Can. J. Math., Vol. XXXIII, No. 4, 1981, pp. 929-936

OPEN AND PROPER MAPS CHARACTERIZED BY
CONTINUOUS SETVALUED MAPS

EVA LOWEN-COLEBUNDERS

In the first part of the paper, given a continuous map f from a Haus-
dorff topological space X onto a Hausdorff topological space ¥, we con-
sider the reciprocal map f* from Y into the collection 2 (X) of closed
subsets of X, which maps y € ¥ to f~1(y) € Z#(X). Z#(X) is endowed
with the pseudotopological structure of convergence of closed sets. We
will use the filter description of this convergence, as defined by Choquet
and Géhler (2], [5], which is equivalent to the ‘“‘topological convergence”
of sets as introduced by Frolik and Mréwka [4], [10]. These notions in fact
generalize the convergence of sequences of sets defined by Hausdorff [6].
We show that the continuity of f* is equivalent to the openness of f.
On f *(Y), the set of fibers of f, we consider the pseudotopological struc-
ture induced by the closed convergence on &?(X). On the other hand
S *(Y) being the quotient set for the relation R( f ) associated with f, we
can endow it with the quotient topology. We show that the quotient
topology and the closed convergence on f *(Y) coincide if and only if
R(f) is open. We establish conditions on X, Y and f such that f *(Y) is
an open or a closed subset of & (X). Finally we investigate the continuity
of the extension of f * to all closed sets of Y.

In the second part f is a closed map from a Hausdorff topological space
X onto a Hausdorff topological space Y. It has an extension f: % (X) —
P (Y) which maps E € Z#(X) to f(E) € Z(Y). It is shown that the
continuity of f is equivalent to the properness of f. An even stronger
result is obtained. The properness of f implies the properness of f.

1. Preliminaries. For notational conventions we refer to [1]. For
notions about pseudotopological spaces, we refer to [2] and [3]. If X isa
set and 4 is a subset, let [4] be the filter on X generated by 4. If x € X
we put [{x}] = x.

We recall briefly the definition of closed convergence. Let X be a
Hausdorff topological space and & (X) the collection of its closed sub-
sets. If x is a filter on & (X) then its supremum, sup x is the set of
points p € X such that for each neighborhood V of  and for each & € x
there exists an 4 € &7 such that A N V # @ [2, p. 87]. Using the notion
of a grill of a filter which is the collection of all subsets intersecting all
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elements of the filter, we have the following equivalent formulation
[5, p. 174]: p € sup x if and only if for each neighborhood V of p there
exists a & ¢ grill x such that for every B € &, BN V # §. The fol-
lowing formulation of sup will also be useful. If .2/ € x we define E,, =
U {4|4 € 27}. In [2, p. 61] it is shown that sup x = N { £y, € x}. If
x is not generated by {@} then {E,| %7 € x} is a filterbase on X. Let
Z (x) be the filter generated. Then sup x is the adherence of % (x),
which is denoted by a.% (x) (8], [9]. The infimum, inf x is the set of points
p € X with the property that for each neighborhood V of p there exists
an & € x such that foreach 4 € &7, 4 N\ V # @ [2],[5]. For any filter
x on (X)) we have inf x C sup x. If x is an ultrafilter then inf x =
sup x. A filter x is said to converge to some 4 ¢ & (X) if and only if
sup x = inf x = A. This convergence defines a pseudotopology on
P (X), which is called the closed convergence. This means that for
E € (X) we have

(1) The filter generated by {£} converges to E.

(2) If x converges to E and x’ D x then x’ converges to E.

(3) If every ultrafilter finer than some filter x converges to E then x
converges to E.

The space Z (X) is compact Hausdorff which means that every ultra-
filter converges to exactly one point.

