(C ∩ C⊥l ) for some x ∈ C ∩ C⊥l , then ρ(x) ∈ ρ(C) ∩ ρ(C⊥l ).
Hence, ρ(C ∩ C⊥l ) ⊆ ρ(C) ∩ ρ(C⊥l ). Conversely, if y ∈ ρ(C) ∩ ρ(C⊥l ), then y ∈ ρ(C)
and y ∈ ρ(C⊥l ). Since ρ is bijective, there is a unique x ∈ C ∩ C⊥l such that ρ(x) = y.
Hence, ρ(C) ∩ ρ(C⊥l ) ⊆ ρ(C ∩ C⊥l ). Therefore, ρ(C ∩ C⊥l ) = ρ(C) ∩ ρ(C⊥l ). �

THEOREM 3.7. A linear code C is an l-Galois LCD code over R if and only if ρ(C) is
an l-Galois LCD code over Fq.

PROOF. Suppose C is an l-Galois LCD code over R, that is, C ∩ C⊥l = {0}. From
Lemma 3.6, ρ(C) ∩ ρ(C)⊥l = {0}. Conversely, if ρ(C) is an l-Galois LCD code, then

{0} = ρ(C) ∩ ρ(C)⊥l = ρ(C) ∩ ρ(C⊥l ) = ρ(C ∩ C⊥l ),

so that C ∩ C⊥l = {0}. Therefore, C is an l-Galois LCD code over R. �

4. Construction of a Galois LCD code equivalent to a linear code

We give a construction of Euclidean and l-Galois LCD codes over R with the help
of their component codes over Fq. We show that for every linear code C, there exists a
Euclidean LCD code and an l-Galois LCD code which are equivalent to C.

Let m and w be integers with m ≥ 1 and 0 ≤ w ≤ m and let b be an element in Fm
q

with Hamming weight w. The support of b is the set S = {i1, i2, . . . , iw} of indices at
which the components of b are nonzero. Denote the m × m diagonal matrix whose
entries are b1, b2, . . . , bm by diagm[b]. For an m × m square matrix P over Fq, let PS
denote the submatrix of P obtained by deleting the i1, i2, . . . , iwth columns and rows of
P. We write PS = I if S = {1, 2, . . . , m} and P∅ = P.

LEMMA 4.1 [5]. Let P be an m × m matrix over Fq and t an integer with 0 ≤ t ≤ m − 1.
Assume that det(PJ) = 0 for any J ⊆ {1, 2, . . . , m} with 0 ≤ |J| ≤ t. Then for every
element b ∈ Fm

q with support S and Hamming weight w such that 1 ≤ w ≤ t + 1,

det
(
P + diagm[b]

)
=

(∏
i∈S

bi

)
det(PS).

Fix α = (α1,α2, . . . ,αn) ∈ Rn, where αj =
∑4

i=1 γiαji, αji ∈ Fq for j = 1, 2, . . . , n.
Define

Cα = {α · c | c ∈ C} = {(α1c1,α2c2, . . . ,αncn) | (c1, c2, . . . , cn) ∈ C}.

Clearly, Cα is a linear code over R. Let

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1G1
γ2G2
γ3G3
γ4G4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Gα =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1Gα
′
1

1

γ2Gα
′
2

2

γ3G
α′3
3

γ4Gα
′
4

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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be generator matrices forC andCα, where Gα is obtained by multiplying the jth column
of G by αj and Gα

′
i

i is the matrix obtained by multiplying the jth column of Gi by αji
and α′i = (α1i,α2i, . . . ,αni) ∈ Fn

q for i = 1, 2, 3, 4.

REMARK 4.2. Note that, if α = (α1,α2, . . . ,αn) ∈ Rn and αj � 0 for 1 ≤ j ≤ n, then C
and Cα are equivalent codes over R.

The following theorem gives a construction of Euclidean LCD codes over R from
linear codes over R. We denote the parameters of the component codes Ci by [n, ki, di]
for i = 1, 2, 3, 4.

THEOREM 4.3. All notation is as above. Let C =
⊕4

i=1 γiCi be an [n, k, d] linear
code over R, where the component codes Ci over Fq have generator matrices
Gi = [Iki : Mi]. Let Pi = GiGT

i and ti ≤ ki − 1 be nonnegative integers such that
det((Pi)Si ) = 0 for any Si ⊆ {1, 2, . . . , ki} with 0 ≤ |Si| ≤ ti and assume there exist Ri ⊆
{1, 2, . . . , ki} with cardinality ti + 1 such that det((Pi)Ri ) � 0. If α ∈ Rn is such that
αji ∈ Fq \ {+1,−1} if j ∈ Ri and αji ∈ {+1,−1} if j ∈ {1, 2, . . . , n} \ Ri for i = 1, 2, 3, 4,
then Cα is a Euclidean LCD code over R.

