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This study explores the use of an individual’s genetic (IGFS) and environmental factor score
(IEFS), constructed using genetic model fitting of a multivariate strength phenotype. Maximal
isometric and dynamic strength measures, one maximal repetition load (1RM) and muscle cross-
sectional area (MCSA) were measured in 25monozygotic and 16 dizygotic twin pairs. The use of
IGFS and IEFS in predicting the sensitivity to environmental stress was evaluated by the
association of the scores with strength training gains after a 10-week high resistance strength
training programme. Results show a high contribution of genetic factorsto the covariation between
maximal strength and muscle cross-sectional area (84-97%) at pre-training evaluation. Individual
factor scores explained the largest part of the variation in 1RM and other strength measures at pre-
training and post-training evaluation respectively. Genes that are switched on due to training
stress (gene—environment interaction) could explain the decrease in explained variation over time.
A negative correlation was found between IGFS and strength training gains (-0.24 to -0.51,
P < 0.05); individuals with a high IGFS tend to gain less strength than individuals with low IGFS.
Individual environmental factor scores have lower differential power. The predictive value of the
IGFS has potential utility in identifying an individual’s susceptibility to environmental stressin a
variety of multifactorial characteristics, eg diseases and impairments, and for selection of sib pairs
for QTL analyses. Twin Research (2000) 3, 99-108.
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Introduction

Most common congenital malformations (eg clefting,
spina bifida, pyloric stenosis, hip dislocation, club
feet), adult diseases (eg ischemic heart disease,
hypertension), and quantifiable biological traits (eg
height, weight, blood pressure, intelligence) are
multifactorial and are determined by both genetic
and environmental factors. One of the major chal-
lenges in the field of human genetics is to identify
individuals at high risk for a given disease or a
favourable phenotype, and to predict an individual’s
outcome in an efficient prevention, training or
educational programme. The importance of genetic
and environmental effectsin normal variation can be
studied using data of genetically related subjects.’?
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Recent developments use the technologies of molec-
ular biology to map gene loci explaining variation in
quantitative traits (QTL).> Heritability studies esti-
mate the importance of genetic factors at a popula-
tion level. Statistical procedures are now available to
estimate individual levels of genetic and environ-
mental determination.* In this paper we use a path-
analytic approach to construct individual genetic
and environmental factor scores and to test whether
these scores predict the susceptibility to environ-
mental changes.

When multivariate observations are available from
genetically related individuals, hypotheses can be
tested about whether the same environmental and
the same genetic factors have pleiotropic influences
on phenotypically correlated measures.>® The
parameters of such a genetic factor analysis can be
estimated, and individual genotypic and environ-
mental factor scores (IGFS and IEFS) for each subject
may be constructed by standard methods.* The
major question in this study is:
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Can individual genetic or environmental factor
scores predict a subject’s susceptibility to an
environmental stress factor, specifically in this
study an arm flexo training programme?

We hypothesise that, depending on the average
heritability of the multivariate phenotype, the IGFS
should predict the value of theindividual phenotype
at least at the pre-training level. The higher the
heritability of thetraits, the smaller the proportion of
the variance explained by non-shared environmental
factors, the greater the predictive power of the IGFS.
Large variation in environmental scores, reflecting a
high environmental determination, will lower the
predictive power of the IGFS.

The predictive power of IGFS depends not only on
the average heritable and environmental determina-
tion of the traits but also on the switching on of other
genes in response to the environmental stress (geno-
type—environment interaction). The estimation of
individual factor scores (IFS) in the pre-stress condi-
tion produces factor scores based on the genetic and
environmental effects acting at this pre-stress level.
If the stress activates new genes, then pre-stress IGFS
will predict the post-stress phenotypes and changes
in phenotypes less well.

