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In this paper, we study the dimension of planar self-affine sets, of which generating
iterated function system (IFS) contains non-invertible affine mappings. We show
that under a certain separation condition the dimension equals to the affinity
dimension for a typical choice of the linear-parts of the non-invertible mappings,
furthermore, we show that the dimension is strictly smaller than the affinity
dimension for certain choices of parameters.
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1. Introduction

Let F = {fi(x) = Aix + ti}i∈I be a finite collection of affine self-maps of Rd, where
Ai is a d × d matrix and ti ∈ Rd, called iterated function system (IFS). Let us
assume throughout the paper that ‖Ai‖ < 1 for every i ∈ I, where ‖ · ‖ denotes the
usual matrix norm induced by the Euclidean-norm on Rd. The well-known theorem
of Hutchinson [12] states that there exists a unique non-empty compact set Λ such
that it is invariant with respect to the IFS F . That is,

Λ =
⋃
i∈I

fi(Λ).

We call the set Λ self-affine set or the attractor of the IFS F . In the special case,
when the affine mappings are similarity transformations, we call the set Λ self-
similar.

The dimension theory of self-affine sets has been widely studied in the past
decades. Throughout the paper, we will denote the Hausdorff dimension of a set
A ⊂ Rd by dimH(A) and the box-counting and the upper box-counting dimension
by dimB(A) and dimB(A), respectively. For the definition and basic properties, we
direct the reader to Falconer [6].

In the case, when the affine mappings are similarities and the IFS satisfies the
strong separation condition, i.e.

fi(Λ) ∩ fj(Λ) = ∅ for every i �= j,
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2 B. Bárány and V. Körtvélyesi

Hutchinson [12] showed that the Hausdorff and box dimension of Λ equals to the
similarity dimension. Determining the dimension becomes significantly harder when
overlaps occur between the cylinder sets fi(Λ), i ∈ I. This problem was stud-
ied in several papers, like Bárány [1], Hochman [9, 10], Simon and Solomyak
[16], Solomyak [17], etc. for typical systems in some proper sense. In general, the
similarity dimension serves always as an upper bound of the box dimension.

Another challenging problem is, when there is a strict affinity between the maps
of the IFS F , that is, there exists a matrix with at least two different eigenval-
ues in modulus. Falconer [5] generalized the similarity dimension for that case,
called the affinity dimension, and showed that if all the maps are invertible then
it is an upper bound of the box dimension of the attractor. Furthermore, Falconer
[5] showed, which was later extended by Solomyak [17], that if ‖Ai‖ < 1/2 then
for Lebesgue typical translation parameters the affinity dimension equals to the
Hausdorff dimension.

The dimension theory of self-affine sets has been widely studied in the recent
years, see Bárány, Hochman and Rapaport [2], Bárány, Käenmäki and Koivusalo
[3], Falconer and Kempton [4], Hochman and Rapaport [11], Rapaport [15]. All
of these papers were considering systems, where the affine mappings are invertible.
The first steps in the direction of considering non-invertible mappings has been
made recently by Käenmäki and Nissinen [13]. They studied the relation between
the dimension of the attractor and the dimension of the self-affine set formed by
the invertible mappings of the IFS for typical and for separated systems.

This paper is devoted to generalize the result of Bárány, Hochman and Rapaport
[2] for planar self-affine sets which defining IFS contains non-invertible mappings.
We will show that for typical choice of parameters the Hausdorff dimension equals
to the affinity dimension, but there is a relatively large set of exceptions. Before
we state our main theorem in details, we need to introduce some notations and
definitions.

Let us denote by Sd−1 the unit sphere on Rd, and let us denote by

Td =

d-times︷ ︸︸ ︷
S1 × · · · × S1

the d-dimensional torus. Every planar, contracting matrix A with rank(A) = 1 can
be represented as A = ρvwT , where ρ ∈ (0, 1) and v, w ∈ S1. In particular, v is
the unit vector generating the image space and w is the unit vector generating the
kernel of the matrix A. Note that this representation is not unique.

For a 2 × 2 matrix A, denote by α1(A) � α2(A) � 0 the singular values. For every
t � 0, let ϕt(A) be the singular value function defined as

ϕt(A) =

⎧⎪⎨
⎪⎩

α1(A)t if 0 � t � 1,

α1(A)α2(A)t−1 if 1 < t � 2,

(α1(A)α2(A))t/2 if t > 2.