A closure operator on & (X)) is associated with the closed convergence
in the following way. If E € #(X) and ./ C Z(X) then E € &7 if and
only if there exists a filter x containing %/ and converging to E. ./ is said
to be dense if &/ = P (X), closed if &/ = . and open if .7 ¢ is closed. It
follows that.%/ is open if and only if every filter converging to some point
of &/ contains .%7. On any subset.2/ C £ (X) a pseudotopological struc-
ture of closed convergence is induced by Z? (X). A filter x on .%/ converges
in & to A € & if and only if the filter [x] on & (X) generated by x
converges to A in & (X). We recall a few more notions in pseudotopo-
logical spaces which will be applied to & (X). First another notational
convention has to be made. Let f:X — ¥ be a map and let # be a filter
on X then f(&) is the filter generated by { f(F)|F € #}. If # is a
filter on ¥ and f is onto then f~—!(%#) is the filter generated by
{ f~Y(F)|F € #}. Now let f be a map from one pseudotopological space
to another, then f is continuous if and only if for every (ultra) filter %
on the domain of f converging to some point the filter f(:# ) converges
to the image of this point. Following (7] f is a proper map if it is con-
tinuous, onto and if whenever % is an ultrafilter on the image of f con-
verging to some point each ultrafilter % which maps onto # converges
to some point in the preimage of the limit point of % . All spaces con-
sidered are Hausdorff spaces. Subsets of X and points of &?(X) will be
denoted by the same symbols. Subsets of & (X) are denoted by script
letters, filters on &2 (X) by Greek letters.
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2. Open maps. In this section f is a continuous map from X onto Y.
We consider f *: ¥ — % (X) which mapsy € Y tof~1(y) € Z(X). Then
/¥ is a one to one mapping from a topological space to a pseudotopo-
logical space.

LEMMA 2.1. [ * is continuous if and only if for every ultrafilter W on Y
converging to some y € Y we have of ~X(¥W') = f~1(y).

Proof. Suppose f * is continuous and let % be an ultrafilter on ¥ con-
verging tosomey € Y. Then f*#/) is an ultrafilter on & (X) converging
to f~(y). For W € ¥ we have

Ersowy = Usew f71(z) = f~H(W).
It follows that % (f*(#))) = f ~1(#) and so
af XH) = supfXH) = ().

For the converse suppose the condition above is fulfilled. Since £ (X) is
pseudotopological it suffices to consider ultrafilters. If # converges to
y € YV then f*(#') converges to f~1(y) € P (X) since ¥ (f*(W)) =
f2).

LEMMA 2.2. The following properties are equivalent:

(1) For any G C Y we have f ~1(G) = f —1(G).

(2) f is an identification map and if A C X s saturated so is A.

(3) f is an identification map and if A C X is saturated so is 4.

(4) f is open.

Proof. (1) = (2). From (1) it is clear that a subset G of Y is closed
if and only if f~1(G) is closed in X. So f is an identification map. If
A C X is saturated, 4 = f~1(G) then 4 = f~1(G) = f~(G) which is
again saturated.

(2) = (3). By complementation.

(3) = (4). See [1, Proposition 6, § 5].

(4) = (1). See [1, Proposition 7, § 5].

THEOREM 2.3. f * is continuous if and only if f is open.

Proof. Suppose f* is continuous, let G be any subset of ¥ and let
x € f~1(G). Let# be an ultrafilter on Y containing G and converging
to f(x). From (2.1) it follows that of =1(#") = f~1(f(x)). Since f ~1(G) €
f~1(¥') wehavex € f~1(G).Sof~*(G) D f~(G) and the other inclusion
follows from the continuity of f. Using (2.2) we have that f is open. For
the converse suppose f is open and let % be any ultrafilter on ¥ converging
to some y € Y. Then we have

af ) = Nwew f7 W) = Nwew f W) = f["HNwew W)
= f~1(y).

From 2.1 it follows that f* is continuous.

https://doi.org/10.4153/CJM-1981-073-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-073-6

932 EVA LOWEN-COLEBUNDERS

Now we consider the set of fibers of f, which is also the image of f*.
We have f*(V) = {f~1(y)|ly € Y}. Itis a subset of & (X) and therefore
has a pseudotopological structure induced by the closed convergence.
On the other hand f*(Y) being the quotientset for the relation associated
with f, it can be endowed with the quotient topology. In the following
theorems a comparison of these two structures is made. Let ¢ be the
quotient map from X to f*(Y).

THEOREM 2.4. The quotient topology on f*(Y) is coarser than the closed
convergence.

Proof. Let x be an ultrafilter on f*(Y) converging for the closed con-
vergence to f~1(y) for some y € V. We have

sup x = inf x = f7'(y).
Let & C f*(Y) be open in the quotient topology such that f~1(y) € 0.
Let .7 € x be such that for every 4 € &/ we have 4 N ¢ 1(0) # 0. 1t

follows that &7 C @ and hence & € x. So x converges to f~'(y) in the
quotient topology.

COROLLARY 2.5. f 15 open if and only if f* is a homeomorphism from Y
onto f*(Y), endowed with the closed convergence.

Proof. f*~1: f*(Y) — Y mapping f~'(y) to v is in fact the factorization
of f over the quotient set f*(¥). When f*(Y) has the quotient topology
or any finer structure, continuity of f implies continuity of f*-1.