The main purpose of this study is to test the
predictive power of individual genetic and environ-
mental factor scores in response to environmental
stress in an empirical training study. Although
feasible, it is ethically not desirable to do inter-
vention studies in more relevant multifactorial dis-
eases such as hypertension, obesity, cancer of behav-
ioural disorders etc, therefore we decided to test the
validity of the individual factor scores on muscular
strength. Specific resistance training programmes are
effective in increasing muscle strength and hyper-
trophy, and can, in a standardised manner, be used
as an environmental stress factor in untrained
subjects. We constructed individual genetic and
environmental factor scores for isometric arm
strength and muscle mass in 25monozygotic and
16dizygotic male, adult twin pairs. The environ-
mental stress was a 10-week heavy-resistance train-
ing programme for the elbow flexors. Responses to
this environmental stress factor were measured as
absolute (post-training minus pre-training values)
and relative increases (gain in strength expressed as
a percentage of initial strength) in static and
dynamic arm strength and muscle hypertrophy after
the training programme. We hypothesise that sub-
jects with higher individual genetic factor scores
will be less responsive to the environmental stress
(training) than subjects with smaller genetic factor
scores, and will have correspondingly smaller
strength gains following training.
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Subjects and methods
Subjects

The sample for this study consisted of twin pairs
from Flemish Brabant, Belgium. Male volunteer
twins 17-30years of age were included if both
members of atwin pair had similar physical activity
profiles and had not started, nor recently stopped,
strength training during the preceding year. Forty-
one twin pairs volunteered, their mean age was
22.4 + 3.7years. Subjects were fully informed of the
measurement protocol before giving their written
consent. The project was approved by the local
medical ethics committee. Zygosity was determined
by examination of the following genetic markers:
ABO, Rhesus (D, C, C", c, E, ), MNSs and Duffy(a,b).
The power to detect dizygotic (DZ) twins with this
set of genetic markers was 91%. Differences in two
genetic markers were used to establish dizygosity.
The probability of monozygosity (MZ) of pairs with
the same genetic markers was calculated.” All MZ
pairs had a probability of monozygosity of at least
95% . Twenty-five pairs were classified as MZ and 16
as DZ.

Training protocol

Both members of the twin pair participated in a
programme in which mainly the elbow flexors were
trained. During 10weeks, five sets of biceps curls
were performed, 3times a week on a training
apparatus (Kettler Sport type 7408-150). Every week,
the load of each set (with a precision of 0.5kg) was
adjusted to each subject’s one repetition maximal
value (1RM). The 1RM was defined as the maximal
resistance that could be lifted a single time through
the full range of motion. During each supervised
training session, the first set was performed at 60%
of 1RM with 14 repetitions (reps), the second set at
75% of 1RM with 12reps, the third set at 80% of
1RM with 10reps and 8reps at 85% of 1RM for the
fourth set. The fifth set at 65% of 1RM was
performed until exhaustion.

Measurement protocol and variables

The estimation of IGFS and IEFS is based on a
multivariate phenotype. Measurements that eval-
uated maximal isometric strength in the pre-training
condition were chosen. These phenotypes consisted
of the maximal static voluntary contraction at 140°,
110°, and 80° arm flexion (180° is the arm in full
extension), and mean cross-sectional arm muscle
area (cm?). The evaluation of maximal static volun-
tary contraction was done after one week of adapta-
tion to the training apparatus using low training
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loads (50-70% 1RM) on a programmable dynamom-
eter (Promett).®? With this system, isometric, con-
centric, and eccentric contractions can be performed
at different speeds and amplitudes imposed by the
dynamometer. Subjects were asked to demonstrate
maximal isometric strength and hold it for 3 seconds.
The highest registered moment during this contrac-
tion was selected as the maximal isometric strength
measurement expressed in Newton meter (Nm).
Test—retest correlations ranged from 0.93 at the
extreme angles to 0.97 at the middle angle (110°).
The observer was able to evaluate each subject’s
maximal effort by visualised moment and electro-
myographic signals registered at M. biceps brachii,
M. brachioradialis, M. brachialis, M. triceps brachii
and M. triceps brachii. Computed tomography imag-
ing scans were used to measure the mean cross-
sectional arm muscle area.'” Technical error of
measurement for muscle area was 0.16cm? with a
reliability of 0.99. The mean muscle cross-sectional
area (MCSA) of the four scanswas used in the further
analyses. The dependent phenotypes to evaluate the
strength gain after training were the absolute and
relative increases in 1RM, static strength at 110°
flexion and strength at 140° flexion during maximal
concentric contraction at a speed of 60°/s. Hyper-
trophic adaptations to the heavy-resistance strength
programme were evaluated by absolute and relative
increases in mean muscle cross-sectional area of the
arm, measured by CT-imaging.

