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Abstract

Let τ(·) be the classical Ramanujan τ -function and let k be a positive integer such that
τ(n) 6= 0 for 1 6 n 6 k/2. (This is known to be true for k < 1023, and, conjecturally, for
all k.) Further, let σ be a permutation of the set {1, . . . , k}. We show that there exist
infinitely many positive integers m such that |τ(m + σ(1))| < |τ(m + σ(2))| < · · · <
|τ(m+ σ(k))|. We also obtain a similar result for Hecke eigenvalues of primitive forms
of square-free level.

1. Introduction

Throughout the article a primitive form of weight κ and level N means a holomorphic cusp form
of weight κ for Γ0(N) with the trivial character which is also a normalized Hecke eigenform for
all Hecke operators as well of all Atkin–Lehner involutions (see [Ono04, p. 29] for more details).
Throughout the paper, we will also assume that N is square-free. A non-CM primitive form is
an abbreviation for ‘primitive form without complex multiplication’.

Let f be a primitive form and

f(z) :=
∑
n>1

af (n)qn, q = e2πiz

be its Fourier expansion at i∞. In particular, if f is of weight κ = 12 and level N = 1 then

f(z) = ∆(z) :=
∑
n>1

τ(n)qn = q
∏
`>1

(1− q`)24,

where τ(n) is the classical Ramanujan function.
It is well known that the Fourier-coefficients af (n) of any such primitive form f are totally

real algebraic numbers. There are quite a few results demonstrating ‘random’ behavior of the
signs of τ(n), or, more generally, the coefficients of a general primitive forms; see, for instance,
[GS12, GKR15, KS09, Mat12, MR15] and the references therein. For instance, Matomäki and
Radziwi l l [MR15] have shown that the non-zero coefficients of primitive forms for Γ0(1) are
positive and negative with the same frequency. They also show that for large enough x, the
number of sign changes in the sequence {af (n)}n6x is of the order of magnitude

#{n 6 x : af (n) 6= 0} � x
∏
p6x

af (p)=0

(
1− 1

p

)
.
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In this paper, we work in a different direction, and study the behavior of absolute values of
non-zero coefficients. Classical results of Rankin [Ran39, Ran70]∑

n6x

|τ(n)|2 � x12 and lim sup
n→∞

|τ(n)|
n11/2

= +∞

imply that the sequence |τ(n)| is not ultimately monotonic; in other words, each of the inequalities

|τ(m+ 1)| < |τ(m+ 2)|, |τ(m+ 2)| < |τ(m+ 1)|

holds for infinitely many m. In this article we obtain (as a special case of a more general result)
a similar statement for more than two consecutive values of τ .

Theorem 1.1. Let k be a positive integer such that

τ(n) 6= 0 (1 6 n 6 k/2). (1.1)

Then for every permutation σ of the set {1, . . . , k}, there exist infinitely many positive integers m
such that

0 < |τ(m+ σ(1))| < |τ(m+ σ(2))| < · · · < |τ(m+ σ(k))|. (1.2)

In fact, existence of at least one m satisfying (1.2) implies (1.1) (see Theorem 1.4 below); in
other words, (1.1) is a necessary and sufficient condition for (1.2) to happen infinitely often.

It is known [ZY15, Theorem 1.4] that τ(n) 6= 0 when

n 6 982 149 821 766 199 295 999 ≈ 9× 1020.

We also refer to [DvHZ13, Corollary 1.2], which claims that τ(n) 6= 0 for all

n 6 816 212 624 008 487 344 127 999 ≈ 8× 1023.

According to a famous conjecture of Lehmer, τ(n) 6= 0 for all n. If this conjecture holds true,
then Theorem 1.1 applies to all k.

In this context, one has another famous conjecture known as Maeda’s conjecture. Let Tn(x)
be the characteristic polynomial of the nth Hecke operator Tn acting on the vector space of
cusp forms of weight κ and level 1, denoted Sκ(1). It is well known that Tn(x) is a polynomial
with integer coefficients. Maeda [HM97] conjectured that for any non-zero natural number n,
the polynomial Tn(x) is irreducible over Q with Galois group Sd, where d is the dimension of
Sκ(1) and Sd is the symmetric group on d symbols. If the dimension d of Sκ(1) is strictly greater
than one and Maeda’s conjecture is true, then Theorem 1.1 applies to all k. However, Maeda’s
conjecture does not imply Lehmer’s conjecture.

Our principal result is the following general theorem.

Theorem 1.2. Let f1, . . . , fk be primitive forms of square-free levels, not necessarily of same
weights, and ν1, . . . , νk be distinct positive integers such that

afi(νi) 6= 0 (1 6 i 6 k).

Then there exist infinitely many positive integers m such that

0 < |λf1(m+ ν1)| < |λf2(m+ ν2)| < · · · < |λfk(m+ νk)|, (1.3)

where λfi(n) = afi(n)/n(κi−1)/2 for any positive integer n and 1 6 i 6 k.
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In fact, we prove (see Remark 5.8) that for sufficiently large positive number x, there
are at least cx/(log x)k positive integers m 6 x satisfying (1.3). Here c > 0 depends on
f1, . . . , fk, ν1, . . . , νk and ‘sufficiently large’ translates as ‘exceeding a certain quantity depending
on f1, . . . , fk, ν1, . . . , νk’.

It is clear from our proof that, when the forms f1, . . . , fk have equal weights, inequality (1.3)
holds true with afi(·) instead of λfi(·). An interesting special case occurs when f1 = · · · = fk = f .

Theorem 1.3. Let f be a primitive form of square-free level and ν1, . . . , νk be distinct positive
integers such that

af (νi) 6= 0 (1 6 i 6 k).

Then there exist infinitely many positive integers m such that

0 < |af (m+ ν1)| < |af (m+ ν2)| < · · · < |af (m+ νk)|. (1.4)

In particular, if k is a positive integer such that

af (n) 6= 0 (1 6 n 6 k), (1.5)

then for every permutation σ of the set {1, . . . , k}, there exist infinitely many positive integers m
such that

0 < |af (m+ σ(1))| < |af (m+ σ(2))| < · · · < |af (m+ σ(k))|. (1.6)

In fact, one can do even better: to give a necessary and sufficient condition for having (1.6)
infinitely often.

Theorem 1.4. Let k be a positive integer. Then for a primitive form f of square-free level the
following three conditions are equivalent.