Note that if A has rank one then ϕt(A) = 0 for every t > 1.
Let I and J be finite sets of indices and for every i ∈ I ∪ J let fi(x) = Aix + ti

be an affine map such that ‖Ai‖ < 1 for every i ∈ I ∪ J , rank(Ai) = 2 for every
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i ∈ I and rank(Ai) = 1 for every i ∈ J . Let us consider the following parametrized
family of affine IFS

Fw = {fi(x) = Aix + ti}i∈I

⋃
{fi(x) = ρiviw

T
i x + ti}i∈J , (1.1)

where w = (wj)j∈J ∈ (S1)#J = T#J is considered as the parameters while all the
other quantities are fixed. We assume throughout the paper that #J � 1 and
#(I ∪ J) � 2 to avoid trivial cases. Let us denote the attractor of Fw by Λw. We
define the affinity dimension s(Fw) of the self-affine IFS as

s(Fw) = min

⎧⎨
⎩2, inf

⎧⎨
⎩t � 0 :

∞∑
n=1

∑
i1,...,in∈I∪J

ϕt(Ai1 · · ·Ain
) < ∞

⎫⎬
⎭
⎫⎬
⎭ . (1.2)

The affinity dimension serves as a natural upper bound for the upper box-counting
dimension, and in particular for the Hausdorff dimension, of the attractor in the
non-invertible case too, see Käenmäki and Nissinen [13].

Let us define the affinity dimension of the sub-system formed by the invertible
mappings Freg = {fi}i∈I as

sreg := min

⎧⎨
⎩2, inf

⎧⎨
⎩s � 0 :

∞∑
n=1

∑
i1,...,in∈I

ϕs(Ai1 · · ·Ain
) < ∞

⎫⎬
⎭
⎫⎬
⎭ .

Let us observe that if s(Fw) > 1 then s(Fw) = sreg. Furthermore, if sreg � 1
then s(Fw) � 1 as well. The following was shown by Käenmäki and Nissinen
[13, Theorem 1.1(1)]: suppose that sreg � 1 and suppose that the IFS Freg = {fi}i∈I

satisfies the strong separation condition and the matrices {Ai}i∈I do not preserve
any finite collection of the proper subspaces of R2 then dimH(Λw) = dimB(Λw) =
s(Fw) = sreg for every w ∈ T#J . Hence, in the remaining part of the paper we
assume that sreg < 1.

We say that satisfies the convex separation condition uniformly, if there exists a
convex compact set U ⊂ R2 such that⋃

i∈I∪J

fi(U) ⊆ U for every w ∈ T#J and

⎛
⎝ ⋃

w∈T#J

fi(U)

⎞
⎠⋂⎛

⎝ ⋃
w∈T#J

fj(U)

⎞
⎠ = ∅ for every i �= j.

In the second part of the assumption, the image fi(U) depends on w ∈ T#J

if and only if i ∈ J , and in this case only on the corresponding coordinate of w.
In particular, if i ∈ J then fi(U) is a line-segment which is parallel to Im(Ai),
and

⋃
w∈T#J fi(U) is the smallest line segment parallel to Im(Ai) containing fi(U)

for every wi ∈ S1. Note that because of non-invertibility, the convex separation
condition does not imply that the second and higher iterates do not contain overlaps.
For an example of such system, see figure 1, which IFS consists of 3 invertible and
2 non-invertible mappings.
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4 B. Bárány and V. Körtvélyesi

Figure 1. The first and second level cylinder sets of an IFS
F = {fi(x) = Aix + ti}i∈{1,2,3}∗

⋃{fj(x) = ρjvjw
T
j x + tj}j∈{4,5}∗ satisfying

the convex separation condition.

Furthermore, we say that the IFS Freg = {fi(x) = Aix + ti}i∈I is irreducible if
there is no proper subspace V of R2 such that V is preserved by the all matrices
Ai for i ∈ I.

Theorem 1.1. Let Fw be a family of affine IFSs as in (1.1) with attractor Λw such
that Fw contains at least two maps and contains at least one non-invertible affine
map. Suppose that sreg < 1, Fw satisfies the convex separation condition uniformly
for every w ∈ T#J and Freg is irreducible. Then

(1) there exists a set E1 ⊆ T#J such that dimH E1 � #J − 1 and for every w ∈
T#J \ E1,

dimH(Λw) = dimB(Λw) = s(Fw).

(2) If supw s(Fw) < 1 then there exists a set E2 ⊆ T#J such that dimH E2 = #J −
1 and for every w ∈ E2

dimH(Λw) � dimB(Λw) < s(Fw).

Let us note that it is not known whether the box-counting dimension of self-affine
sets exists and equals to the Hausdorff dimension in general. Furthermore, if the
matrices {Ai}i∈I do not preserve any finite collection of the proper subspaces of R2

then by Bárány, Hochman and Rapaport [2] the affinity dimension sreg of the sub-
system formed by the invertible mappings serves as a lower bound for dimH(Λw) for
every w ∈ T#J , however, it is not necessarily the case if {Ai}i∈I is only irreducible.