MZ=1.0; rDZ=0.5
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Genetic analyses

The causes of variation in muscle cross-sectional
area and maximal static strength at the different
elbow angles was first studied in a univariate way."
The significance of additive genetic variation, spe-
cific environmental factors and common environ-
mental factors or dominance genetic variance was
tested with model fitting.?

In order to construct the individual genetic and
environmental factor scores, a common factor ana-
lytic model (Figure1) was applied to the multi-
variate phenotype. The loading of common and
variable-specific latent factors on the phenotypes
was estimated using maximum likelihood estima-
tion in Mx."? These loadings were then used in the
estimation procedure for the IGFS and IEFS. This
procedureis aregression method that minimises the
differences between estimated and true factor
scores.” It isthe preferred method when the primary
interest is the individual factor scores.” The Thur-
stone regression method for the estimation of factor
scores' is preferred above the Bartlett estimator'®
because the correlations between true and estimated
factor scores are higher and differences between
simulated and predicted variances of the factor
scores were somewhat smaller for the regression
than for the Bartlett method.* More details on the
model fitting procedure and the construction of IGFS
and IEFS are given in Appendix A.
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140° | 10° 80°
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MZ=1.0; rDZ=0.5

TWIN 1
Figure1

TWIN 2

Path-diagram of the multivariate genetic analysis. Phenotypes are enclosed in squares, and latent factors are enclosed in

circles. A, and E, are the additive genetic and non-shared environmental factors that are common to all phenotypes. A,_, and E,_, are
additive genetic and non-shared environmental factors that are specific to each phenotype. The numbers at each causal uni-directional
path indicate path coefficients. Double-headed arrows indicate correlations between latent factors (between additive genetic factors, 1 for

MZ twins and 0.5 for DZ twins)
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Analysis of the predictive value of individual
factor scores

The predictive value of the individual genetic and
environmental factor scores based on pre-training
values was tested by the association of these scores
with pre- and post-straining and absolute and rela-
tive training responses in 1RM, isometric strength at
110°, concentric strength at 140° flexion at 60°/sec
and muscle cross-sectional area. These associations
were tested by correlation coefficients. The distribu-
tions of all variables were tested for Gaussian
normality using the Shapiro-Wilk test. We fur-
thermore tested for birth order effects and differ-
ences in mean and variances between twin types
with t tests and F tests, respectively. In all tests, the
statistical significance level was chosen at
P < 0.05.

Results

Univariate and multivariate genetic analysis

All data were normally distributed. Univariate
genetic model fitting on pre-training phenotypes
indicated that a model with additive genetic factors
and unique environmental factors was the most
parsimonious. For the mean muscle cross-sectional
area (MCSA), there was evidence for a phenotypic
interaction factor (one twin’s larger MCSA going
together with a smaller MCSA in his co-twin);
however, this was due to a smaller total variance in
MZ twins than in DZ twins. Univariate heritabilities
were 0.92, 0.75, 0.78 and 0.66 for MCSA, and static
moments at 140°, 110° and 80°, respectively."’ The
genetic contributions in this study correspond to

Table 1

other twin studies measuring maximal static or
dynamic strength by arm pull, hand grip, pull-ups or
combined strength scores (h® = 60-83%),'®° and to
studies that estimate the heritability in regional arm
musculature.®"?