(A) We have
af (n) 6= 0 (1 6 n 6 k/2). (1.7)

(B) For some positive integer ν we have

af (ν + n) 6= 0 (1 6 n 6 k). (1.8)

(C) For every permutation σ of the set {1, . . . , k}, there exist infinitely many positive integers m
such that

0 < |af (m+ σ(1))| < |af (m+ σ(2))| < · · · < |af (m+ σ(k))|.

Theorem 1.1 follows from this theorem if we take f = ∆.

Remark 1.5. Since it is known that there are no primitive forms with complex multiplications
for square-free level (see [Rib77, § 3] and [Rib80, Theorem 3.9]), the primitive forms considered
by us are necessarily non-CM.

Techniques of the proofs rely on elementary arguments, sieve methods (Brun’s sieve, the
Bombieri–Vinogradov theorem), and validity of the Sato–Tate conjecture for non-CM forms.
Similar results may be expected for Maass forms, but for the time being, we do not even know
that afi(νi) 6= 0 for a positive proportion of νi though it is expected to be true for Maass forms
of eigenvalue strictly greater that 1/4. Also the analogs of the Ramanujan–Petersson and the
Sato–Tate conjectures are not known to be true.
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For our construction of special values of m for which (1.3) and (1.4) holds, we choose by
force the small prime factors of the m+νi so that their contribution ensures the wished ordering
of the |λf (m + νi)| or |af (m + νi)|, with a little margin, and we expect that the larger prime
factors will contribute only within the margin. The first step is to eliminate, thanks to the
‘fundamental lemma’ of the Sieve theory, the midsize primes. Only the large primes remain,
which are essentially bounded in number. To keep control of their contribution, we need to avoid
the prime powers, which is easily done (§ 3.4) since we have an explicit bound for the sum of
the inverse of the squares larger than z. We are happy that Ramanujan’s conjecture, proved by
Deligne, ensures that the contribution of the large primes is never very large, but we have to
take care of those large primes for which |λf (p)| or |af (p)| is small (thanks to our colleagues who
worked hard to prove the Sato–Tate conjecture [BGHT11, CHT08, HST10], we know that those
primes are not too numerous), but we do not have explicit bounds as we have for the prime
powers. This is where we need to trade the sifting level, which can be small for the sieve part,
but which has to be large enough to insure that the contribution of the large ‘bad’ primes is
small.

The article is organized as follows. In § 2, we briefly review the properties of the coefficients
of primitive forms used in the sequel. In §§ 3 and 4, we obtain two sieving results instrumental
for the proof of Theorems 1.2–1.4. Finally, these theorems are proved in §§ 5 and 6, respectively.

1.1 Conventions
Unless the contrary is stated explicitly:
• p (with or without indices) denotes a prime number;
• κ denotes a positive even integer;
• i, j, k, `,m (with or without indices) denote positive integers;
• n (with or without indices) denotes a non-negative integer;
• d (with or without indices) denotes a square-free positive integer;
• ε, δ denote real numbers satisfying 0 < ε, δ 6 1/2;
• x, y, z, t denote real numbers satisfying x, y, z, t > 2.

2. Hecke eigenvalues of primitive forms

In this section, we list some well-known properties of the Hecke eigenvalues of primitive forms
which will be used in the proof of Theorems 1.2 and 1.3.

First of all, the Hecke eigenvalues af (n) are multiplicative:

af (mn) = af (m)af (n) (m,n > 1, gcd(m,n) = 1). (2.1)

Furthermore, the values of af at prime powers satisfy the following recurrence relations

af (p`+1) = af (p)`+1 if p|N,
af (p`+1) = af (p)af (p`)− pκ−1af (p`−1) if (p,N) = 1 (` = 1, 2, . . .),

(2.2)

where κ is the weight of f .
Both (2.1) and (2.2) were conjectured by Ramanujan when f = ∆ and proved by

Mordell [Mor17]. Proofs can be found in many sources; see, for instance [DS05, Proposition 5.8.5].
A much deeper result is the upper bound

|af (p)| 6 2p(κ−1)/2. (2.3)
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It was also conjectured by Ramanujan when f = ∆ and proved by Deligne [Del74, Théorème 8.2].
Equivalently, the polynomial T 2 − af (p)T + pκ−1 can not have distinct real roots. Hence we may
write the roots as

αp = p(κ−1)/2eiθp , ᾱp = p(κ−1)/2e−iθp , (2.4)

with θp ∈ [0, π]. As before, we shall write

λf (n) = af (n)/n(κ−1)/2

for any positive integer n. If θp 6= 0, π (that is, λf (p) 6= ±2) then

λf (p`) =
sin(`+ 1)θp

sin θp
. (2.5)

We may add for completeness that

λf (p`) =

{
(`+ 1), θp = 0,

(−1)`(`+ 1), θp = π.
(2.6)

Another very deep result is the Sato–Tate conjecture, proved recently by Barnet-Lamb
et al. [BGHT11, Theorem B] (see also [CHT08, HST10]). A convenient way to express it is
to use the notion of relative density of a set of primes: we say that a set P of primes has the
relative density δ(P) (respectively the relative upper density δ̄(P)) if

δ(P) = lim
#(P ∩ [1, x])

π(x)

(
respectively δ̄(P) = lim sup

#(P ∩ [1, x])

π(x)

)
, (2.7)

as x → +∞, where π(x) denotes the number of primes up to x.
The above-mentioned result states that, for a non-CM primitive form f , the numbers

λf (p) are equi-distributed in the interval [−2, 2] with respect to the Sato–Tate measure

(1/π)
√

1− t2/4 dt. This means that for −2 6 a 6 b 6 2, we have

δ({p : λf (p) ∈ [a, b]}) =
1

π

∫ b

a

√
1− t2

4
dt. (2.8)

An immediate consequence of this and Remark 1.5 is the following statement.

Proposition 2.1. Let f be a primitive form of square-free level. Then the following holds.

(A) The relative density of the set of primes p such that λf (p) belongs to a given interval of
length 2ε does not exceed ε.

(B) In particular, the relative density of primes p such that λf (p) = 0 or ±2 is 0.

We notice that the formulation (A) is convenient to use for our purpose, but our argument
could be adapted to the weaker condition

δ̄({p : λf (p) ∈ [−ε,+ε]}) → 0 as ε → 0.

Part (B) was well known long before the proof of the Sato–Tate conjecture. See [Ser81, § 7.2,
Théorème 15] for a much more general and quantitatively stronger result.

