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Abstract

Fomin–Zelevinsky conjectured that in any cluster algebra, the cluster monomials are
linearly independent and that the exchange graph and cluster complex are independent
of the choice of coefficients. We confirm these conjectures for all skew-symmetric cluster
algebras.

1. Introduction

When Fomin and Zelevinsky invented cluster algebras more than ten years ago [FZ02], one
of their hopes was that the cluster monomials would be part of a ‘canonical’ basis. This
naturally led them to the conjecture that cluster monomials should be linearly independent
[FZ03b, Conjecture 4.16]. The conjecture has been checked for several classes, notably for finite
type cluster algebras [CK08, Dem11], for skew-symmetric acyclic cluster algebras [GLS12] and
also for cluster algebras associated with surfaces [CL11] (see also [FST08, MSW13]). It was proved
for all skew-symmetric cluster algebras of geometric type whose exchange matrix is of full rank
in [DWZ10, Pla11]. In this note, we show that the condition on the rank may be dropped, and
that we need not restrict ourselves to the geometric type. In other words, we show that cluster
monomials are linearly independent in any cluster algebra associated with a skew-symmetric
matrix.

Our proof is based on the additive categorification of cluster algebras using the cluster
category [Pla11] (closely related to that using decorated representations [DWZ10]) and on an
idea from [Cer11]. We show that the canonical cluster character yields a bijection from the set of
isomorphism classes of reachable rigid objects onto the set of cluster monomials (Corollary 3.5).
In this way, we treat the cluster algebras of geometric type, i.e. those associated with ice quivers.
As a corollary of our proof, we show that for cluster algebras associated with ice quivers, the
exchange graph (and, in fact, the cluster complex) does not depend on the frozen part of the
quiver, which confirms [FZ07, Conjecture 4.3] for this class. This has been shown previously
in [GSV08] (see also the book [GSV10]) for skew-symmetrizable cluster algebras whose defining
matrix is of full rank. Once these results have been obtained for cluster algebras of geometric
type, we show how we can extend them to arbitrary coefficients thanks to Fomin–Zelevinsky’s
separation formula.
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We expect that our methods and results can be extended to the skew-symmetrizable cluster
algebras categorified by Demonet in [Dem].

2. Recollections

2.1 Skew-symmetric cluster algebras of geometric type
We recall notions from [FZ07]. Let B̃ be an n× r matrix whose top r × r matrix B is skew-
symmetric. We will work over the field Q(x1, . . . , xn); let P be the tropical semifield generated
by xr+1, . . . , xn.

Definition 2.1. A seed is a pair (B̃, u), where:

• B̃ is a matrix as above; and

• u = (u1, . . . , un) is an ordered set whose elements form a free generating subset of the field
Q(x1, . . . , xn).

Definition 2.2. Let i ∈ {1, . . . , r}. The mutation of the seed (B̃, u) at vertex i is the seed
(B̃′, u′), where:

• B̃′ = (b′kj) is the n× r matrix defined by

b′kj =

−bkj if k = i or j = i,

bkj +
bki|bij |+ |bki|bij

2
otherwise,

where [z]+ = max(0, z) for any real number z;

• u′ = (u′1, . . . , u
′
n), with u′j = uj if i 6= j and

uiu
′
i =

n∏
j=1

u
[bji]+
j +

n∏
j=1

u
[−bji]+
j .

Definition 2.3. Let B̃ be a matrix as above.

(1) The clusters are the sets u contained in seeds (B̃′, u) obtained from the initial seed
(B̃, x = (x1, . . . , xn)) by iterated mutations.

(2) The cluster variables are elements ui of any cluster u, with i ∈ {1, . . . , r}.
(3) The coefficients are the elements xr+1, . . . , xn.

(4) A cluster monomial is a product of cluster variables all belonging to the same cluster.

(5) The (skew-symmetric) cluster algebra (of geometric type) A(B̃) is the ZP-subalgebra of
Q(x1, . . . , xn) generated by all cluster variables.