PROOF. Let α = (α1,α2, . . . ,αn) ∈ Rn and c = (c1, c2, . . . , cn) ∈ C. For αj, cj ∈ R,
we write αj =

∑4
i=1 γiαji, αji ∈ Fq, and cj =

∑4
i=1 γicji, cji ∈ Ci. We note that

αjcj = (
∑4

i=1 γiαji)(
∑4

i=1 γicji) =
∑4

i=1 γiαjicji, since γiγm = 0 for i � m and γ2
i = γi for

i, m = 1, 2, 3, 4 and j = 1, 2, . . . , n. Now,

Cα = {(α1c1,α2c2, . . . ,αncn) | (c1, c2, . . . , cn) ∈ C}

=

{( 4∑
i=1

γiα1ic1i,
4∑

i=1

γiα2ic2i, . . . ,
4∑

i=1

γiαnicni

)
| (c1, c2, . . . , cn) ∈ C

}

=

{ 4∑
i=1

γi(α1ic1i,α2ic2i,α3ic3i, . . . ,αnicni) | (c1, c2, . . . , cn) ∈ C
}
=

4⊕
i=1

γiC
α′i
i .

Here,Cα
′
i

i = {(α1ic1i,α2ic2i,α3ic3i, . . . ,αnicni) | (c1i, c2i, . . . , cni) ∈ Ci} and α′i = (α1i,α2i,

. . . ,αni). Clearly, the Cα
′
i

i are linear codes over Fq with generator matrices Gα
′
i

i for

i = 1, 2, 3, 4. Also, α =
∑4

i=1 γiα
′
i . From [5, Theorem 5.1], each Cα

′
i

i is a Euclidean
LCD code over Fq and by Theorem 3.2 (with l = 0), Cα is a Euclidean LCD code. �

Next, we use the technique described in [5] to establish the existence of α for which
Cα is a Euclidean LCD code for a given linear code C over R.

COROLLARY 4.4. Let Fq (q > 3) be a finite field and C be an [n, k, d] linear code over
R. Then Cα is an [n, k, d] Euclidean LCD code over R for some α = (α1,α2, . . . ,αn) in
Rn with αj � 0 for 1 ≤ j ≤ n.

PROOF. Let C =
⊕4

i=1 γiCi be a linear code overR. If C is a Euclidean LCD code, then
we can take α = (α1,α2, . . . ,αn) ∈ Rn such that αj = γ1 + γ2 + γ3 + γ4 for 1 ≤ j ≤ n.
Then, Cα = C, a Euclidean LCD code over R.

https://doi.org/10.1017/S0004972722001344 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001344


338 A. Agrawal, G. K. Verma and R. K. Sharma [9]

If C is not a Euclidean LCD code, then by Theorem 3.2, Ci is not a Euclidean LCD
code for some i = 1, 2, 3, 4. If Gi is the generator matrix for Ci, then det(GiGT

i ) = 0. Set
Pi = GiGT

i . There exists an integer ti ≥ 0 and Ri ⊆ {1, 2, . . . , ki} with cardinality |Ri| =
ti + 1 such that det((Pi)Ri ) � 0 and det((Pi)Si ) = 0 for any Si ⊆ {1, 2, . . . , ki} with 0 ≤
|Si| ≤ ti. Also, F∗q \ {−1, 1} � ∅ since q > 3. Choose α′i = (α1i,α2i, . . . ,αni) ∈ Fn

q such
that αji ∈ F∗q \ {−1, 1} if j ∈ Ri and αji = 1 if j ∈ {1, 2, . . . , ki} \ Ri. By [5, Theorem 5.1],

Cα
′
i

i is a Euclidean LCD code over Fq. Take α =
∑4

m=1 γmα
′
m ∈ Rn, where α′m = α

′
i for

m = i and α′m = (1, 1, . . . , 1) for m � i. Then by Theorem 4.3,Cα =
⊕4

m=1 γmCα
′
m

m is an
[n, k, d] Euclidean LCD code over R. �

Next, we construct an l-Galois LCD code from a given linear code over a finite field.
Then similarly, we provide the construction over R.