Equations (2.5) and (2.6) imply that λf (p`) = 0 for some ` and (p,N) = 1 if and only if
θp/π ∈ Q ∩ (0, 1). In fact, one knows the following result.
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Proposition 2.2. Let f be a primitive form of square-free level. Then for all but finitely many
primes p we have either λf (p) ∈ {0,±2} or θp/π /∈ Q.

For the proof, see [MM07, Lemma 2.5] (see also [KRW07, Lemma 2.2]).
One may remark that if f is of weight κ > 4 then this holds for all p with (p,N) = 1 without

exception, see [MM07, Proposition 2.4].

3. Sieving

In this section, we establish a sieving result instrumental for the proof of Theorems 1.2 and 1.3.
The integer m in this section is not necessarily positive; it can be any integer: positive, negative
or 0. The other conventions made in § 1.1 remain intact.

3.1 The Sieving theorem
Let Σ be a finite set of prime numbers. We call m ∈ Z:
• Σ-unit, if all its prime divisors belong to Σ;
• Σ-square-free, if m is a product of a Σ-unit and a square-free integer.

Also, for z > 2 we define

PΣ(z) =
∏
p<z
p/∈Σ

p. (3.1)

Now let a1, . . . , ak, b1, . . . , bk ∈ Z be integers satisfying

ai 6= 0, gcd(ai, bi) = 1 (i = 1, . . . , k), (3.2)

aibj − ajbi 6= 0 (1 6 i < j 6 k). (3.3)

We consider linear forms Li(n) = ain+ bi, and for x > z > 2 we set

Ω(x, z) = {n : 1 6 n 6 x, gcd
(
L1(n) · · ·Lk(n), PΣ(z)

)
= 1}. (3.4)

Finally, we let

Ω1(x, z) = {n ∈ Ω(x, z) : L1(n), . . . , Lk(n) are Σ-square-free composite numbers}. (3.5)

The principal result of this section is the following theorem.

Theorem 3.1. Assume that Σ contains all the primes p 6 2k, all the prime divisors of every ai,
and all the prime divisors of every aibj − ajbi with i 6= j. In other words, we assume that

(2k)!

k∏
i=1

ai
∏

16i<j6k

(aibj − ajbi) (3.6)

is a Σ-unit. Then there exist real numbers η, c1 ∈ (0, 1/2], depending only on k and on the
cardinality1 #Σ (but not on Σ itself, neither on the integers ai and bi), and z1 > 2 depending
on a1, . . . , ak, b1, . . . , bk, such that the following holds. For any x and z, satisfying xη > z > z1

we have
#Ω1(x, z) > c1

x

(log z)k
.

1 Indicating dependence on k here is somewhat useless, because our hypothesis implies that k is bounded in terms
of #Σ.
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The first step in the proof of Theorem 3.1 is to obtain a lower bound for #Ω(x, z), i.e. we wish

to get a lower bound for the number of integers up to x for which the product L1(n) · · ·Lk(n)

has no prime factor up to xη except from a finite given set Σ; in other words, we are interested

in sieving out the prime factors less than xη except those from Σ, when η is sufficiently small:

the adapted tool for this situation is called the ‘fundamental lemma’, cf. [FI10, § 6.5], [IK04,

§ 6.4] or [HR74, § 2.8]. Looking more carefully at [HR74], we see that, with the exception of Σ,

Theorem 2.6, p. 85, is very close to what we are looking for. In § 3.3, we shall state and prove

the variant of Theorem 2.6 we need. We obtain a lower bound of the order x(log z)−k.

In the second step, we need to exclude the cases when at least one of the quantities Li(n) is

a prime number. Assume for example that Lk(n) = n, we see that [HR74, Theorem 2.6′, p. 87],

applied to the product L1(n) · · ·Lk−1(n) (with k − 1 instead of k) is, again with the exception of

the primes from Σ, very close to what we are looking for. In § 3.4, we shall state and prove the

variant of Theorem 2.6′ we need. We obtain an upper bound of the order x(log z)−k+1(log x)−1,

which is smaller than the lower bound from the first step, as soon as z is sufficiently small a

power of x, i.e. as soon as η is small enough.

The last step consists in sieving out the elements of Ω(x, z) divisible by the square of some

large prime; the key ingredient is the convergence of the series of the inverses of the squares.

This step is performed in § 3.5.

Finally, in § 3.6 we prove Theorem 3.1.

We start by giving in § 3.2 some definition and evaluation of some arithmetic quantities.

3.2 Some arithmetic preliminaries

In the remaining part of § 3, unless the contrary is explicitly stated, the constants implied by the

notation O(·),�,� or2 �, may depend only on k. The same convention applies to the constants

implied by the expressions like ‘sufficiently large’.

In order to avoid a conflict of notation between [HR74] and the general use, we follow, in

§§ 3.2–3.4, the use of [HR74] and denote by ν(d) the number of distinct prime factors of the

integer d.

We keep the notation of § 3.1 and let ` ∈ {k − 1, k},

F`(n) = L1(n) · · ·L`(n). (3.7)

Let ρ` be the multiplicative function supported on the square-free numbers and such that

ρ`(p) =

{
`, p /∈ Σ,

0, p ∈ Σ.

For z > 2, we let

W`(z) =
∏
p6z

(
1− ρ`(p)

p

)
=

∏
p|PΣ(z)

(
1− `

p

)
, (3.8)

W
(∗)
` (z) =

∏
p6z

(
1− ρ`(p)

p− 1

)
=

∏
p|PΣ(z)

(
1− `

p− 1

)
, (3.9)

with the usual convention that an empty product is equal to 1.

2 We use A � B as a shortcut for A � B � A.
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Our assumption (3.6) implies that the congruence

F`(n) = L1(n) · · ·L`(n) ≡ 0 mod p

has exactly ρ`(p) = ` solutions for any prime p which does not belong to the set Σ; moreover, all
those solutions are non-zero. Thus, the congruence

F`(n) = L1(n) · · ·L`(n) ≡ 0 mod d (3.10)

has exactly ρ`(d) = `ν(d) solutions for any square-free d having no prime divisor from the set Σ;
moreover all those solutions are coprime with d. This implies

|#{n ∈ [1, x] : F`(n) ≡ 0 mod d} − xρ`(d)/d| 6 ρ`(d) = `ν(d). (3.11)

Since all primes p 6 2k belong to Σ, we have, for all primes p, the estimates

0 6
ρ`(p)

p
6
ρ`(p)

p− 1
6

1

2
. (3.12)

We trivially have

W`(z) >
∏

2k<p6z

(
1− `

p

)
. (3.13)

Using (3.12), we get the upper bound

W
(∗)
` (z) 6 2#Σ

∏
2k<p6z

(
1− `

p− 1

)
. (3.14)

We also notice that Mertens’ result [HW60, Theorem 429], easily implies that there exists
constants C(`) and C(∗)(`) such that∏

2k<p6z

(
1− `

p

)
∼ C(`)(log z)−` and

∏
2k<p6z

(
1− `

p− 1

)
∼ C(∗)(`)(log z)−`. (3.15)

The following is a fairly standard result, a proof of which can be found in [TW14, p. 55].