Notice that one can associate an ice quiver (Q, F ) to the matrix B̃ in the following way:

• Q has n vertices, labelled by the rows of B̃;

• the set F of frozen vertices is the set {r + 1, . . . , n};
• for any vertices i and j of Q, there are [bij ]+ arrows from i to j.

Conjecture 2.4 [FZ07, Conjecture 7.2]. The cluster monomials of any cluster algebra are
linearly independent over ZP.
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Linear independence of cluster monomials

2.2 Cluster categories
We now briefly recall results on the categorification of cluster algebras via triangulated categories.
Recent surveys on the subject include [Ami11, Kel, Rei08, Rei10].

Let (Q, W ) be a quiver with a non-degenerate potential [DWZ08]. Generalizing the cluster
category introduced in [BMRRT06], Amiot [Ami09] has defined the cluster category CQ,W of
(Q, W ); it is a triangulated category with a rigid object Γ = Γ1 ⊕ · · · ⊕ Γn whose endomorphism
algebra is isomorphic to the Jacobian algebra J(Q, W ).

As in [Pla11, Definition 3.9], define D to be the full subcategory of all objects X of CQ,W
such that:

• there exists a triangle TX1 → TX0 →X → ΣTX1 , with TX0 and TX1 in add Γ;

• there exists a triangle T 0
X → T 1

X → ΣX → ΣT 0
X , with T 0

X and T 1
X in add Γ; and

• HomC(Γ, ΣX) is finite-dimensional.

Define the index [DK08] of an object X of D as

indΓ X = [TX0 ]− [TX1 ] ∈K0(add Γ)∼= Zn.

Note that K0(add Γ) is isomorphic to the free abelian group generated by the elements
corresponding to the indecomposable direct summands of Γ, which we denote by [Γ1], . . . , [Γn].

An object X admits an index if there exists a triangle TX1 → TX0 →X → ΣTX1 , with TX0 and
TX1 in add Γ (so that the index of X is defined).

The cluster character [CC06, Pal08] is the map CC : Obj(D)−→ Z[x±1
1 , . . . , x±1

n ] defined by

CC (X) = xindΓ X
∑
e

χ(Gre(HomC(Γ, ΣX)))xB·e,

where:

• B is the skew-symmetric matrix associated to Q;

• Gre
(

HomC(Γ, ΣX)
)

is the quiver Grassmannian (see [CC06, § 2.3]). It is a projective variety
whose points correspond to submodules with dimension vector e of the EndC(Γ)-module
HomC(Γ, ΣX);

• χ is the Euler–Poincaré characteristic.

A result of [KR07] implies the following proposition if H0Γ is finite-dimensional.

Proposition 2.5 [Pla11]. The functor F = HomC(Γ, Σ(?)) induces an equivalence of additive
categories

D/(Γ) ∼ // modJ(Q, W ),

where mod J(Q, W ) is the category of finite-dimensional right modules over the Jacobian algebra
J(Q, W ).

There is a notion of mutation of objects inside CQ,W , studied in [KY11]. A reachable object is
an object obtained by iterated mutations from Γ. Any reachable object lies in the subcategory
D (see [Pla11, § 3.3]).

The following theorem generalizes results obtained in [CC06, CK06, CK08, Pal08].

Theorem 2.6 [Pla11]. Let B be an r × r skew-symmetric matrix, and let Q be the associated
quiver. Let W be a non-degenerate potential on Q. Then the cluster character CC induces a
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surjection

{isoclasses of indecomposable reachable objects of D}
→ {cluster variables of A(B)},

which commutes with mutation on both sides.

In particular, if B̃ is an n× r matrix whose upper r × r matrix is B, and if (Q̃, F ) is the
associated ice quiver, then the cluster variables of A(B̃) are obtained from the cluster character
CC by restricting mutation on the left-hand side to non-frozen vertices.

3. Linear independence of cluster monomials

Definition 3.1 [CL11, Definition 6.1]. Let B be a skew-symmetric matrix and B̃ be an n× r
integer matrix whose top r × r matrix is B.