The genetic common factor model (Figure1,
Table1) fitted the data well (x* = 61.04, df =56,
P =0.30). The residual (co)variance matrix also
showed small values. The common genetic factor
(A.) explained the largest part of the variation in
each phenotype (64-76% ), while phenotype-specific
genetic and environmental factors were less impor-
tant (0 to 20%). The common environmental factor
only contributed 1% to 16% of the variation in each
phenotype (Table1A). However, leaving out this
common factor worsened the fit of the model
significantly. The high genetic correlations among
the four phenotypes (> 0.85) indicated that the same
genes influenced strength at different elbow angles
as well as the muscle cross-sectional area. Non-
shared environmental correlations were highest
between the strength measures, but low between
muscle mass and isometric strength (Table 1B).

Construction of genetic and environmental factor
scores

The distribution of IGFS and IEFS was Gaussian.
The mean value of all factor scores (Table2) was not
significantly different from zero, but the variation in
both genetic and especially environmental factor
scores was significantly smaller than the expected
(1.0). Confidence intervals around the IGFS were
smaller than those around the IEFS, and the con-
fidence intervals around the factor scores tended to
be larger in DZ than in MZ twins.

(A) Proportion of explained variance in each phenotype by genetic and environmental factors. Legend and abbreviations as in

Figure 1 (numbers in superscript give path coefficients as in Figure 1). (B) Bi-variate genetic and environmental correlations (above
diagonal) and percentage of explained covariation explained by genetic and environmental factors (below diagonal)

A Proportion of explained variance by genetic and environmental factors
Genetic variation Environmental variation
Ac A4 Az As Ay E = =3 Es E,
MCSA?  0.64" 0.18® 0.01® 0.161
140°° 0.76@ 0.00® 0.0719 0.1704
110°¢ 0.72® 0.00" 0.160" 0.1319
80°d 0.64® 0.05®) 0.11¢2 0.200'®)
B Genetic factors Environmental factors
MCSA® 140°° 110°¢ 80°d MCSA? 140°° 110°¢ 80°d
MCSA® - 0.88 0.88 0.85 - 0.12 0.17 0.13
140°° 97 - 0.97 0.96 3 - 0.40 0.31
110°¢ 95 88 - 0.96 5 12 - 0.44
80°d 95 89 84 - 4 11 16 -

aMCSA: muscle cross-sectional area; ®140°: maximal static moment at 140° of elbow flexion; °110°: maximal static moment at 110° of

elbow flexion; 980°: maximal static moment at 80° of elbow flexion.
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Table2 Means, standard deviations and 95% confidence intervals (C.I.) of estimated factor scores

A Total sample MZ twins (n = 25) DZ twins (n = 16)
(n =80) Twin 1 Twin 2 Twin 1 Twin 2
IGFS IEFS IGFS IEFS IGFS IEFS IGFS IEFS IGFS IEFS
Mean 0.006 0.015 0.000 0.000 0.000 0.000 0.027 0.086 0.006 -0.007
SD 0.89 0.54° 0.93 0.61° 0.93 0.55° 0.90 0.37° 0.82 0.582
Cl. + 0.60 (IGFS) +1.5 (IEFS) + 0.76 (IGFS) + 1.72 (IEFS)

3P < 0.05; PP < 0.01; significant difference from the expected standardised population parameters mean = 0 and SD = 1.

Strength training effects

The effect of strength training was first tested by
analysis of variance for repeated measurements. The
one repetition maximal strength increased signifi-
cantly by 45.4% on average, maximal isometric
strength by 23.3%, and maximal concentric strength
by 24.9%. Hypertrophy of arm muscle area was
smaller but significant (5.3%, P < 0.01). Therewas a
significantly larger increase in MCSA in DZ twins
than in MZ twins (F = 4.7, P < 0.05); however, no
other zygosity interaction effects were found, indi-
cating no difference in the muscular strength
response to training between MZ and DZ twins. The
variation in response to training between individ-
uals was very large: the coefficient of variation
varied between 34% and 142% for the absolute, and
between 45% and 136% for relative changesin 1RM
and maximal concentric strength respectively.
Changesin 1RM scores, maximal isometric strength,
and muscle hypertrophy were comparable to train-
ing effects in other  strength training
programmes.®*2®