As x tends to infinity:
∑
n6x

`ν(n) ∼ c`x(log x)`−1 for some positive c`. (3.16)

For d > 0 and a coprime to d, we denote by π(x, d, a) the number of primes up to x which
are congruent to a modulo d and we let

E(x, d, a) = π(x, d, a)− lix

ϕ(d)
and E(x, d) = max

gcd(a,d)=1
|E(x, d, a)|. (3.17)

We shall use the following consequence of [HR74, Lemma 3.5, p. 115], which is itself a consequence
of the Bombieri–Vinogradov theorem and the trivial upper bound

E(x, d) 6 x/d+ 1. (3.18)

Lemma 3.2. Let m be a positive integer. For any positive constant U , there exists a positive
constant C1 = C1(m,U) such that∑

d<x1/2(log z)−C1

µ2(d)mν(d)E(x, d) = OU,m

(
x

(log z)U

)
. (3.19)
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3.3 Sieving away small prime factors
In this section, we prove the following result.

Proposition 3.3. With the above notation and assumption (3.6), we have for 2 6 z 6 x

#Ω(x, z) = xWk(z)(1 +O(E0(x, z))), (3.20)

where

E0(x, z) = exp(−u(log u− log log u− log k − 2)) +
1

log z
, (3.21)

and

u = log x/log z. (3.22)

Proof. We are going to use [HR74, Theorem 2.5′], noticing that in the main relation, log x/α is
to be read log(κ/α). We refer the reader to [HR74] for the statement of Theorem 2.5′, as well as
the notation given there. Let us write the dictionary between the notation from [HR74] and our
notation:

A = {Fk(n) : 1 6 n 6 x},
P = {p : p /∈ Σ} and P = Σ,

ω(d) = ρk(d),

κ = k,

X = x,

U = 1,

α = 1,

Rd = #{n ∈ [1, x] : Fk(n) ≡ 0 mod d} − xρk(d)/d.

Relation (3.12) implies (Ω1) (p. 29) with A1 = 2.
By the definition of ρk, we have for all p: ρk(p) 6 k, which implies Relation (Ω0) of [HR74,

p. 30], and thus (cf. Lemma 2.2, p. 52) Relation (Ω2(κ)) with A2 = κ.
Relations (R0) and (R1(κ, 1)) (defined in [HR74, p. 64]), with L = 1, A′0 = k and C0(U) =

2k + U − 1 come from (3.11) and (3.16).
We notice that S(A;P, z) is #Ω(x, z) and thus [HR74, Theorem 2.5′] implies our

Proposition 3.3. 2

3.4 Sieving away prime values
In this part, we are interested in evaluating the cardinality of the set

Ω(∗)(x, z) = {n 6 x : gcd(L1(n) · · ·Lk−1(n), PΣ(z)) = 1, Lk(n) prime}, (3.23)

and we shall prove the following

Proposition 3.4. With the above notation and assumption (3.6), we have for 2 6 z 6 x

#Ω(∗)(x, z) =
li(|ak|x)

ϕ(|ak|)
W

(∗)
k−1(z)(1 +O(E(∗)(x, z))), (3.24)

where

E(∗)(x, z) = exp(−(u/3)(log u− log log u− log(k − 1)− 3)) +
1

(log z)
, (3.25)

and

u = log x/log z. (3.26)
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Proof. We first notice that, without loss of generality, changing if needed (ai, bi) into (−ai,−bi),
we can assume that all the ai are positive: this is what we assume in the proof.

It will be convenient to let h = k − 1, Fh(n) = L1(n) × · · · × Lh(n). We are again going
to use [HR74, Theorem 2.5′]. Getting a relation (R1(κ, α)) will be more challenging, but the
Bombieri–Vinogradov inequality in the form (3.19) will be most helpful. As in the previous
section, we start with our dictionary:

A = {Fh((q − bk)/ak): q prime, ak + bk 6 q 6 akx+ bk, q ≡ bk mod ak},
P = {p : p /∈ Σ} and P = Σ,

ω(d) = dρh(d)/ϕ(d),

κ = h = k − 1,

X = li(akx)/ϕ(ak),

U = 1,

α = 1/2,

Rd = #{a ∈ A : d | a} − ω(d)

d
X.

We check the validity of Relations (Ω0) and (Ω2(κ)) by the same argument as in § 3.3.

We notice that Rd is defined in terms of the cardinality of Ad; it is more convenient for us

to consider, for d having no prime divisor from Σ, the set

Bd =

{
q ∈ [ak + bk, akx+ bk] : q prime, q ≡ bk mod ak, d | Fh

(
q − bk
ak

)}
which has the same cardinality as Ad. By the remark concerning the solutions of (3.10) and the

fact that d and ak are coprime, there exists a set Tk(d) ⊂ (Z/akdZ)∗ with cardinality #Tk(d) =

hν(d) such that

q ∈ Bd ⇐⇒ q ∈ [ak + bk, akx+ bk] and q mod akd ∈ Tk(d).

We thus have, for d having no prime factor from Σ

#Ad = #Bd =
∑

t∈Tk(d)

(π(akx, akd, t) +O(1))

= hν(d)

(
li(akx)

ϕ(akd)

)
+O(hν(d)(E(akx, akd) + 1))

=
hν(d)

ϕ(d)
X +O(hν(d)(E(akx, akd) + 1)),

which implies

Rd = O(hν(d)(E(akx, akd) + 1)). (3.27)

Relation (R0) comes from the previous relation, the trivial upper bound E(akx, akd) 6 x/d+ 1

and the definition of X.

Relation (R(κ, 1/2)) comes from Lemma 3.2 and relation (3.16).

We can now apply [HR74, Theorem 2.5′] and get Proposition 3.4 with a slightly better

constant and u = logX/log z. It is more convenient for us to state the result in terms of u =

log x/log z. 2
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3.5 Sieving away non-square-free values

We also want to count n such that Li(n) is not Σ-square-free. This is relatively easy. Set

M = max{|a1|, . . . , |ak|, |b1|, . . . , |bk|}.