(1) Let u = (u1, . . . , ur) be a cluster of A(B̃). A proper Laurent monomial in u is a product
of the form uc11 · · · ucr

r where at least one of the ci is negative.

(2) The cluster algebraA(B̃) has the proper Laurent monomial property if for any two clusters
u and u′ of A(B̃), every monomial in u′ in which at least one element from u′\u appears with
positive exponent is a ZP-linear combination of proper Laurent monomials in u.

Theorem 3.2 [CL11, Theorem 6.4]. If A(B̃) has the proper Laurent monomial property, then
its cluster monomials are linearly independent over ZP.

Using the key idea of [Cer11, Lemma 5.1] it was proved in [CL11, Theorem 6.2] that a
cluster algebra A(B̃) has the proper Laurent monomial property if there exists a potential on
the quiver Q of B̃ satisfying certain conditions. These conditions allow the use of a homological
interpretation of the E-invariant (see [DWZ10, § 10]).

If (Q, W ) is any quiver with a non-degenerate potential W , then the E-invariant has a similar
interpretation in the cluster category CQ,W (see [Pla11, Proposition 4.15]): it can be thought of
as one half of the dimension of the space of selfextensions of a given object. Using it, we prove
the following result.

Let B be any skew-symmetric matrix and B̃ be an n× r integer matrix whose top r × r
matrix is B. Let (Q, F ) be the ice quiver corresponding to B̃, and let W be a non-degenerate
potential on Q.

Theorem 3.3. If R is a rigid object of D ⊂ CQ,W which does not belong to add Γ and such
that HomC(Γi, ΣR) = 0 for i= r + 1, . . . , n, then CC (R) is a ZP-linear combination of proper
Laurent monomials in the initial cluster.

Proof. We follow the proof of [CL11, Theorem 6.2]. Since {[Γ1], . . . , [Γn]} is a Z-basis of
K0(add Γ), we can write indΓ R=

∑n
i=1 gi[Γi]. Then we have that

CC (R) = xindΓ R
∑
e

χ(Gre(HomC(Γ, ΣR)))xB̃·e0

=
∑
e

χ(Gre(HomC(Γ, ΣR)))xindN
Γ R+B·e0

N xindF
Γ R+Bc·e0

F ,

where Bc is the lower (n− r)× r submatrix of B̃, e0 = (e1, . . . , er), xN = (x1, . . . , xr), xF =
(xr+1, . . . , xn), indNΓ R=

∑r
i=1 gi[Γi] and indFΓ R=

∑n
i=r+1 gi[Γi].

1756

https://doi.org/10.1112/S0010437X1300732X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300732X


Linear independence of cluster monomials

It suffices to show that, if e is such that Gre(HomC(Γ, ΣR)) is non-empty, then indNΓ R+B ·
e0 (the power of xN ) has at least one negative entry.

Assume first that e is non-zero. Since B is skew-symmetric, we have that e0 ·B · e0 vanishes,
and thus e0 · (indNΓ R+B · e0) = e0 · indNΓ R. Thus it is sufficient to prove that e0 · indNΓ R is
negative. Since the last (n− r) entries of e are zero, we have that e0 · indNΓ R= e · indΓ R.

Let F be the functor HomC(Γ, Σ(?)). Let L be a submodule of FR with dimension vector e,
and let V be an object of D such that FV = L. Then, by [Pla11, Proposition 4.15] (or rather,
by the second-to-last equality at the end of the proof),1 we have that

dim(ΣΓ)(V, ΣR) = dim HomJ(Q,W )(FV, FR) + e · indΓ R.