THEOREM 4.5. Let Fq (q = pe) be a finite field. For 0 < l < e and pe−l + 1 | pe − 1,
set β = (pe − 1)/(pe−l + 1). Let G = [Ik : M] be a generator matrix for a linear code C
over Fq with parameters [n, k, d] and denote the matrix G(Fe−l(G))T by P. Let t with 0 ≤
t ≤ k − 1 be an integer such that det(PI) = 0 for any I ⊆ {1, 2, . . . , k} with 0 ≤ |I| ≤ t,
and assume there exist J ⊆ {1, 2, . . . , k} with cardinality t + 1 such that det(PJ) � 0.
Suppose a ∈ Fn

q such that aj ∈ Fq \ (F∗q) β for j ∈ J and aj ∈ (F∗q) β for j ∈ {1, 2, . . . , n} \ J.
Then, Ca is an l-Galois LCD code over Fq.

PROOF. A generator matrix Ga for Ca is obtained by multiplying the jth column of
the matrix G = [Ik : M = (mis)] by aj for 1 ≤ j ≤ n. The (ij)th entry of Ga(Fe−l(Ga))T

is ape−l+1
i +

∑n−k
s=1 ape−l+1

k+s mpe−l+1
is if i = j and

∑n−k
s=1 ape−l+1

k+s mism
pe−l

js if i � j. Since ak+s � J,

ape−l+1
k+s = 1 for 1 ≤ s ≤ n − k. The (ij)th entry of Ga(Fe−l(Ga))T is ape−l+1

i +
∑n−k

s=1 mpe−l+1
is

if i = j and
∑n−k

s=1 mism
pe−l

js if i � j. The (ij)th entry of G(Fe−l(G))T is 1 +
∑n−k

s=1 mpe−l+1
is

if i = j and
∑n−k

s=1 mism
pe−l

js if i � j. Hence, Ga(Fe−l(Ga))T = G(Fe−l(G))T
+ diagk[b],

where b = (ape−l+1
1 − 1, ape−l+1

2 − 1, . . . , ape−l+1
k − 1). Note that the support of b is the

set J. By Lemma 4.1, det(Ga(Fe−l(Ga))T ) = det(P + diagk[b]) = (
∏

j∈J bj) det(PJ) � 0.
Hence, Ca is an l-Galois LCD code over Fq. �

THEOREM 4.6. All notation is as above. For 0 < l < e and pe−l + 1 | pe − 1, set
β = (pe − 1)/(pe−l + 1). LetC =

⊕4
i=1 γiCi be an [n, k, d] linear code overR, where the

Ci are the component codes over Fq with generator matrices Gi. Let Pi = Gi(Fe−l(Gi))
T

and 0 ≤ ti ≤ ki − 1 be an integer such that det((Pi)Si ) = 0 for any Si ⊆ {1, 2, . . . , ki} with
0 ≤ |Si| ≤ ti and assume there exist Ri ⊆ {1, 2, . . . , ki} with cardinality ti + 1 such that
det((Pi)Ri ) � 0. Suppose α ∈ Rn such that αji ∈ Fq \ (F∗q) β for all j ∈ Ri and αji ∈ (F∗q) β

for all j ∈ {1, 2, . . . , n} \ Ri, for i = 1, 2, 3, 4. Then, Cα is an l-Galois LCD code over R.

PROOF. Since Cα =
⊕4

i=1 γiC
α′i
i , where α′i = (α1i,α2i, . . . ,αni) ∈ Fn

q and the Cα
′
i

i are

linear codes over Fq with generator matrices Gα
′
i

i , by Theorem 4.5, the Cα
′
i

i are l-Galois
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LCD codes over Fq for i = 1, 2, 3, 4. Therefore, by Theorem 3.2, Cα is an l-Galois LCD
code over R. �

The following corollary shows the existence of α for which Cα is an l-Galois LCD
code equivalent to the linear code C over R.

COROLLARY 4.7. Let Fq (q = pe) be a finite field. For 0 < l < e and pe−l + 1 | pe − 1,
set β = (pe − 1)/(pe−l + 1) (β > 1). Let C be an [n, k, d] linear code over the ring
R. Then, Cα is an [n, k, d] l-Galois LCD code over the ring R for some α =
(α1,α2, . . . ,αn) ∈ Rn with αj � 0 for 1 ≤ j ≤ n.

PROOF. Let C =
⊕4

i=1 γiCi be a linear code over R. Take α = (α1,α2, . . . ,αn) ∈ Rn,
where αj = γ1 + γ2 + γ3 + γ4 for 1 ≤ j ≤ n, if C is l-Galois LCD code over R. Then,
Cα = C, which is an l-Galois LCD code over R.