Predictability and differential power of individual
genetic and environmental factor scores

Table 3 showsthe correlations of IGFS and IEFS with
the pre- and post-training and absolute and relative
training responses in the four dependent pheno-
types. IGFS was highly positively associated with
both pre- and post-training phenotypes (0.67—-0.86).
Subjects with a high IGFS gained less absolute and

relative strength as shown by the significant negative
correlations with 1RM (-0.45—0.51), and relative
change in isometric and concentric strength (—0.24).
No significant correlation was found for the training
effects on muscle mass (0.01, and -0.12). IEFS
correlated moderately with pre-training isometric
and concentric strength (0.44 and 0.30, respectively).
No significant association was found between IEFS
and training effects in the different phenotypes,
except for a significant but low negative correlation
with the increase in isometric strength (—0.24).
Figure2 shows the power of how well a subject’s
baseline IFS predicts his observed baseline 1RM
strength and hisfuture strength gain after training. In
this figure, both IFS and 1RM scores were cate-
gorised into quartile groups. Non-overlapping error
bars indicate significant differences in number of
individuals positioned in the phenotypical quartile
groups by contrasting the individuals according to
two IFS quartile groups (A, B: IGFS < P25 against
IGFS=P75; and C, D: IEFS<P25 against
IEFS = P75). Before training, subjects in either the
lower or upper IGFS quartiles also had a high or low
1RM strength score (Figure2A), while the extreme
IEFS did not differentiate the subjects except some-
what in the middle (=P25-<P50) 1RM quartile
(Figure2C). For training responses, an inverse rela-
tionship was found. Subjects in the higher IGFS
quartile gained the least strength (Figure2B),
whereas subjectsin the lowest IGFS quartile werein
the highest quartiles for their 1RM response. Con-
trasting the extremes of IEFS (Figure2D) indicated
that individuals with alow IEFS at baseline tended

Table3 Correlations of IGFS and IEFS with the pre-, and post-training and training response phenotypes

Phenotypes
1 RM? isometric 110° conc. 140° MCSAP
60°/sec
IGFS with pre-training 0.79¢ 0.86¢ 0.78¢ 0.844
post-training 0.72¢ 0.71¢ 0.67¢ 0.83¢
absolute change -0.45¢ -0.03 -0.15 0.01
relative change -0.51¢ —0.24¢ —0.24¢ -0.12
IEFS with pre-training 0.05 0.44¢ 0.30° -0.11
post-training 0.15 0.28¢ 0.22 -0.10
absolute change 0.09 -0.14 -0.08 0.01
relative change 0.07 —-0.24° -0.18 0.03

#1RM: one repetition maximal (kg); "M CSA: muscle cross-sectional area (cm?); °P < 0.05; 9P < 0.001.
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Figure2 Differentiation in 1RM phenotype by IGFS and IEFS. Both IFS and 1RM scores are categorized in four quartile groups. Non-
overlapping error bars indicate significant differences (*: P < 0.05) in number of individuals positioned in the phenotypical quartile
group by contrasting two IFS percentile groups. A and B compare the extreme quartiles IGFS < P25 vs IGFS = P75, and C and D the
extreme quartiles IEFS < P25 vs |IEFS = P75. The Y-axis gives the number (n) of individualsin agiven baseline IGFS or IEFS quartilewho

have 1RM strength scores in a certain quartile (X-axis)

to have a lower impact from the training than
individuals with higher baseline |IEFS scores.