Since FV = L is a submodule of FR and since the latter is non-zero, we have that
dim HomJ(Q,W )(FV, FR) is positive. Moreover, let i : V →R be a lift in CQ,W of the inclusion of
L in FR. Embed i in a triangle to get a diagram

U
u // V

i //

f

��

R //

0}}

ΣU

ΣR

where the upper row is a triangle, and where u is in the ideal (Γ), since Fu= 0 (Fi being
injective). Now, if f is in (ΣΓ)(V, ΣR), then the composition fu vanishes since Γ is rigid, and
thus f factors through R. But R is also rigid; thus f is zero. Therefore dim(ΣΓ)(V, ΣR) = 0,
and e · indΓ R is negative; this is what we wanted to prove.

Now, assume that e is zero. Then we need to show that indNΓ R has a negative entry.
Let R= T a1

1 ⊕ · · · ⊕ T as
s , with each Ti indecomposable. By hypothesis, one of the Ti, with

i ∈ {1, . . . , r}, is not a direct factor of Γ; thus indNΓ Ti has a negative entry (because rigid
objects whose indices have only non-negative entries are in add Γ; this is a consequence of
[Pla11, Proposition 3.1]). Moreover, by [Pla11, Theorem 3.7(1)], the indices of T1, . . . , Ts are
sign-coherent. Thus indNΓ R=

∑s
i=1 ai indNΓ Ti has a negative entry.

Another way of dealing with the case e = 0 is by replacing V by R in the above equality,
which becomes

dim(ΣΓ)(R, ΣR) = dim HomJ(Q,W )(FR, FR) + dim FR · indΓ R.

Since R is rigid, the left-hand side vanishes; since R is not in add Γ, FR is not zero. Thus we get

dim FR · indΓ R=−dim HomJ(Q,W )(FR, FR)< 0,

and since the entries of dim FR corresponding to frozen vertices vanish, this implies that indNΓ R
has a negative entry. This finishes the proof. 2

Corollary 3.4. If B is any skew-symmetric matrix and B̃ is an n× r integer matrix whose
top r × r matrix is B, then the cluster algebra A(B̃) has the proper Laurent monomial property.
In particular, the cluster monomials of any skew-symmetric cluster algebra of geometric type are
linearly independent over ZP.

Proof. If the first statement of the theorem is true, then the independence of cluster monomials
follows from [CL11, Theorem 6.4]. Let us prove that A(B̃) has the proper Laurent monomial
property.

1 There is a typo in this equality in [Pla11]; the term indΓ ΣY should be read indΓ Y .

1757

https://doi.org/10.1112/S0010437X1300732X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300732X


G. Cerulli Irelli et al.

Let Q be the quiver associated to B̃, and let W be a non-degenerate potential on Q. Consider
the cluster category CQ,W . Let (u1, . . . , ur) be a cluster of A(B̃), and let z = ua1

1 · · · uar
r be a

cluster monomial. By [Pla11, Theorem 4.1], there exists a rigid object T = T1 ⊕ · · · ⊕ Tn of CQ,W
obtained from Γ by iterated mutations at vertices in {1, . . . , r} and such that

z = CC (T a1
1 ⊕ · · · ⊕ T

ar
r ).

Assume, moreover, that there is an index i such that ui is not in the initial cluster and such
that ai is positive. Then R= T a1

1 ⊕ · · · ⊕ T ar
r satisfies the hypothesis of Theorem 3.3; thus z is

a ZP-linear combination of proper Laurent monomials in the initial cluster. This finishes the
proof. 2

Corollary 3.5. The surjection of Theorem 2.6 is a bijection.

Proof. Assume that R and R′ are indecomposable reachable objects such that CC (R) = CC (R′).
Let i be a sequence of vertices of Q and j be a vertex of Q such that µi(R) is isomorphic to Γj .
Then we have that

xj = CC (Γj) = CC (µi(R)) = µi(CC (R)) = µi(CC (R′)) = CC (µi(R′)).