Proposition 3.5. In the set-up of Theorem 3.1, for x > z > 2 the set Ω(x, z) has at most

kM
x+ 1

z − 1
+ k
√
Mx+M

elements n such that Li(n) is not Σ-square-free for some i.

Proof. If Li(n) is not Σ-square-free for some n ∈ Ω(x, z), then p2 | Li(n) for some p > z. For a

fixed p and i, the number of positive integers n with the property p2 | Li(n) does not exceed

(|ai|x+ |bi|)/p2 + 1. Summing up over all p > z and i = 1, . . . , k, we estimate the total number

of n ∈ Ω(x, z) such that some Li(n) is not Σ-square-free as

k(Mx+M)
∑
p>z

1

p2
+ kπ(

√
Mx+M).

The infinite sum above is bounded by 1/(z − 1), whence the result. 2

3.6 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1.

The reader will easily check that one can find constants c1, z1 and η satisfying the properties

required in the statement of Theorem 3.1 such that the following inequalities are valid for any

real numbers x and z satisfying xη > z > z1.

By Proposition 3.3, (3.13) and (3.15), one has

#Ω(x, z) > (1/2)xWk(z) > (1/4)C(k)x(log x)−k > 3c1x(log x)−k. (3.28)

Let us denote by Ωprime(x, z) the set of the elements n in Ω(x, z) for which one of the values

Li(n) is prime; applying Proposition 3.4 k times, (3.14) and (3.15), we obtain

#Ωprime(x, z) 6 2k li
((

max
i
|ai|
)
x
)
W

(∗)
k−1(z) 6 c1x(log x)−k. (3.29)

Let us denote by Ωsquare(x, z) the set of the elements n in Ω(x, z) for which one of the values

Li(n) is not Σ-square-free. Proposition 3.5 tells us that we have

#Ωsquare(x, z) 6 kM
x+ 1

z − 1
+ k
√
Mx+M 6 c1x(log x)−k. (3.30)

We have

#Ω1(x, z) > #Ω(x, z)−#Ωprime(x, z)−#Ωsquare(x, z) (3.31)

and Theorem 3.1 comes from (3.31), (3.28), (3.29) and (3.30).
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4. Avoiding prime factors from a sparse set

In this section, we further refine the set Ω1(x, z) constructed in Theorem 3.1, showing that it has
‘many’ elements n such that L1(n) · · ·Lk(n) has no prime divisors in a ‘sufficiently sparse’ set of
primes. We will have to impose an additional assumption: every prime from Σ divides every ai.
Probably the statement holds true without this assumption, but imposing it will facilitate the
proof, and the result we obtain will suffice for us.

Given an infinite set of primes P, let πP(x) = #(P ∩ [0, x]) and δ̄(P) be the relative upper
density as defined in (2.7). Also let L1(n), . . . , Lk(n) and the finite set Σ be as in § 3.1.

Theorem 4.1. Assume the hypothesis of Theorem 3.1. Moreover, assume that

every ai is divisible by every prime from Σ. (4.1)

Let η be the number as in Theorem 3.1. Then there exists ε ∈ (0, 1/2], depending only on k and
on #Σ, such that the following holds. For any set P of primes with δ̄(P) 6 ε, there exists x0 > 2
depending on a1, . . . , ak, b1, . . . , bk and on the set P, such that for x > x0 at least half of the
elements n of the set Ω1(x, xη) have the property

p - L1(n) · · ·Lk(n) (p ∈ P).

Remark 4.2. Condition (4.1) implies that Li(n) cannot have divisors in Σ; in particular, ‘Σ-
square-free’ from Theorem 3.1 can be replaced by ‘square-free’.

We start from an individual prime. In the sequel, we write a = ak, b = bk and L(n) = Lk(n) =
an+ b. We also set M = max{|a|, |b|}.

Proposition 4.3. Assume the hypothesis of Theorem 3.1. Further, assume that

every prime from Σ divides a. (4.2)

Then there exist real numbers C3 > 2 depending only on k, and z3 > 2 depending on k and M
such that the following holds. Let p be a prime number, p /∈ Σ. Then for any x and z satisfying
x > z > z3, the set Ω1(x, z) has at most C3 · 2#Σ(x/p)(log z)−k elements n such that p | L(n).

Proof. In this proof, every constant implied by O(·), � etc. depends only on k. We may assume
that L(n) is divisible by p for some n ∈ Z (otherwise there is nothing to prove). It follows that
p - a. (Indeed, if p | a then p - b because a and b are coprime, and the congruence an ≡ −b mod p
is impossible.) Hence, there is a unique u ∈ {0, 1, . . . , p− 1} such that u ≡ −b/a mod p.

For i = 1, . . . , k, set

a′i =

{
ai, p | Li(u),

pai, p - Li(u),
b′i =

{
Li(u)/p, p | Li(u),

Li(u), p - Li(u),

and write
L′i(n

′) = a′in
′ + b′i.

An immediate verification shows that (3.2), (3.3) and (3.6) remain true with ai, bi and Σ replaced
by a′i, b

′
i and Σ′ = Σ ∪ {p}. Hence, defining, for x′ > z′ > 2, the set

Ω′(x′, z′) = {0 6 n′ 6 x′ : gcd(L′1(n′) · · ·L′k(n′), PΣ′(z
′)) = 1},
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we may apply Proposition 3.3: there exists z′0, depending only on k such that, when x′ > (z′)50k

and z′ > z′0, we have

#Ω′(x′, z′)� 2#Σ′ x′

(log z′)k
� 2#Σ x′

(log z′)k
. (4.3)

Every n with p | L(n) can be written as u+ n′p with n′ ∈ Z. If n ∈ Ω(x, z), then clearly we
have 0 6 n′ 6 x/p. Also,

Li(n) =

{
pL′i(n

′), p | Li(u),

L′i(n
′), p - Li(u)

(i = 1, . . . , k).

It follows that the number of n ∈ Ω(x, z) such that p | L(n) is bounded by #Ω′(x/p, z).
Unfortunately, we cannot apply (4.3) with x′ = x/p and z′ = z, because we do not have

x′ > (z′)50k. This is the main reason why we had to replace Ω(x, z) by Ω1(x, z), because if
n ∈ Ω1(x, z) then we can bound x/p from below.