THEOREM 2.6. The quotient map ¢: X — f*(V) is open if and only if the
closed convergence and the quotient topology on f*(Y) coincide.

Proof. Let ¢ be the quotient map and suppose it is open. From (2.4)
we only have to show that the neighborhood filter x of f~!(y) in the
quotient topology converges to f~1(y) for the closed convergence. We
calculate

SUpX = Nuwex By = Nuwex () = Nuex o (A). (2.2)
Now
Nuex ¢(H) = ¢ (Nwex) = ¢ (a(x)),

where a(x) is the adherence of x in the quotient topology. Since YV is
Hausdorff we have a(x) = f~!(y) and

supx = ¢ (f7'(¥)) = [T ().

Next we show that f~!(y) C inf x. Let x € f~1(y) and let V be an open
neighborhood of x. The openness of ¢ implies that ¢ (V) is an open neigh-
borhood of f~(y) in the quotient topology. We have ¢(V) € x and for
any f~1(z) € f*(V) with f~1(3) € (V) we have f~1(z)MNV # 0.
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Hence x € inf x. For the converse suppose that the quotient topology
agrees with the closed convergence on f*(Y). Let G C X be open and
x € o9 (G). Let " € G be such that f(x) = f(x’) and let x be the
neighborhood filter of f~!(y) in the quotient topology on f*(¥) where
y = f(x) = f(x’). Since x converges to f~1(y) in the closed convergence
we have that x’ € inf x. So there exists an & € x, open in the quotient
topology such that for any z € V with f~1(z) € & we have f~1(z) N\
G # 0. It follows that f-1(y) € & C ¢(G). Therefore we have
x € o~1(0) C ¢ '¢(G). So we have shown that ¢~1¢(G) is a neighbor-
hood of «x.

LEMMA 2.7. For every nonempty A € P (X) there is an ultrafilter x on
P(X) containing the collection f (A) of finite subsets of A and with the
property that F (x) is the filter generated by A.

Proof. Let 4 € (X), A # 0. Let {xii € I} be the family of all
ultrafilters on 2 (X) containing ,/Z (4). Suppose that for every i € I we
have # (x;) Z [A4]. Then for every i € I we havean &, € x; such that
E., D A.We can find a finite subset Io C I such that U ¢z, D # (4).
Otherwise the collection {.%7 ;i € I}\U { £ (4)} would generate a filter.
For 2 € I, we choose an a; € 4 such that a; ¢ Ey, . Since the set
{ai]i € I,} belongs to # (A), there is an index k € I, such that {a i €
I} € &;. But then we have that a, € E,, which is a contradiction. It
follows that there is an ultrafilter x on &% (X) containing / (4) and such
that # (x) C [4]. Since Eg4) = 4 we have Z (x) = [4].

THEOREM 2.8. f*(Y) is open in P (X) if and only if X (and V) are
finite.

Proof. If X is finite then X and Z?(X) are both discrete and hence
*(Y) is open.

Suppose f*(Y) is open in & (X). If f is a constant function then we
have f*(¥) = {X}. Let x be an ultrafilter on % (X) containing # (X)
and such that & (x) = [X] (2.7). Then we have {X} N _Z(X) = @
since it belongs to x. Therefore X is finite.

Now suppose f is not constant. We first prove that X is compact.
Suppose % is an ultrafilter on X with an empty adherence. Let f~(y)
be a fiber of f. We consider the map

g1 X =2 (X)

which maps x € X to {x} U f~1(y). Then the image g,-1,)(%) is an
ultrafilter on £ (X) for which we have

F (g X)) = U N O]
It follows that g;-1(, (%) converges to f~1(y) and hence
f*¥(Y) € gy ().
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But then it follows that f~1(y) € %. Since this result holds for all fibers
of f, f should be constant. So we have that X is compact. Next we show
that the fibers of f are open subsets of X. Let f~!(y) be a fiber,x ¢ f~'(y)
and let Z be an ultrafilter on X converging to x. We consider again the
map g;-1,. The ultrafilter g;-1(,) (%) converges to f~'(y). Since it con-
tains f*(V) we have f~1(y) € %. It follows that there is at most a finite
number of fibers.

Finally we prove that each fiber is finite. Let f~!(y) be a fiber and let
x be an ultrafilter on £ (X) containing Z (f~'(y)) and such that
F (x) = [f2(y)] (2.7). Since f*(Y) is open we have

NI () # 0.
Hence f~!(y) is finite.

THEOREM 2.9. f*(Y) s closed in PP (X) if and only if f is open and YV is
compact.