Therefore, CC (µi(R′)) is not a linear combination of proper Laurent monomials in the initial
variables. By Theorem 3.3, this implies that µi(R′) lies in add Γ. Since CC (µi(R′)) = xj , we must
have that µi(R′) is isomorphic to Γj , and thus to µi(R). Therefore, R and R′ are isomorphic. 2

As noticed in [BMRT07, Theorem 4.1] for acyclic cluster algebras with trivial coefficients,
the bijection of Corollary 3.5 allows us to prove that seeds are determined by their clusters, as
conjectured in [FZ03b, Conjecture 4.14(2)]. This was also proved in [GSV08] for cluster algebras
of geometric type, and for cluster algebras whose matrix is of full rank (including the skew-
symmetrizable case).

Corollary 3.6. In any skew-symmetric cluster algebra, each seed is determined by its cluster.

Proof. We first deal with cluster algebras with trivial coefficients. Let (u, Q) and (u, Q′) be two
seeds with the same cluster. By Corollary 3.5, there is a unique reachable object T corresponding
to u in the cluster category; moreover, the ordinary quiver of EndC(T ) has to be both Q and Q′.
Thus the two seeds coincide. The result is proved for trivial coefficients.

If the coefficients are taken in an arbitrary semifield P, then the morphism of semifields
P→{1} induces a morphism of cluster algebras f :A→Atriv, where Atriv is the cluster algebra
defined from the same quiver as A, but with trivial coefficients. Thus if two seeds (u, Q) and
(u, Q′) in A have the same cluster, their images in Atriv by f also have the same cluster,
and thus Q and Q′ are equal, since clusters determine their seeds when the coefficients are
trivial. 2

To close this section, we present a proof of a maximality property that is satisfied by clusters,
which was formulated as a question by Peter Tingley.

Lemma 3.7. Let u be a cluster in a skew-symmetric cluster algebra A, and let y be a cluster
variable that is not in u. Then y is not invertible in Z[u±1

1 , . . . , u±1
n ] (in other words, y is not a

Laurent monomial in u).

Proof. Assume that y is a Laurent monomial in u. Write y =±ua1
1 · · · uan

n . By Corollary 3.4, y
is a proper Laurent monomial; thus we can assume that a1 is negative. Let u′1 be the cluster
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variable obtained by mutating u at vertex 1. Then we get that

y =
(u′1)−a1ua2

2 · · · uan
n

(
∏

1→i ui +
∏
j→1 uj)−a1

.

If the vertex 1 is not incident with any arrow, then the denominator of this expression is a
positive power of 2, contradicting the fact that y lies in Z[u′±1

1 , u±1
2 . . . , u±1

n ]. Otherwise the
denominator is a sum of two distinct monomials, contradicting the Laurent phenomenon. Thus
y cannot be invertible. 2

Proposition 3.8. Let {z1, . . . , zp} be a set of cluster variables in a skew-symmetric cluster
algebra. Assume that arbitrary finite products of elements of this set are cluster monomials, and
that the set is maximal for this property. Then the set is a cluster.

Proof. By our assumption, the product z1 · · · zp is a cluster monomial; thus there exists a cluster
u and non-negative integers a1, . . . , an such that

z1 · · · zp = ua1
1 · · · u

an
n .

This implies that z1, . . . , zp are all invertible in Z[u±1
1 , . . . , u±1

n ]; by Lemma 3.7, they must all
belong to u. Therefore, the set {z1, . . . , zp} is a subset of the cluster u. By maximality, the two
sets are equal. 2

4. Exchange graphs

Definition 4.1 [FZ07, Definition 4.2]. The exchange graph of a cluster algebra A(x, y, B) is
the n-regular connected graph whose vertices are the seeds of A(x, y, B) (up to simultaneous
renumbering of rows, columns and variables) and whose edges connect the seeds related by a
single mutation.

Conjecture 4.2 [FZ07, Conjecture 4.3]. The exchange graph of a cluster algebra A(x, y, B)
only depends on the matrix B.

Definition 4.3. Let (Q, W ) be a non-degenerate quiver with potential (where the vertices
r + 1, . . . , n are frozen), and let CQ,W be the associated cluster category.

(1) The exchange graph of Γ is the r-ary graph whose vertices are isoclasses of objects
reachable from Γ (by mutation at non-frozen vertices), and where two vertices are joined by
an edge if the corresponding objects are related by a mutation.