Indeed, let n ∈ Ω1(x, z) be such that p | L(n). By the definition of the set Ω1(x, z), we know
that L(n) is composite and (4.2) implies that L(n) is not divisible by any primes from Σ. Hence
L(n)/p must be divisible by some prime p′ > z. In particular, |L(n)/p| > z, which implies that
x/p > z/M − 1 (recall that M = max{|a|, |b|}). Now setting x′ = x/p and z′ = (z/M − 1)1/50k,
we obtain

#{n ∈ Ω1(x, z) : p | L(n)} 6 #Ω′(x/p, z)

6 #Ω′(x′, z′)

� 2#Σ x′

(log z′)k

� 2#Σ x/p

(log(z/M − 1))k
, (4.4)

provided
(z/M − 1)1/50k > z′0. (4.5)

If we define z3 = max{M(z′0)50k +M, 4M2}, then z > z3 implies both (4.5) and z/M − 1 > z1/2.
Hence, the right-hand side of (4.4) is O(2#Σ(x/p)(log z)−k), as wanted. 2

We will also need the following easy lemma.

Lemma 4.4. Let P be a set of prime numbers, ε ∈ (0, 1/2] and z0 > 2. Assume that for all t > z0,
we have πP(t) 6 επ(t). Then for x > z > z0 we have∑

p∈P
z6p<x

1

p
� ε log

(
log x

log z

)
+ ε,

the implied constant being absolute.

Proof. Using partial summation, we have∑
p∈P
z6p<x

1

p
=
πP(x−)

x
− πP(z−)

z
+

∫ x

z

πP(t)

t2
dt� ε log

(
log x

log z

)
+ ε,

as wanted. 2
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Proof of Theorem 4.1. Let η, c1 and z1 be as in Theorem 3.1. Then for x > z
1/η
1 , we have

#Ω1 > c1x(log x)−k, where we denote Ω1 = Ω1(x, xη).
Now let P be a set of prime numbers, and let Ω2 be the subset of Ω1 consisting of

n ∈ Ω1 such that some p ∈ P divides L1(n) · · ·Lk(n). Also let z3 be as in Proposition 4.3.

Define z2 > max{z1, z3} so large that for t > z2, we have πP(t) 6 2δ̄(P)π(t), and set x0 = z
1/η
2 .

Proposition 4.3 and Lemma 4.4 imply that for x > x0, we have

#Ω2 �
x

(log x)k

∑
p∈P

xη6p<x

1

p

� δ̄(P)
x

(log x)k

(
log

log x

log xη
+ 1

)
� δ̄(P)

x

(log x)k
,

where the implicit constants depend on k and on #Σ.
It follows that there exists ε ∈ (0, 1/2], depending on k and on #Σ, such that, when δ̄(P) 6 ε,

we have

#Ω2 6
1

2
c1

x

(log x)k
6

1

2
#Ω1.

This completes the proof of the theorem. 2

5. Proof of Theorems 1.2 and 1.3

Throughout the section, we assume that f1, . . . , fk are primitive forms of square-free levels (as
defined in the beginning of § 1) of weights κ1, . . . , κk respectively. We also fix, once and for
all, distinct positive integers ν1, . . . , νk satisfying afi(νi) 6= 0 for i = 1, . . . , k. We will assume
that k > 2 as otherwise we know that any non-zero primitive form has infinitely many non-zero
Fourier coefficients (see Proposition 6.1). Set K = max{ν1, . . . , νk}.

5.1 An application of the Chinese remainder theorem
Proposition 5.1. Let m > 1 be such that

m ≡ 0 mod (2K)!. (5.1)

There exists a positive real number c0, depending on K and f1, . . . , fk, such that for m satisfying
(5.1) we have

c0|λfi(mi)| 6 |λfi(m+ νi)| 6 c−1
0 |λfi(mi)| (i = 1, . . . , k), (5.2)

and

c0|λfi(mi)| 6
|afi(m+ νi)|
m

(κi−1)/2
6 c−1

0 |λfi(mi)| (i = 1, . . . , k), (5.3)

where mi is defined by
m+ νi = νimi (i = 1, . . . , k). (5.4)

Proof. It follows from (5.1) and the definition ofK that eachmi is coprime to (2K)!. In particular,

gcd(νi,mi) = 1 (i = 1, . . . , k). (5.5)
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Since afi(νi) 6= 0 for i = 1, . . . , k, we may define

c0 = min
16i6k

min

{
|λfi(νi)|,

1

2(κi−1)/2|λfi(νi)|

}
.

Hence, by multiplicativity, we have

|afi(m+ νi)|
m(κi−1)/2

> |λfi(m+ νi)| = |λfi(νi)||λfi(mi)| > c0|λfi(mi)|

and
|λfi(m+ νi)| = |λfi(νi)||λfi(mi)| 6 c−1

0 |λfi(mi)|.

This completes the proof of (5.2). Since m > 2K, we have

(m+ νi)
(κi−1)/2 6 2(κi−1)/2m(κi−1)/2

and then, again by multiplicativity, one has

|afi(m+ νi)|
m(κi−1)/2

6 2(κi−1)/2|λfi(m+ νi)|

= 2(κi−1)/2|λfi(νi)||λfi(mi)|
6 c−1

0 |λfi(mi)|.

This completes the proof of (5.3). 2

5.2 Sieving and the Sato–Tate conjecture
Next we choose primes p1 < · · · < pk with p1 > 2K such that

λfi(pi) 6= ±2 (i = 1, . . . , k), (5.6)

λfi(p
`
i) 6= 0 (i = 1, . . . , k, ` = 1, 2, . . .). (5.7)

Existence of such primes is guaranteed by Propositions 2.1 and 2.2.
Let `1, . . . , `k be positive integers which will be specified later. We now impose on m, besides

(5.1), the conditions
m+ νi ≡ p`ii mod p`i+1

i (i = 1, . . . , k). (5.8)

Together with (5.1) this puts m into an arithmetic progression modulo A, where

A = (2K)!
k∏
i=1

p`i+1
i . (5.9)

Write m = An+B, where B < A is the smallest positive integer in this progression. Here, n > 0
is some non-negative integer. Then m+ νi = νip

`i
i (ain+ bi), where

ai =
A

νip
`i
i

, bi =
B + νi

νip
`i
i

(i = 1, . . . , k) (5.10)

are positive integers.3 In particular, the numbers mi defined in (5.4) are given by

mi = p`ii Li(n) (i = 1, . . . , k), (5.11)

where Li(n) = ain+ bi.

3 There is no risk of confusing the Hecke eigenvalues afi(n) and the integers ai.
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Note that

gcd(A,B + νi) = νip
`i
i (i = 1, . . . , k),

aibj − ajbi =
A

νiνjp
`i
i p

`j
j

(νj − νi) (1 6 i, j 6 k).