2. Study of the affinity dimension

Let us first introduce some notations used throughout the paper. For an index set
K, let K∗ =

⋃∞
n=0 Kn be the set of every finite words formed by the symbols in

K. For a finite word ı̄ ∈ K∗, denote |̄ı| the length of ı̄. For ı̄ = i1 . . . in ∈ K∗, we
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denote by Aı̄ the finite product Ai1 · . . . · Ain
, and by fı̄ = fi1 ◦ · · · ◦ fin

the finite
composition. We also use the convention that ∅ ∈ K∗ with |∅| = 0, moreover, A∅
and f∅ are the identity matrix and identity map of R2, respectively.

Let A be a 2 × 2 matrix and let V be a proper subspace of R2. Then let us define
the conditional norm of A on V by

‖A|V ‖ = sup
x∈V

‖Ax‖
‖x‖ .

For a 2 × 2 matrix A with rank(A) = 1, denote by Im(A) and by Ker(A) the image
space and the kernel of A, respectively. Clearly, if A = ρvwT then Im(A) = 〈v〉 and
Ker(A) = 〈z〉, where w is perpendicular to z and 〈v〉 denotes the subspace generated
by v. Let us also denote the usual Euclidean scalar product on R2 by 〈v, w〉 = vT w.

Clearly, for every 2 × 2 matrices A, B with rank(B) = 1, and for every subspace
V of R2, we get

‖AB‖ = ‖A|Im(B)‖ · ‖B‖ and ‖AB|V ‖ = ‖A|Im(B)‖ · ‖B|V ‖. (2.1)

Note that if Ker(B) = V then ‖B|V ‖ = 0.

Lemma 2.1. Let Fw be a family of affine IFSs as in (1.1). Suppose that Freg =
{fi(x) = Aix + ti}i∈I is irreducible. Then there exist constants C > 0, K > 0 such
that for every ı̄ ∈ I∗ and for every i, j ∈ J , there exists j̄ ∈ I∗ with |j̄| � K such
that

‖AiAı̄Aj̄|Im(Aj)‖ � C‖Aı̄‖.
In particular, ∑

j̄∈⋃K
k=0 Ik

‖Aı̄Aj̄|Im(Aj)‖ �
∑

j̄∈⋃K
k=0 Ik

‖AiAı̄Aj̄|Im(Aj)‖ � C‖Aı̄‖.

The proof is a slight modification of the proof of Feng [7, Proposition 2.8].

Proof. For every i ∈ J , Ai = ρiviw
T
i . Let us argue by contradiction. Suppose that

for every C, K > 0 there exist ı̄ ∈ I∗ and i, j ∈ J such that for every j̄ ∈ I∗ with
|j̄| � K

‖AiAı̄Aj̄|Im(Aj)‖ = ρi〈AT
ı̄ wi, Aj̄vj〉 < C‖Aı̄‖.

Letting C → 0 and K → ∞, and taking an accumulation point A′ of AT
ı̄ /‖Aı̄‖ we

get that there exists i′, j′ ∈ J such that

〈A′wi′ , Aj̄vj′〉 = 0

for every j̄ ∈ I∗. Hence, V :=
〈⋃

j̄∈I∗ Aj̄vj′

〉
= 〈A′wi′〉⊥ is a proper subspace of R2

invariant with respect to the matrices {Ai}i∈I , which is a contradiction. �
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For every j ∈ J , let us define

sj(w) := inf

⎧⎨
⎩s � 0 :

∑
ı̄∈(I∪J)∗

‖AjAı̄|Im(Aj)‖s < ∞
⎫⎬
⎭ .

We note that a simple corollary of Feng and Käenmäki [8, Proposition 1.2] is that

lim
s↘sreg

∑
ı̄∈I∗

‖Aı̄‖s = ∞. (2.2)

Lemma 2.2. Let Fw be a family of affine IFSs as in (1.1). Suppose that sreg < 1
and Freg = {fi(x) = Aix + ti}i∈I is irreducible. Then

s(Fw) = min{1, sj(w)} > sreg for every j ∈ J,

where s(Fw) is defined in (1.2).

Let us note that the claim s(Fw) > sreg follows also by [13, Lemma 2.9], however,
for the sake of completeness, we give an alternative proof here.