Expressed as a relative risk, individuals having a
low IGFS, had a4.1timesincreased chance of having
a low baseline strength (RR = 4.1, Clgs: 1.9 to 8.79),
while having a high IGFS increased the chance of
having a high 1RM performance seven-fold
(RR=7.0, Clgs: 3.1 to 15.76). The relative risk in
individuals with a low IEFS of a low strength
performance was not significantly different from
one, but having a high IEFS gave a two-fold
increased chance of having a high baseline strength
score (RR = 2.0, Clgz: 1.006 to 4.0). Individuals with
a high IGFS had a six-fold significantly decreased
chance (RR=0.16, Clg;: 0.02 to 0.99) of a high
training response; a similar relative risk was
observed for individuals with alow IGFS to have a
low training response. Relative risks to predict
strength gains after training based on the IEFS scores
were not significantly different from 1.
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Discussion

To our knowledge, this is the first study that has
investigated the use of individual genetic and envi-
ronmental factor scores to predict the sensitivity of
an individual to an environmental stress. Individual
genetic and environmental factor scores were con-
structed from a multivariate common genetic factor
model. This model gave a good explanation of the
observed covariation (low x°); however, a more
parsimonious model could be developed.*®
Individual genotypic and environmental scores
explained 60-74% of the variation in pre-training
phenotypes (r* from Table3). The proportion of
explained variance decreased when post-training
phenotypes and training effects were predicted. A
first possible cause of this decrease could be environ-
mental factors, other than the training programme,
influencing the phenotypes during training.
Although subjects were asked to maintain pre-
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training physical activities during training, which
was monitored by a 7-day recall questionnaire every
week,* changes in physical activity, diet and other
environmental factors could not be entirely con-
trolled during the 10-week study period. Another
important possibility, however, is that other, ‘new’
genetic factors, that do not contribute to the genetic
variation in the pre-training strength, may be
switched on during training (gene—environment
interaction). The proportion of explained genetic
variance by ‘new’ genetic factorsin the post-training
phenotype could not be explained by IGFS that are
constructed from pre-training phenotypes. The
importance of ‘new’ genetic factors affecting the
post-training phenotype can be tested in alongitudi-
nal model in which a specific genetic factor that only
causes variation in the post-training phenotype but
not in the pre-training phenotype is included. This
specific gene—environment interaction was signifi-
cant for the 1RM and maximal static moment at 110°
flexion, and explained 19-21% of the variation in
post-training strength but not for maximal torque in
eccentric muscle work or concentric muscle work at
lower velocities (30° and 60°/s).>" Using a two-way
analysis of variance method Thibault et al®® found
no evidence for a significant genotype-training
interaction in peak torque output after 10 weeks of
isokinetic knee flexion/extension trainingin five MZ
twins. There was no evidence for specific genetic
factors in our data to influence post-training muscle
cross-sectional area.*’

We are not aware of any method in the training
literature that predicts individual responses to
strength training. The prediction of individual train-
ing effects, based on the individual genetic factor
scores in this study was more accurate for pheno-
types with larger average training effects (1RM and
relative changes). The observed negative relation-
ship between pre-training genotype (IGFS) and
strength increase, sometimes referred to asthe law of
initial values,® has also been reported in early
strength training studies.®® Stronger subjects gain
less strength with a resistance-training programme
than individuals with less strength.

Theresults indicated that IGFS not only classified
subjects into high and low strength groups, but also,
in spite of the large variability in training responses,
predicted their low or high strength gain: of two
individualswith similar strength at baseline, the one
with the highest IGFS will gain less from training
than the one with the lowest IGFS. The individual
environmental factor scores, however, did not have
the same power to categorise subjects, or to predict
their future training gains. Environmental factors
unique to individuals with a common effect on all
measured phenotypes (E_), such as previous training
status or diet, only explained a small part of the
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observed covariation. The environmental variation,
unique for each phenotype (E,—E,), was more impor-
tant. The predictive value of the IGFS and IEFS was,
however, not significantly improved compared with
the predictive values of the raw phenotypic scores
(eg pre-MCSA scores predicting post-M CSA scores).
Probably the high heritabilities of the phenotypes
could explain these observations. In phenotypes
with lower heritabilities like complex diseases or
behavioural traits, the gain in predictive value of the
IFS could be larger compared with the raw scores of
the phenotypes.