(2) The exchange graph of indices is the r-ary graph obtained from the exchange graph of Γ
by replacing any vertex T = T1 ⊕ · · · ⊕ Tn by the n-tuple (indΓ T1, . . . , indΓ Tn) of elements of
K0(add Γ)∼= Zn.

(3) The exchange graph of reduced indices is the graph obtained from the exchange graph of
indices by replacing each n-tuple

(indΓ T1, . . . , indΓ Tn)

by the r-tuple (indNΓ T1, . . . , indNΓ Tr), where indNΓ Ti is obtained from indΓ Ti by forgetting the
coefficients of [Γr+1], . . . , [Γn].

The following corollary is a consequence of Corollary 3.5.

Corollary 4.4. The exchange graphs of A(B̃), of Γ, of indices and of reduced indices are
isomorphic.
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Proof. The fact that the exchange graphs of A(B̃) and of Γ are isomorphic is a direct consequence
of Corollary 3.5. The fact that the exchange graphs of Γ and of indices are isomorphic follows
from the fact that rigid objects are determined by their index, by [Pla11, § 3.1], cf. also [DK08].

Let ΓN be the direct sum of the Γj , 1 6 j 6 r, and ΓF be the direct sum of the Γj ,
r + 1 6 j 6 n. To prove that the exchange graph of indices and of reduced indices are isomorphic,
it is sufficient to show that if X and X ′ are indecomposable reachable objects (not in add ΓF )
such that indNΓ X = indNΓ X ′, then they are isomorphic. Let

T1→ T0 ⊕R→X → ΣT1 and T1→ T0 ⊕R′→X ′→ ΣT1

be triangles, with T1, T0 ∈ add ΓN and R, R′ ∈ add ΓF . We can assume that T1 has no direct factor
in add ΓF since we have that HomC(X, ΣΓF ) and HomC(X ′, ΣΓF ) vanish (this is true because
we only allow mutations at non-frozen vertices). But then X ⊕R′ and X ′ ⊕R are rigid objects
which have the same index; by [DK08], they are isomorphic. Since X and X ′ are indecomposable
and not in add ΓF , we get that they are isomorphic. 2

Lemma 4.5. Let (Q, W ) be a non-degenerate quiver with potential, and let Q0 be the quiver
obtained from Q by deleting the frozen vertices and arrows incident with them. Then the graph
of reduced indices of (Q, W ) only depends on Q0.

Proof. Note first that it follows from the definition of mutation of quivers that µi(Q)0 = µi(Q0)
for any non-frozen vertex i.

For any quiver R and any sequence i = (i1, . . . , is) of non-frozen vertices, denote by µi(R)
the mutated quiver µis · · · µi2µi1(R).

Let i = (i1, . . . , is) be a sequence of non-frozen vertices of Q, and let T = T1 ⊕ · · · ⊕ Tn be
the object obtained from Γ by iterated mutations at i. The corresponding vertex in the exchange
graph of reduced indices is (indNΓ T1, . . . , indNΓ Tr). We must prove that each entry only depends
on Q0 (and, implicitly, on the sequence i of mutations).

Recall from [KY11] the functor Φi : Cµi(Q,W )→CQ,W which sends the direct factor (Γµi(Q,W ))j
of Γµi(Q,W ) to Γj if i 6= j and to a cone of the natural morphism

Γi −→
⊕
α:i→k

Γk

if i= j. Following [KY11], T is the image of Γµi(Q,W ) ∈ Cµi(Q,W ) by the composition of functors

Cµi(Q,W )
Φis // · · ·

Φi2 // Cµi1 (Q,W )
Φi1 // CQ,W .