Proof. First, we show that sj(w) > sreg for every j ∈ J . Observe that by (2.1) and
lemma 2.1

∑
ı̄∈(I∪J)∗

‖AjAı̄|Im(Aj)‖s =
∞∑

k=0

∑
j1,...,jk∈J

∑
ı̄0,...,̄ık∈I∗

‖AjAı̄0Aj1Aı̄1 · · ·Ajk
Aı̄k

|Im(Aj)‖s

=
∞∑

k=0

∑
j1,...,jk∈J
j0=jk+1=j

∑
ı̄0,...,̄ık∈I∗

k∏
�=0

‖Aj�
Aı̄�

|Im(Aj�+1)‖s

�
∞∑

k=0

∑
ı̄0,...,̄ık∈

⋃∞
k=K Ik

k∏
�=0

‖AjAı̄�
|Im(Aj)‖s

�
∞∑

k=0

(
C
∑
ı̄∈I∗

‖Aı̄‖s

)k+1

.

By (2.2), there exists s > sreg such that
∑

ı̄∈I∗ ‖Aı̄‖s > C−1 and so, sj(w) � s >
sreg.
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Now, let us show that si(w) = sj(w) for every i, j ∈ J . Again by (2.1) and
lemma 2.1

∑
ı̄∈(I∪J)∗

‖AjAı̄|Im(Aj)‖s

�
∑

ı̄0 ,̄ı2∈I∗

∑
ı̄1∈(I∪J)∗

‖AjAı̄0AiAı̄1AiAı̄2 |Im(Aj)‖s

=
∑

ı̄0 ,̄ı2∈I∗

∑
ı̄1∈(I∪J)∗

‖AjAı̄0 |Im(Ai)‖s‖AiAı̄1 |Im(Ai)‖s‖AiAı̄2 |Im(Aj)‖s

� C2
∑

ı̄1∈(I∪J)∗
‖AiAı̄1 |Im(Ai)‖s.

Hence, the claim follows by symmetrical reasons.
Finally, let us show that sj(w) = s(Fw). Clearly, by (2.1)

∑
ı̄∈(I∪J)∗

‖Aı̄‖s �
∑

ı̄∈(I∪J)∗
‖AjAı̄Aj‖s = ‖Aj‖s

∑
ı̄∈(I∪J)∗

‖AjAı̄|Im(Aj)‖s

for every j ∈ J , and so sj(w) � s(Fw).
On the other hand, let us enumerate the elements of J by j1, . . . , jm. Then

similarly to previous calculations we have,

∑
ı̄∈(I∪J)∗

‖Aı̄‖s

=
∑

ı̄∈(I∪J\{j1})∗
‖Aı̄‖s +

∑
ı̄1 ,̄ı2∈(I∪J\{j1})∗

‖Aı̄1Aj1Aı̄2‖s +
∑

ı̄1 ,̄ı2∈(I∪J\{j1})∗

∑
j̄∈(I∪J)∗

‖Aı̄1Aj1Aj̄Aj1Aı̄2‖s

�
∑

ı̄∈(I∪J\{j1})∗
‖Aı̄‖s + ‖Aj1‖s

⎛
⎝ ∑

ı̄∈(I∪J\{j1})∗
‖Aı̄‖s

⎞
⎠2

+

⎛
⎝ ∑

ı̄∈(I∪J\{j1})∗
‖Aı̄‖s

⎞
⎠2

· ‖Aj1‖2s ·
∑

j̄∈(I∪J)∗
‖Aj1Aj̄|Im(Aj1)‖s.

By induction, we get that for every n ∈ [1, m − 1] ∩ N

∑
ı̄∈(I∪J\{jk}n

k=1)
∗

‖Aı̄‖s =
∑

ı̄∈(I∪J\{jk}n+1
k=1 )∗

‖Aı̄‖s +
∑

ı̄1 ,̄ı2∈(I∪J\{jk}n+1
k=1 )∗

‖Aı̄1Ajn+1Aı̄2‖s

+
∑

ı̄1 ,̄ı2∈(I∪J\{jk}n+1
k=1 )∗

∑
j̄∈(I∪J\{jk}n

k=1)
∗

‖Aı̄1Ajn+1Aj̄Ajn+1Aı̄2‖s
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8 B. Bárány and V. Körtvélyesi

�
∑

ı̄∈(I∪J\{jk}n+1
k=1 )∗

‖Aı̄‖s + ‖Ajn+1‖s

⎛
⎝ ∑

ı̄∈(I∪J\{jk}n+1
k=1 )∗

‖Aı̄‖s

⎞
⎠2

+

⎛
⎝ ∑

ı̄∈(I∪J\{jk}n+1
k=1 )∗

‖Aı̄‖s

⎞
⎠2

· ‖Ajn+1‖2s ·
∑

j̄∈(I∪J)∗
‖Ajn+1Aj̄|Im(Ajn+1)‖s.