In particular, it follows that the integers a1, . . . , ak, b1, . . . , bk defined in (5.10) satisfy (3.2) and
(3.3). Moreover, setting

Σ = {p 6 2K} ∪ {p1, . . . , pk},

conditions (3.6) and (4.1) hold true as well, which allows us to apply our sieving Theorems 3.1
and 4.1. Using them and the Sato–Tate conjecture (as stated in Proposition 2.1), we obtain the
following.

Proposition 5.2. There exists a positive number c1, depending on K and on the forms fi such
that there exist infinitely many positive integers n with the following property:

c1 6 |λfi(Li(n))| 6 c−1
1 (i = 1, . . . , k). (5.12)

Proof. Let η and ε be as in Theorem 3.1 and Theorem 4.1 respectively. Both depend on k
and #Σ, but since #Σ = π(2K) + k, this translates into dependence on K.

Now let Pε be the set of prime numbers p such that for some i ∈ {1, . . . , k} we have
|λfi(p)| 6 ε/k. Proposition 2.1 implies that its relative density is at most ε. Now Theorems 3.1
and 4.1 together imply that there exist infinitely many positive integers n with the following
properties.

(A) Each Li(n) is a square-free positive integer.

(B) For i = 1, . . . , k, every prime p | Li(n) satisfies p > nη.

(C) For i = 1, . . . , k, every prime p | Li(n) satisfies |λfi(p)| > ε/k.

After discarding finitely many numbers n, item (B) implies that

(B′) for i = 1, . . . , k, every prime p | Li(n) satisfies p > Li(n)η/2.

Hence, each Li(n) has at most 2/η prime divisors. Write Li(n) = q1 · · · qs, where s 6 2/η and
q1, . . . , qs are distinct prime numbers satisfying

ε

k
< |λfi(qj)| 6 2 (j = 1, . . . , s).

The inequality on the right is by Deligne’s bound (2.3). By multiplicativity, we now obtain(
ε

k

)2/η

6 |λfi(Li(n))| 6 22/η.

This completes the proof. 2

Remark 5.3. Slightly modifying the above argument, one proves the following quantitative result:
there exist c2 > 0 (depending on K) and x0 > 2 (depending on K, on the forms fi and on our
choice of the primes pi and the exponents `i) such that for x > x0 the number of n 6 x with
the property (5.12) is at least c2x(log x)−k. The constant c2 is effective, but x0 is not, because it
depends on a ‘quantitative’ form of the Sato–Tate conjecture, which is not known to be effective
(to the best of our knowledge).
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5.3 The exponents `i
We now fix a small parameter δ > 0 (to be specified later) and define, in terms of this δ, our
`1, . . . , `k.

Proposition 5.4. Let δ be a positive real number. Then there exist positive integers `1, . . . , `k
such that

|λf1(p`11 )| < δ|λf2(p`22 )| < · · · < δk−1|λfk(p`kk )|. (5.13)

We start with an easy lemma.

Lemma 5.5. Let f be a primitive form of weight κ, let p be a prime number such that λf (p) 6= ±2,
and let ε a positive real number. Then there exists a positive integer ` such that |λf (p`)| < ε.

Proof. We may assume θp/π /∈ Q as otherwise there is nothing to prove. Using (2.5), we know
that

|λf (p`)| = |sin((`+ 1)θp)|
|sin θp|

.

Since θp/π /∈ Q, selecting ` suitably, we can make |sin((`+ 1)θp)| as small as we please. 2

Corollary 5.6. Let f, g be primitive forms of weights κ, ρ, respectively, and let p, q be prime
numbers. Also let `′ be a positive integer and δ be a positive real number. Assume that λf (p) 6= ±2
and ag(q

`′) 6= 0. Then there exists a positive integer ` such that

|λf (p`)| < δ|λg(q`
′
)|.

Proof. Apply Lemma 5.5 with ε = δ|λg(q`
′
)|. 2

Proof of Proposition 5.4. Set `k = 1 and afterwards define `k−1, . . . , `1 iteratively by applying
Corollary 5.6 (k−1)-times. The hypothesis of Corollary 5.6 is assured because of (5.6) and (5.7).

2

Remark 5.7. Using Baker’s theory of logarithmic forms, it is possible to prove that one can find
suitable `1, . . . , `k effectively bounded in terms of f1, . . . , fk and δ. We do not go into details
since we do not need this.

5.4 Conclusion
Now we are ready to prove Theorems 1.2 and 1.3. Let c0 and c1 be as in Proposition 5.1
and Proposition 5.2 respectively. Set δ = (c0c1)2/2 and define the exponents `1, . . . , `k as in
Proposition 5.4. (It is crucial here that c0 and c1 depend only on K but not on the exponents `i.)
Now if n is one of the infinitely many positive integers satisfying property (5.12), then in the
set-up of Theorem 1.2 the corresponding m = An+B satisfies

|λf1(m+ ν1)| 6 1

2
|λf2(m+ ν2)| 6 · · · 6 1

2k−1
|λfk(m+ νk)|,

as follows from (5.2), (5.11), (5.12) and (5.13). In the set-up of Theorem 1.3 it satisfies

|af (m+ ν1)| 6 1

2
|af (m+ ν2)| 6 · · · 6 1

2k−1
|af (m+ νk)|,

as follows from (5.3) (with f1 = · · · = fk = f), (5.11)–(5.13). This completes the proof of
Theorems 1.2 and 1.3.

Remark 5.8. As Remark 5.3 suggests, we actually obtain the following quantitative results: for
sufficiently large x, there is at least cx(log x)−k positive integers m 6 x with the property (1.3)
and (1.4); here c = c(K, f1, . . . , fk) > 0 is effective and ‘sufficiently large’ is not effective.
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6. Proof of Theorem 1.4

In this section k is a positive integer, and f is a primitive form of square-free level, as defined in
the beginning of § 1. We want to show that the three conditions (A), (B) and (C) are equivalent.
We will assume that k > 2 as otherwise we know that any non-zero primitive form has infinitely
many non-zero Fourier coefficients (see Proposition 6.1). Condition (C) trivially implies (B),
and (B) implies (C) by putting

νi = ν + σ(i) (1 6 i 6 k)

in Theorem 1.3.
The implication (B) ⇒ (A) is easy. One readily sees that (1.7) is equivalent to the following:

af (p`) 6= 0 for every prime p and positive ` with p` 6 k/2. (6.1)

We will check (6.1); let p and ` be such that p` 6 k/2. Since k > 2p`, the set {ν + 1, . . . , ν + k}
contains at least two consecutive multiples of p` and so one of them, say ν + h, is divisible by p`

but not by p`+1. Since af is multiplicative and af (ν + h) 6= 0, we have af (p`) 6= 0.
We are left with the implication (A) ⇒ (B). We deduce it from Theorems 3.1 and 4.1 with

the help of the following lemma.