If C is not an l-Galois LCD code, then by Theorem 3.2, Ci is not an
l-Galois LCD code for some 1 ≤ i ≤ 4. If Gi is the generator matrix for Ci, then
det(Gi(Fe−l(Gi))T ) = 0. Let Pi = Gi(Fe−l(Gi))T . Then there exists an integer ti ≥ 0
and Ri ⊆ {1, 2, . . . , ki} with cardinality |Ri| = ti + 1 such that det((Pi)Ri ) � 0 and
det((Pi)Si ) = 0 for any Si ⊆ {1, 2, . . . , ki}with cardinality 0 ≤ |Si| ≤ ti. Also, since β > 1,
F
∗
q \ (F∗q)β � ∅. Choose α′i = (α1i,α2i, . . . ,αni) ∈ Fn

q such that αji ∈ F∗q \ (F∗q)β for j ∈ Ri

and αji = 1 for j ∈ {1, 2, . . . , ki} \ Ri. By Theorem 4.5, Cα
′
i

i is l-Galois LCD code over
Fq. Take α =

∑4
m=1 γmα

′
m ∈ Rn, where α′m = α

′
i for m = i and α′m = (1, 1, . . . , 1) for

m � i. By Theorem 4.6, Cα is an [n, k, d] l-Galois LCD code over the ring R. �

5. MDS codes over R
For a linear code C over the ring R with parameters [n, k, d], we have |C| ≤ |R|n−d+1

and so d ≤ n − log|R| |C| + 1, the Singleton bound on the ring R. Since |R| = q4 and
|C| = qk, where k =

∑4
i=1 ki, the Singleton bound is d ≤ n − 1

4
∑4

i=1 ki + 1. A code which
attains the Singleton bound is called an MDS code. We have the following result for
an MDS code over a finite field Fq.

LEMMA 5.1 [11]. If C is a linear code over Fq, then the following are equivalent:

(1) C is an MDS code over Fq;
(2) C⊥ is an MDS code over Fq;
(3) C⊥l is an MDS code over Fq.

The following theorem shows that a linear code is an MDS code if and only if its
Euclidean (l-Galois) dual is an MDS code over the ring R.

THEOREM 5.2. Let C =
⊕4

i=1 γiCi be a linear code over the ring R, where the Ci are
the component codes over the finite field Fq.

(1) C is an MDS code over the ring R if and only if the Ci are MDS codes over Fq
with the same parameters for each i = 1, 2, 3, 4.
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(2) C is an MDS code over the ring R if and only if C⊥ is an MDS code over R.
(3) C is an MDS code over the ring R if and only if C⊥l is an MDS code over R.

PROOF. (1) Suppose C is an MDS code over the ring R with parameters [n, k, d],
where 4d = 4n −∑4

i=1 ki + 4. Since d = min1≤i≤4{di}, where di = dH(Ci), it follows that
d = dj for some j = 1, 2, 3, 4. This implies 4dj = 4n −∑4

i=1 ki + 4. Now di ≤ n − ki + 1
for i = 1, 2, 3, 4 and so

∑4
i=1 di ≤ 4n −∑4

i=1 ki + 4 = 4dj. Since dj is the minimum of
the di for i = 1, 2, 3, 4, we have 4dj ≤

∑4
i=1 di. It follows that 4dj =

∑4
i=1 di which is

only possible when d1 = d2 = d3 = d4. Hence, the Ci are MDS codes over Fq with the
same parameters.

Conversely, if the Ci are MDS codes with the same parameters, that is,
d1 = d2 = d3 = d4 and di = n − ki + 1, then 4di = 4n −∑4

i=1 ki + 4 for i = 1, 2, 3, 4.
Since d = min1≤i≤4{di}, this implies 4d = 4n −∑4

i=1 ki + 4. Hence, C is an MDS code.
(2) Let C be an MDS code over the ring R. By part (1), the Ci are MDS codes over

Fq having the same parameters for each i = 1, 2, 3, 4. Hence, the C⊥i are MDS codes
over Fq with the same parameters for each i = 1, 2, 3, 4. This implies that C⊥ is an MDS
code over the ring R. A similar argument can be made for the converse.

(3) Let C be an MDS code over the ring R. Then, Cp(e−l)
is also an MDS code over

the ring R. By Lemma 3.1, C⊥l = (Cp(e−l)
)⊥, and hence C⊥l is an MDS code over R.

Conversely, if C⊥l is an MDS code over R, it follows that Cp(e−l)
is an MDS code.

Hence, C is an MDS code over R. �

REMARK 5.3. Result (1) in the above theorem over the ring Z4 + uZ4 + vZ4 + uvZ4 is
proved in [10].
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