Thus, we get that s(Fw) � max{sreg, maxj∈J sj(w)}, which implies the claim. �

Let us observe that for every j ∈ J , by lemma 2.1

∑
ı̄∈(I∪J)∗

‖AjAı̄|Im(Aj)‖s =
∞∑

k=0

∑
ı̄0,...,̄ık∈(I∪J\{j})∗

‖AjAı̄0Aj · · ·AjAı̄k
|Im(Aj)‖s

=
∞∑

k=0

⎛
⎝ ∑

ı̄∈(I∪J\{j})∗
‖AjAı̄|Im(Aj)‖s

⎞
⎠k

.

Hence,∑
ı̄∈(I∪J)∗

‖AjAı̄|Im(Aj)‖s < ∞ if and only if
∑

ı̄∈(I∪J\{j})∗
‖AjAı̄|Im(Aj)‖s < 1.

In other words,

sj(w) = inf

⎧⎨
⎩s � 0 :

∑
ı̄∈(I∪J\{j})∗

‖AjAı̄|Im(Aj)‖s < 1

⎫⎬
⎭ . (2.3)

Lemma 2.3. Let Fw be a family of affine IFSs as in (1.1). Suppose that sreg < 1
and Freg = {fi(x) = Aix + ti}i∈I is irreducible. Then for every j ∈ J

∑
ı̄∈(I∪J\{j})∗

‖AjAı̄|Im(Aj)‖sj(w) = 1,

and sj(w) is the unique solution of the equation above.

Proof. For any subset J ′ � J and for any j′, j′′ ∈ J \ J ′, let us define the following
maps

HJ ′,j′,j′′(s) :=
∑

ı̄∈(I∪J′)∗
‖Aj′Aı̄|Im(Aj′′)‖s.

By lemma 2.1, the map HJ ′,j′,j′′ is strictly monotone decreasing on its support.
Furthermore, since HJ ′,j′,j′′ is the limit of an increasing sequence of continuous
maps, we get that HJ ′,j′,j′′ is lower semi-continuous, i.e. lim infs→s0 HJ ′,j′,j′′(s) �
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HJ ′,j′,j′′(s0) for every s0 ∈ [0, ∞). In particular, for every s0 ∈ R such that
HJ ′,j′,j′′(s0) < ∞,

lim
s↘s0

HJ ′,j′,j′′(s) = HJ ′,j′,j′′(s0). (2.4)

For any j′, j′′ ∈ J ,

H∅,j′,j′′(s) =
∑
ı̄∈I∗

‖Aj′Aı̄|Im(Aj′′)‖s �
∑
ı̄∈I∗

‖Aı̄‖s,

and so by (2.2), H∅,j′,j′′(s) < ∞ for every s > sreg. On the other hand, by lemma 2.1

H∅,j′,j′′(s) =
∑
ı̄∈I∗

‖Aj′Aı̄|Im(Aj′′)‖s �
∑
ı̄∈I∗
|̄ı|�K

‖Aı̄‖s � C
∑
ı̄∈I∗

‖Aı̄‖s.

Hence, by (2.2), lims↘sreg H∅,j′,j′′(s) = ∞.
Let us recall the basic facts that for every x ∈ R, ex � 1 + x and for every ε > 0

there exists a c = c(ε) > 0 such that xε log x � c(ε) for every x ∈ [0, 1]. Thus, for
every s1 > s2 > sreg

0 < H∅,j′,j′′(s2) − H∅,j′,j′′(s1)

=
∑
ı̄∈I∗

Ker(Aj′Aı̄) �=Im(Aj′′ )

‖Aj′Aı̄|Im(Aj′′)‖s2(1 − ‖Aj′Aı̄|Im(Aj′′)‖s1−s2)

� (s2 − s1)
∑
ı̄∈I∗

Ker(Aj′Aı̄) �=Im(Aj′′ )

‖Aj′Aı̄|Im(Aj′′)‖s2 log ‖Aj′Aı̄|Im(Aj′′)‖

� (s1 − s2)cH∅,j′,j′′(s2 − ε),

where s2 − sreg > ε. Thus the map H∅,j′,j′′ : (sreg, ∞) �→ R+ is strictly monotone
decreasing and continuous, and so, there exists a unique d∅,j′,j′′ ∈ (sreg, ∞) such
that H∅,j′,j′′(d∅,j′,j′′) = 1.

Let j ∈ J be arbitrary but fixed. Let us enumerate the elements of J by
j1, . . . , jm such that jm = j. Let Jk := {j1, . . . , jk}. Let us argue by induc-
tion. Namely, suppose that dJk, j′, j′′ is well defined for every j′, j′′ /∈ Jk and
HJk,j′,j′′(s) : (dJk−1, jk, jk

, ∞) �→ R+ is strictly monotone decreasing and contin-
uous, lims↘dJk−1, jk, jk

HJk, j′, j′′(s) = ∞ and HJk,j′,j′′(dJk,j′,j′′) = 1 for a unique
dJk,j′,j′′ > dJk−1, jk, jk

.
Let j′, j′′ /∈ Jk+1 be arbitrary but fixed. By (2.1)

HJk+1,j′,j′′(s) = HJk,j′,j′′(s) + HJk,j′,jk+1(s)HJk,jk+1,j′′(s)

+ HJk,j′,jk+1(s)HJk,jk+1,j′′(s)
∞∑

n=1

HJk,jk+1,jk+1(s)
n.