We will write Γ′ = Γµi(Q,W ) and T = Φi(Γ′).
The lemma will be a consequence of the following stronger statement: if X is a rigid object

of Cµi(Q,W ) which admits an index, then indNΓ Φi(X) only depends on Q0 and on indNΓ′ X.
We prove this statement by induction on s. For s= 1, we only perform one mutation at

vertex i= i1. Let indΓ Φi(X) =
∑n

j=1 gj [Γj ] and indΓ′ X =
∑n

j=1 g
′
j [Γ
′
j ]. Then the proof of [FZ07,

Conjecture 7.12] given in [Pla11, Theorem 3.7(iv)] gives us the formula

gj =

{
−g′i if i= j,

g′j + g′i[b
′
ji]+ − b′ji min(g′i, 0) if i 6= j,

where B′ = (b′ij) is the matrix of µi(Q), and [z]+ stands for max(z, 0) for any real number z.
It follows from this formula that indNΓ Φi(X) =

∑r
j=1 gj [Γj ] only depends on indNΓ′ X and on

µi(Q)0, and this last quiver only depends on Q0. The statement is shown for s= 1.
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Assume that it is proved for s− 1. Let i = (i1, . . . , is). Then indNΓ Φi(X) only depends on Q0

and on indNΓ′′ Φis(X), where Γ′′ = Γµis−1 ···µi1 (Q,W ). Moreover, indNΓ′′ Φis(X) only depends on
indNΓ′ X and on µis−1 · · · µi1(Q)0. This last quiver only depends on Q0. This proves the statement.

To finish the proof of the lemma, apply the statement to X = Γ′j . Since Φi(Γ′j) = Tj , and
since Γ′j is determined by its index, we get that indNΓ Tj only depends on Q0. This finishes the
proof of the lemma. 2

Theorem 4.6. Conjecture 4.2 is true for skew-symmetric cluster algebras of geometric type,
that is, the exchange graph of A(B̃) only depends on the top r × r matrix B.

Proof. By Corollary 4.4, the exchange graph of A(B̃) is isomorphic to the exchange graph of
reduced indices, which only depends on B by Lemma 4.5. 2

Using similar arguments, we can prove a stronger result concerning the cluster complex.

Definition 4.7 [FZ03a]. The cluster complex of a cluster algebra A(x, y, B) is the simplicial
complex whose set of vertices is the set of cluster variables and whose simplices are the subsets
of clusters.

Theorem 4.8. Let A(B̃) be a cluster algebra of geometric type. Then the cluster complex of
A(B̃) only depends on the top r × r matrix B.

Proof. The proof of this result follows the lines of the proof of Theorem 4.6. Let Q be the quiver
(with frozen vertices) associated to B̃, and let W be a non-degenerate potential on Q. Define
the following simplicial complexes:

(1) the reachable complex of CQ,W , whose vertices are indecomposable reachable objects and
whose simplices correspond to direct factors of reachable cluster-tilting objects;

(2) the index complex, obtained from the reachable complex by replacing each vertex by the
index of the corresponding object;

(3) the reduced index complex, obtained from the index complex by replacing each vertex of the
form indΓ X by indNΓ X.

It follows from Corollary 3.5 that the cluster complex of A(B̃) and the reachable complex of
CQ,W are isomorphic. Since rigid objects are determined by their index, the reachable complex
is isomorphic to the index complex. Moreover, since a reachable indecomposable object X is in
fact determined by indNΓ X (see the proof of Corollary 4.4), the index complex is isomorphic to
the reduced index complex.

Notice that the reduced index complex is completely determined by the maximal simplex
corresponding to the initial cluster, and by the mutation rule. Indeed, from there one can
construct the rest of the simplicial complex by iterated mutations. Moreover, it was proved
in Lemma 4.5 that the mutation rule for reduced indices only depends on the top r × r matrix
B. This finishes the proof. 2

5. Cluster algebras with arbitrary coefficients

In this section, we extend Corollary 3.4 and Theorem 4.6 to the case of skew-symmetric
cluster algebras with arbitrary coefficients. For the definition of cluster algebras with arbitrary
coefficients, we refer the reader to [FZ07, § 2].