Proof. Suppose f*(Y) is closed in 2 (X). Then f*(¥) endowed with
the closed convergence is a compact Hausdorff space. It follows that the
spaces Y, f*(Y) with the quotient topology and f*(V) with the closed
convergence are all homeomorphic. From (2.3) we have that f is open.
For the converse suppose that f is open and Y is compact. From (2.3) we
have that f* is continuous. Since f*(Y) is compact for the closed con-
vergence it is closed in Z(X).

THEOREM 2.10. f*(Y) is never dense in P (X).

Proof. Either f is constant and we have f*(V) = {X} which is not
dense in 2 (X), or f is not constant. Let f ~'(y,) and f~!(y,) be different
fibers and let &, and @, be disjoint open neighborhoods for the quotient
topology on f*(Y). Let ¢ be the quotient map. Then 0, = ¢~ (7))
and 0, = ¢~1(0,) are disjoint open saturated subsets of X. It follows
that the infimum of a filter x on ?(X) containing f*(Y) cannot contain
points of O, and O, at the same time. It follows that X ¢ f*(V).

Next we consider the extension of f* to all closed subsets of V. Let
fH*P(Y) - P (X) be the function mapping F € (V) to f~(F) €
P(X). f** is a one to one map. On f**(Z (Y)) we consider the structure
induced by the closed convergence on & (X).

TaEOREM 2.11. T'he following properties are equivalent:

1) f**:. P (V) — f*(P(Y)) is a homeomorphism.

(2) f** 1s continuous.

(8) f* is continuous.

(4) f is open.
Proof. (1) = (2) is trivial. (2) = (3) since Y is a subspace of £ (Y).
(3) = (4) by (2.3). (4) = (1): Suppose f is open and let x be an ultrafilter
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on Z(Y) converging to some F € P(Y). Then [**(x) is an ultrafilter
on Z(X). If x = @ then f**x = @. If x # @ then for & € x we have

Epvgy = Uspea [ (B) = Useg [T1(B) = f1(Eg)
and hence & (f**(x)) = f~(Z (x)). From (2.2) it follows that
sup f*(x) = a F (f*(x)) = af " (F (X)) = Neesw [(G)
= Neegoo [THEG) = T (Neeso G) = fH(@F (x))
= f7I(F) = f**(F).

Finally we have that f**(x) converges to f**(F). Next let x be an ultra-

filter on f**(P(Y)) converging to E € f**(Z(Y)). If x = 0 then f**~1(y)

= . Suppose x # 0. Let F ¢ Z(Y) be such that f**(F) = f~(F) = E.

Z (x) has a base consisting of saturated subsets of X. It follows that
fTHF X)) =F x) Q).

For &/ € x we have

Epeiiny = Usew F*1(A) = Unew f(A) = f(Ea)

and hence

F (> () = [(F ) ().

Since f is open we have from (2.2)

af 1 (f(F (X)) = faf(F (x) 3).
Combining (1) (2) and (3) we finally have
aF (x) = [Tof (F(x)) and
aF (f**1(x)) = of (F (x)) = faF (x) = f(E) = f*(E).

It follows that f**~1(x) converges to f**1(E).

3. Proper maps. In this section we suppose f is a closed map from X
onto Y. We consider the extension of f to the collection of closed subsets
of X. Let 1 (X) — P (Y) be the function which maps E € Z(X) to
f(E) € Z(Y). I am indebted to the referee for drawing my attention to
a result of [7] which allows the shortening of the proof of the next
theorem.

THEOREM 3.1. The following properties are equivalent:
(1) f s proper.
(2) f is continuous.

(3) f is proper.
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Proof. (1) = (2). Suppose f is proper. Then clearly f is onto. Let x be
an ultrafilter on £ (X) converging to some E € #(X). If x = § then
clearly f(x) = 0. If x # @ let &/ € x. Then we have Ejyy = f(E). So
F (X)) = f(ZF (x)). Since f is proper we have of (F (x)) = fo F (x).
So f(x) converges to f(E) and f is continuous.

(2) = (1). Suppose f is continuous and let # be a filter on X. There
exists an ultrafilter x on & (X) such that &% (x) = % . The proof of this
statement is similar to (2.7) and can be found in [8]. x converges to
a(F) and so f(x) converges to f(a(F)). It follows that

f@(F)) =aF (X)) = of (F (X)) = of (F).

Hence f is proper [11.
(2) & (3). Since f is a map from a compact space onto a Hausdorff
space the continuity and the properness are equivalent [7].
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