Since HJk,j′,j′′(s), HJk,j′,jk+1(s), HJk,jk+1, j′′(s) < ∞ for every s > dJk−1, jk, jk
we

get that

HJk+1,j′,j′′(s) < ∞ if and only if s > dJk,jk+1,jk+1 ,
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and

lim
s↘dJk,jk+1,jk+1

HJk+1,j′,j′′(s) = ∞.

It is enough then to show that HJk+1, j′, j′′(s) is continuous, since the strict mono-
tonicity follows by lemma 2.1. But similarly to the case H∅,j′,j′′ , we get that for
any s1 > s2 > dJk,jk+1, jk+1

0 < HJk+1,j′,j′′(s2) − HJk+1,j′,j′′(s1)

=
∑

ı̄∈(I∪Jk+1)
∗

Ker(Aj′Aı̄) �⊃Im(Aj′′ )

‖Aj′Aı̄|Im(Aj′′)‖s2(1 − ‖Aj′Aı̄|Im(Aj′′)‖s1−s2)

� (s2 − s1)
∑

ı̄∈(I∪Jk+1)
∗

Ker(Aj′Aı̄) �⊃Im(Aj′′ )

‖Aj′Aı̄|Im(Aj′′)‖s2 log ‖Aj′Aı̄|Im(Aj′′)‖

� (s1 − s2)cHJk+1,j′,j′′(s2 − ε),

where s2 − dJk,jk+1, jk+1 > ε. Thus, the map HJk+1, j′, j′′ : (dJk,jk+1, jk+1 , ∞) �→ R+

is strictly monotone decreasing and continuous. In particular, there exists a unique
dJk+1, jk+2, jk+2 > dJk,jk+1, jk+1 such that HJk+1, jk+2, jk+2(dJk+1, jk+2, jk+2) = 1. �

3. Lower bound of the dimension

Let us introduce the natural mapping w : R �→ S1 as

w(α) =
(

cos(α)
sin(α)

)
.

This section is devoted to show the following proposition.

Proposition 3.1. Let I and J be finite collections of indices such that J is non-
empty. Let Freg = {fi(x) = Aix + ti}i∈I be an irreducible IFS of invertible affine
mappings such that sreg < 1. Furthermore, let ρj ∈ (0, 1), vj ∈ S1, cj ∈ R, tj ∈ R2

and βj ∈ R+ be arbitrary but fixed for every j ∈ J . Finally, for α ∈ R let

Fα = Freg ∪ {fj(x) = ρjvjw(cj + βjα)T x + tj}j∈J (3.1)

be an IFS of affine mappings. Suppose that Fα satisfies the convex separation con-
dition uniformly for α ∈ R. Then there exists a set E ⊂ R such that dimH(E) = 0
and for every α ∈ R \ E

dimH(Λα) = s(Fα),

where Λα is the attractor of the IFS Fα.

First, let us show why theorem 1.1(1) follows from proposition 3.1.
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Proof of theorem 1.1(1). Let Fw be an IFS satisfying the assumptions of
theorem 1.1. By Käenmäki and Nissinen [13, Lemma 3.2], we have that

dimB(Λ) � s(Fw) for every w ∈ T#J .

Thus, it is enough to verify the lower bound.
Let us argue by contradiction. That is, suppose that there exists a set E ⊂ T#J

with dimH E > #J − 1 such that

dimH(Λw) < s(Fw) for every w ∈ E.

By using the map w : [0, 2π]#J �→ T#J defined as

w(α1, . . . , α#J ) = (w(α1), . . . , w(α#J )),

we get that there exists a set E′ ⊂ [0, 2π]#J with dimH E′ > #J − 1 such that

dimH(Λw(α)) < s(Fw(α)) for every α = (α1, . . . , α#J ) ∈ E′.

For a z ∈ S#J−1, let us denote the orthogonal projection from R#J to the #J − 1-
dimensional subspace 〈z〉⊥ by projz. Let us denote the spherical measure on S#J−1

by σ#J−1. By Mattila’s slicing theorem, see [14, Theorem 10.10]

L#J−1({y ∈ projz(E
′) : dimH(E′ ∩ proj−1

z (y)) > 0}) > 0 for σ#J−1-a.e. z.