The linear independence of cluster monomials will follow from Corollary 3.4 and from the
‘separation of additions’ of Fomin–Zelevinsky, which we recall.
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Theorem 5.1 [FZ07, Theorem 3.7]. Let A be a cluster algebra associated to the matrix B and
with coefficients in an arbitrary semifield P. Let t be a seed of A, and let x`,t be a cluster variable
of that seed. Then

x`,t =
X`,t|F (x1, . . . , xm; y1, . . . , ym)

F`,t|P(y1, . . . , ym)
.

In this theorem, X`,t and F`,t are rational functions which depend on the cluster algebra with
principal coefficients (see [FZ07, Definition 3.1]) and with defining matrix B. They are defined
in [FZ07, Definition 3.3].

Corollary 5.2. If the cluster algebra with principal coefficients A0 associated to the matrix
B has the proper Laurent monomial property, then any cluster algebra associated to B has the
same property.

Proof. By definition,X`,t is an expression of a cluster variable with respect to the initial variables,
inside the cluster algebra with principal coefficients. By assumption, this is an initial variable
or a proper Laurent monomial in the initial variables. Specializing the coefficients to y1, . . . , ym
and dividing by F`,t|P(y1, . . . , ym) does not change this property. Therefore any cluster variable
x`,t is a proper Laurent monomial. 2

Corollary 5.3. A skew-symmetric cluster algebra with arbitrary coefficients has the proper
Laurent monomial property. In particular, its cluster monomials are linearly independent.

Proof. By Corollary 3.4, any skew-symmetric cluster algebra with principal coefficients has
the proper Laurent monomial property (since cluster algebras with principal coefficients are
of geometric type). Therefore, by Corollary 5.2, any skew-symmetric cluster algebra also has this
property. Then [CL11, Theorem 6.4] implies that cluster monomials in such a cluster algebra
are linearly independent. Note that [CL11, Theorem 6.4] is only stated for cluster algebras of
geometric type; however, its proof adapts without change to arbitrary cluster algebras. 2

The proof that the exchange graph of a cluster algebra only depends on the defining matrix
will follow from Theorem 4.6 and from the following theorem of Fomin–Zelevinsky.

Theorem 5.4 [FZ07, Theorem 4.6]. The exchange graph of an arbitrary cluster algebra is
covered by the exchange graph of the cluster algebra with principal coefficients having the same
defining matrix.

Corollary 5.5. The exchange graph of any skew-symmetric cluster algebra only depends on
its defining matrix.

Proof. Let A be any skew-symmetric cluster algebra, with defining matrix B. Let A0 and Atriv

be the cluster algebras with principal and trivial coefficients, respectively, associated to B. Let
G, G0 and Gtriv be the exchange graphs of A, A0 and Atriv, respectively. By Theorem 5.4, G0

is a covering of G. Moreover, G is a covering of Gtriv. Since A0 and Atriv are both of geometric
type, Theorem 4.6 implies that the composed covering G0→Gtriv is an isomorphism. Therefore,
the coverings G0→G and G→Gtriv are isomorphisms. This finishes the proof. 2

Similarly, we can prove that the cluster complex only depends on the defining matrix.

Corollary 5.6. The cluster complex of any skew-symmetric cluster algebra only depends on
its defining matrix.
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Proof. Let A be any skew-symmetric cluster algebra, with defining matrix B. Let A0 and Atriv

be the cluster algebras with principal and trivial coefficients, respectively, associated to B. Let
∆, ∆0 and ∆triv be the cluster complexes of A, A0 and Atriv, respectively.

First, notice that the cluster complex of A0 covers the cluster complexes of both A and Atriv.
This follows from the separation of additions [FZ07, Theorem 3.7] (the proof of this statement
is in fact analogous to the proof of [FZ07, Theorem 4.6]). Moreover, the cluster complex of A
covers that of Atriv. Since A0 and Atriv are both of geometric type, Theorem 4.8 implies that
the composed covering ∆0→∆triv is an isomorphism. Therefore, the coverings ∆0→∆ and
∆→∆triv are isomorphisms. This finishes the proof. 2
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