Lemma 6.1. Let f be a primitive form of square-free level N . For every prime number p there
exist infinitely many integers ` such that

af (p`) 6= 0.

Proof. If p|N , then we know from the Atkin–Lehner theory that

af (p`) = af (p)` 6= 0 (6.2)

as N is square-free (see [Ono04, p. 29]). We shall now only consider primes p with (p,N) = 1.
We shall indeed prove that among two consecutive non-negative integers (`, `+ 1), at least one,
say `′, satisfies af (p`

′
) 6= 0.

Our claim is true for ` = 0 since af (1) = 1. Let us assume (induction hypothesis) that it is
true for a pair (`, `+ 1).

If af (p`+1) 6= 0, then our claim is true for the pair (`+ 1, `+ 2). On the other hand, if
af (p`+1) = 0, then af (p`) 6= 0 by our induction hypothesis, and (2.2) implies that

af (p`+2) = af (p)af (p`+1)− pκ−1af (p`) = −pκ−1af (p`) 6= 0.

Hence, our claim is again true for the pair (`+ 1, `+ 2). This proves the lemma. 2

Alternatively, it is possible to deduce the lemma from equations (2.5), (2.6) and (6.2); we
leave the details to the reader.

Proof of the implication (A) ⇒ (B). We assume that (6.1) holds and want to find a positive
integer ν such that (1.8) holds.

Since (6.1) is the same when k = 2h and k = 2h+ 1, namely af (p`) 6= 0 for p` 6 h, it is
sufficient to consider the case when k is odd, say k = 2h+ 1.
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We define Σ as the set of all primes p 6 2k and those finitely many primes p for which
af (p) 6= 0 but af (p`) = 0 for some ` > 1. By Lemma 6.1, to each p ∈ Σ we may associate an
integer `p such that

af (p`p) 6= 0, (6.3)

p`p > k. (6.4)

By the Chinese remainder theorem, one can find a positive integer r such that

r ≡ p`p mod p`p+1 (p ∈ Σ). (6.5)

We will show that there exist infinitely many positive integers m such that

af (Dm+ r + j) 6= 0 (−h 6 j 6 h), (6.6)

where
D =

∏
p∈Σ

p`p+1.

If m is any such integer, then, setting ν = r +Dm− h− 1, we clearly obtain (1.8).
For −h 6 j 6 h, we introduce the linear forms Lj(m) = ajm+ bj by

Dm+ r + j = gcd(D, r + j)Lj(m) = gcd(D, r + j)(ajm+ bj).

(There is no risk of confusing the Hecke eigenvalues af (n) and the integers aj .) Let us first check
that the k linear forms Lj satisfy the conditions of Theorems 3.1 and 4.1.
• By construction, for every j, we have aj 6= 0 and gcd(aj , bj) = 1.
• For i 6= j, we have D(r + j)−D(r + i) = D(j − i) 6= 0. Since aibj − ajbi is a divisor of
D|j − i|, it is not 0.

• By construction, ai is a divisor of D which has only prime divisors from Σ.
• Similarly, aibj − ajbi is a divisor of D|j − i|, where D and |j − i| 6 k have only prime

divisors from Σ.
• We finally have to verify that every aj is divisible by every prime in the set Σ. Since
r ≡ p`p mod p`p+1 and p`p > k > h, we have ordp(r + j) 6 `p (where ordp denotes the p-adic
valuation). Now since

ordp(aj) = ordp(D)− ordp(r + j)

and p`p+1 | D, we have ordp(aj) > 1.
We can now apply Theorems 3.1 and 4.1, taking for the unwanted set of primes those which

are not in Σ and for which af (p) = 0. Thus, there exist infinitely many positive integers m such
that each of the k numbers L−h(m), . . . , Lh(m) is square-free, not divisible by any prime from Σ
nor by any prime p for which af (p) = 0. It follows that for such m, we have

af (Lj(m)) 6= 0 (−h 6 j 6 h).

In order to prove that for these m we have (6.6), it is enough to prove that

af (gcd(D, r + j)) 6= 0 (−h 6 j 6 h). (6.7)

When j = 0, for any p in Σ we have p`p ‖ r so that p`p ‖ gcd(D, r). Since af (p`p) 6= 0 by (6.3),
we obtain af (gcd(D, r)) 6= 0 by multiplicativity.

If j 6= 0, then, for p ∈ Σ we have ordp(j) < `p because p`p > k by (6.4). Hence
pµ ‖ gcd(D, r + j) implies that pµ ‖ j. It follows that pµ 6 h 6 k/2, and our assumption (1.7)
implies that af (pµ) 6= 0. By multiplicativity, this proves (6.7) for j 6= 0 as well.

The proof of the implication (A)⇒ (B) is now complete, and so is the proof of Theorem 1.4.
2

2459

https://doi.org/10.1112/S0010437X18007455 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007455


Yu. F. Bilu et al.

Acknowledgements
The authors would like to thank the referee for her/his extremely careful reading and relevant
suggestions which improved the exposition of the paper. F.L. worked on this paper during a
visit to the Institute of Mathematics of Bordeaux as an ALGANT scholar in July 2011. He was
partially supported by the ALGANT, by grant CPRR160325161141 and an A-rated scientist
award both from the NRF of South Africa, by grant no. 17-02804S of the Czech Granting
Agency and by IRN ‘GANDA’ (CNRS). Yu.B. was partially supported by the ALGANT, by the
Indo-European Action Marie Curie (IRSES moduli) and by IRN ‘GANDA’ (CNRS). J.-M.D. was
partially supported by the CEFIPRA project 5401-A, by the Indo-European Action Marie Curie
(IRSES moduli) and by IRN ‘GANDA’ (CNRS). S.G. was visiting the Institute of Mathematics
of Bordeaux as an ALGANT scholar in 2014 when she started working on this project. She
acknowledges support by the ALGANT, a SERB grant and the DAE number theory plan project.
During the final stage of preparation of this paper Yu.B. and J.-M.D. enjoyed hospitality of the
Institute of Mathematical Sciences at Chennai. The authors thank Satadal Ganguly, Florent
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