Let z ∈ S#J−1 and y ∈ R#J be such that dimH(E′ ∩ proj−1
z (y)) > 0. Hence, there

exists a set E′′ ⊂ R with dimH(E′′) > 0 such that for every α ∈ E′′

dimH(Λw(y+αz)) < s(Fw(y+αz)),

which contradicts to proposition 3.1. �

3.1. Hochman’s theorem

Let us recall a theorem of Hochman [9, Corollary 1.2], which will be used to
prove proposition 3.1. Let I ⊂ R be a compact interval, and let K be a finite set of
indices. For every k ∈ K, let λk : I → (−1, 1) \ {0} and ak : I → R be real analytic
mappings, and let Φα = {g(α)

k (x) = λk(α)x + ak(α)}k∈K be a parametrized family
of IFS of contracting similarities on the real line with parameters α ∈ I. For every
ı̄ = (i1, i2, . . .), j̄ = (j1, j2, . . .) ∈ KN let

Δı̄,j̄(α) =
∞∑

k=1

tik
(α)

k−1∏
�=1

λi�
(α) −

∞∑
k=1

tjk
(α)

k−1∏
�=1

λj�
(α).

Theorem 3.2 Hochman. Let I ⊂ R be a compact interval, and let K be a finite
set of indices. For every k ∈ K, let λk : I → (−1, 1) \ {0} and ak : I → R be real
analytic mappings, and let Φα = {g(α)

k (x) = λk(α)x + ak(α)}k∈K be a parametrized
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family of IFS of contracting similarities on the real line with parameters α ∈ I.
Denote the attractor of Φα by Γα. Suppose that

Δı̄,j̄ ≡ 0 on I if and only if ı̄ = j̄.

Then there exists a set E with dimP E = 0 such that for every α ∈ I \ E

dimH(Γα) = dimB(Γα) = min{1, s0(α)}, where
∑
k∈K

|λk(α)|s0(α) = 1.

3.2. Verifying Hochman’s condition

Recall that for a z ∈ S1, we denote the orthogonal projection from R2 to the
1-dimensional subspace 〈z〉⊥ by projz. The following is our main geometric lemma.

Lemma 3.3. Let A and B convex compact sets, such that A ∩ B = ∅. If the Convex
Separation Condition holds, then there exists an open set O ⊂ S1, such that

projz(A) ∩ projz(B) = ∅ for every z ∈ O.

Proof. Let �AB = {a − b : a ∈ A and b ∈ B} be the set of every vectors directing
from A to B. Then let us define cone

C =
{

v

‖v‖ : v ∈ �AB

}
and −C =

{
− v

‖v‖ : v ∈ �AB

}
.

Then C and −C are closed and compact. It is enough to show that the open set
S1 \ (C ∪ −C) is non-empty. So projw(A) ∩ projw(B) = ∅ for every w ∈ O.

If there is no such w, i.e. C ∪ −C = S1, then C ∩ −C �= ∅. Let w ∈ C ∩ −C. Let
a1, a2 ∈ A and b1, b2 ∈ B be point such that,

w =
a1 − b1

‖a1 − b1‖
=

b2 − a2

‖b2 − a2‖
.

By connecting the endpoints we might define a (possibly degenerate) trapeze.

.

Let Pb = {tb1 + (1 − t)b2 : t ∈ [0, 1]} be the line between b1 and b2 and let Pa =
{ta1 + (1 − t)a2 : t ∈ [0, 1]} be the line between a1 and a2. The diagonals of a
(possibly degenerate) trapeze always intersect each other and so Pa ∩ Pb �= ∅. How-
ever, since A and B are convex closed sets then, Pb(x, y) ⊂ B and Pa(x, y) ⊂ A
which implies that, these lines cannot intersect each other, which is a contradic-
tion. �

Let Fα be the IFS defined in (3.1) satisfying the conditions of proposition 3.1.
For simplicity, let us denote by A

(α)
j the matrices ρjvjw(cj + βjα)T for j ∈ J , and

the products by A
(α)
ı̄ for ı̄ ∈ (I ∪ J)∗ to emphasize its possible dependence on α.
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Let us define the natural projection Πα from the symbolic space Σ = (I ∪ J)N to
the attractor Λα of Fα by

Πα(̄ı) = lim
n→∞ fi1 ◦ · · · ◦ fin

(0),

for ı̄ = (i1, i2, . . .) ∈ Σ. For any ı̄, j̄ ∈ Σ, let |̄ı ∧ j̄| = min{k � 1 : ik �= jk} − 1, and
let ı̄ ∧ j̄ = (i1, . . . , i|̄ı∧j̄|). Denote the left-shift operator on Σ by σ. Then clearly

Πα(̄ı) = fi1(Πα(σı̄)).