This study demonstrated the feasibility of using
multivariate genetic model fittingin the construction
of individual genetic and environmental factor
scores, and the use of model fittingin predicting the
response to strength training. The same approach,
however, has potential for applications in multi-
factorial diseases, such as hypertension or obesity.
Quantifyingthe IGFS and |IEFS of an individual with
a high-risk phenotype (eg diastolic blood pressure
above 90 mmHg or a systolic value above 140 mmHg)
could indicate whether the cause of a high risk
phenotype is mainly a genetic predisposition (high
IGFS) or an environmental deviation (high IEFS).*
Consequently therapeutic strategies may more effi-
ciently concentrate on concrete actions on the
regulatory mechanisms of hypertension in the case
of a high genetic predisposition, or diminish the
negative environmental stress factors, if subjects
with hypertension express high environmental fac-
tor scores. Besides etiological classification, this
approach might also predict the therapeutic out-
come, and even guide the progress by monitoringthe
evolution of the IEFS. The weight matrix A (see
Appendix 1, equation 3) can be calculated based on
multivariate data from twins, or an extended twin
and family design. This weight matrix is then
multiplied by individual screening data to obtain
IGFS and IEFS for each individual.

The results of this study should be interpreted in
the context of the following limitations. Although
the sample is one of the largest in an experimental
strength-training design, genetic analyses usually
require larger samples. The power of this study is
sufficient to test for the significant contribution of
genetic factors against a model with solely unique
environmental contributions to the observed varia-
tion. The detection of a small proportion of addi-
tional familial environmental factors or genetic
dominance would require much larger samples. In
the multivariate case, however, power increases due
to additional information, although the power to
discriminate between different hypothesised models
is still small. Further, results only apply to young
adult men, who may not be representative of the
general population.
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IGFS and |IEFS also improve the power of mapping
Quantitative Trait Loci (QTL). Present strategies are
based on identifying polymorphic marker alleles
that are inherited identically by descent (IBD).*® To
increase the power of mapping QTLs, three strategies
are suggested by Lander and Botstein:*®

1) genotyping of sibs with extreme phenotypes;
2) multipoint interval mapping; and

3) reducing environmental variation and genetic
variation not associated with the QTL.

Recent simulation studies have dealt with these
issues®’ ™ or with actual data.’ Boomsma®' reports a
two-fold increasein power to detect linkage betw een
a two-allele quantitative trait locus and a fully
informative marker using the Haseman-Elston
regression approach when using squared differences
of individual genetic factor scores (based on a
multivariate MZ and DZ twin analysis, including
genetic variance that is not accounted for by the QTL
and environmental variation) compared with
squared differences of phenotypic scores between
sibs. In a recent paper Boomsma and Dolan*?
performed power calculations (number of sib pairs
to be studied to detect linkage) in which both sib pair
selection and QTL analysis was based on an individ-
ual genetic factor score approach. The use of factor
scores was shown to be universally more powerful
than the use of just a multivariate or mean pheno-
typic data approach to detect linkage. The loss in
power of using the same sample to both calculate the
factor score regression matrix and to carry out the
QTL analysis, outweighed the gain in power attribut-
able to the use of factor scores.

In summary, this study explored the use of
individual genetic and environmental factor scores
in predicting an individual’s susceptibility to envi-
ronmental stress. The large proportion of explained
variance in pre- and post-training strength aswell as
in strength increases by IGFS and IEFS leads to
application of these scores in the development of
individual strength training programmes, revalida-
tion programmes and screening for elite athletes.
Furthermore, the identification of genetic and envi-
ronmental sources of deviation in individuals, has a
major field of application in differentiating high-risk
phenotypes in several multifactorial diseases. Also,
selection of individuals based on discordant IGFS
could increase the power to map quantitative trait
loci.
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Appendix A

The multivariate phenotype (P) (see Figure 1) can be
expressed by the following equation:

Pay = he Agyy + € Eggy + hs A ) + & E

M,

where i represents the four different measured
phenotypes (MCSA, STAT.MOMENT 140°, STAT.
MOMENT 110°, STAT. MOMENT 80°) and j the
examined individuals (j = 1,...82). The phenotype P
of each individual is a function of his underlying
genotype (A.) that pleitropically influences all four
phenotypes, and environmental factors (E.) that are
not shared in families, and therefore unique to each
individual, but also influence all four phenotypes.
The factor loadings of the measured phenotypes on
the latent factor A, and E_ areindicated by h, and e..
The residual variable-specific variance is also parti-
tioned in genetic factors (A; and A,) and unique
environmental factors (E, to E,), path coefficients are
indicated by hg and e..

Theloading of each common and specific factor is
estimated by maximum likelihood (ML) in Mx

(Neale'®). The following structural equation is
solved:
S=S=AWA +0 ),
where

S = observed 2p X 2p (p = number of pheno-
types = 4) covariance matrix of observationsin
twin 1 and twin 2 (expressed in deviations from
the group mean);

> = predicted 2p X 2p covariance matrix of
twin1 and twin 2;

A =2p X 2m matrix, wherem = 2 is the num-
ber of common latent factors, containing the
estimated loadings of the common latent fac-
tors on the four phenotypes of both twins (path
coefficients 14 and 9-12 in Figure1); the
loadings are constrained to be equal for twin 1
and twin 2 and for MZ and DZ twins;

¥ =2m X 2m matrix of correlations between
the latent factors; the correlation between A is
1in MZ twins, 0.5 in DZ twins, the correlation
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between the E; factorsis 0 for both MZ and DZ
twins;

® = 2p X 2p symmetric matrix of estimates of
variable-specific unique environmental and
genetic variances that are equated for both
members of the twin pair and between MZ and
DZ twins (path coefficients 5-8 and 13—-16 in
Figure1). Within twin pairs, the unique genetic
factors are correlated 1.0 in MZ twins and 0.5
in DZ twins.

The construction of individual genetic and envi-
ronmental factor scores in the multivariate genetic
analysis was performed by the Thurstone regression
technique.* The following linear expression was
used to obtain the weight matrix A, by minimising
the sum of squares of the difference between esti-
mated and true factor scores:

A = WA (APA' + O) (3),
where

A = matrix of loadings from multivariate phe-
notypes on common factor A, and E

¥ = matrix of correlations between latent

factors;

©® = diagonal matrix of unique genetic and
environmental variation.

This weight matrix was used to compute factor
scores for each subject by multiplying the weight
matrix by both the subject’s multivariate phenotypic
scores and his co-twin’s phenotypic scores.
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FSC = AP 4),
where

Fsc = [IGFS,, IEFS,, IGFS,, IEFS,], isthe vector
of individual factor scores, IGFS = individual
genetic factor score, IEFS = individual envi-
ronmental factor score, subscripts1 and 2 indi-
cate twin 1 and twin 2;

P = the measured multivariate phenotype of
observations of twin 1 and twin 2, expressed in
Z-scores (n X 2p);

A = (2m X 2p) weight matrix, derived from
equation (3).

Two-sided, 95% confidence intervals of the factor
scores were calculated as IGFS + 1.96 X SE, g5 and
IEFS £ 1.96 X SE,gg for both MZ and DZ twins.
SE,srs and SE 5 are the square root of the diagonal
elements of the matrix from equation 5, which is a
2m X 2m matrix of the sampling distribution of
constructed factor scores. Matrix V is calculated
based on the factor loadings in matrix A, the
correlations between the common factors in matrix
W, and the estimated covariance matrix X of respec-
tively MZ and DZ twins. This follows from standard
Kalman filtering techniques:*

V = WP - A'STAIW (5).

The confidence intervals only depend on the
factor loadings and the amount of variable-specific
unique variance (in X) and will increase if the
proportion of unique variance increases.
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