Lemma 3.4. Let Fα be the IFS defined in (3.1) satisfying the conditions of
proposition 3.1. Then

Πα(̄ı) ≡ Πα(j̄) for every α ∈ R if and only if ı̄ = j̄ ∈ Σ.

Proof. Let U ⊂ R2 be the compact convex set with respect to the uniform con-
vex separation condition holds. Let ı̄, j̄ ∈ Σ be such that ı̄ �= j̄. Then by using the
linearity of the maps of Fα,

Πα(̄ı) − Πα(j̄) = A
(α)
ı̄∧j̄

(
Πα(σ |̄ı∧j̄| ı̄) − Πα(σ |̄ı∧j̄|j̄)

)
.

By the uniform convex separation condition we get that Πα(σ |̄ı∧j̄| ı̄) − Πα(σ |̄ı∧j̄|j̄) �=
0 for every α ∈ R. Hence,

Πα(̄ı) ≡ Πα(j̄) if and only if Πα(σ |̄ı∧j̄| ı̄) − Πα(σ |̄ı∧j̄|j̄) ∈ Ker(A(α)
ı̄∧j̄) for all α ∈ R.

For a fixed α ∈ R, there are three possibilities:

(I.) rank(A(α)
ı̄∧j̄) = 2 (i.e. ı̄ ∧ j̄ ∈ I∗) but then Ker(A(α)

ı̄∧j̄) = {0}, which cannot
happen;

(II.) rank(A(α)
ı̄∧j̄) = 1 then Ker(A(α)

ı̄∧j̄) = Ker(A(α)
ik

Aı̄′), where k = max{1 � � � |̄ı ∧
j̄| : i� ∈ J} and ı̄′ ∈ I |̄ı∧j̄|−k−1 is the suffix of ı̄ ∧ j̄;

(III.) Ker(A(α)
ı̄∧j̄) = R, namely, there exists 1 � k < � � |̄ı ∧ j̄| and ı̄′ ∈ I∗ such that

Im(A(α)
ı̄′ Ai�

) = Ker(A(α)
ik

) and i�, ik ∈ J .

By the definition of A
(α)
j = ρjvjw(cj + βjα)T for j ∈ J , Im(Aı̄′A

(α)
j ) is indepen-

dent of α for any ı̄′ ∈ I∗ and j ∈ J , it is clear that the set {β ∈ R : Ker(A(α)
ı̄∧j̄) = R}

is a discrete and countable set for every ı̄ �= j̄ ∈ Σ. Hence, it is enough to check that
for every ı̄ ∈ I∗, j ∈ J and k1 �= k2 ∈ I ∪ J there exists α ∈ R such that

projAT
ı̄ w(cj+αβj) (fk1(U)) ∩ projAT

ı̄ w(cj+αβj) (fk2(U)) = ∅. (3.2)

But by lemma 3.3, there exists an open set of α ∈ R such that (3.2) holds, which
completes the proof. �
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Proof of proposition 3.1. Let j ∈ J be arbitrary but fixed. For every ı̄ ∈
(I ∪ J \ {j})∗, let us define a map g

(α)
ı̄ : R �→ R such that

g
(α)
ı̄ (x) := ρjw(cj + αβj)T Aı̄vj · x + ρjw(cj + αβj)T fı̄(tj). (3.3)

In particular,

fjı̄(xvj + tj) = g
(α)
ı̄ (x)vj + tj for every x ∈ R. (3.4)

Furthermore, ‖AjAı̄|Im(Aj)‖ =
∣∣ρjw(cj + αβj)T Aı̄vj

∣∣ for every ı̄ ∈ (I ∪ J \ {j})∗.
For every n ∈ N, let us define an IFS on the real line as Gn

α =
{g(α)

ı̄ }ı̄∈⋃n
k=0(I∪J\{j})k . Let us denote the attractor of Gn

α by Γn,α. Let
πα : ((

⋃n
k=0 I ∪ J \ {j})k)N �→ Γn,α be the natural projection associated to the IFS

Gn
α . Then by (3.4),

Πα(jı̄1jı̄2j · · · ) = πα(̄ı1 ı̄2 · · · )vj + tj . (3.5)

By defining the bi-Lipschitz mapping h : R �→ R2 as h(x) = xvj + tj , we see that
h(Γn,α) ⊂ Λα for every n ∈ N and α ∈ R. Moreover, combining lemma 3.4 with
(3.5), we see that

πα(̄ı1 ı̄2 · · · ) ≡ πα(j̄1j̄2 · · · ) if and only if ı̄k = j̄k for every k = 1, 2, . . . .

Clearly, the contraction ratios and the translation parameters of the maps in Gn
α are

analytic maps of α ∈ R. Let Rn be the set of roots of the contraction ratios of the
maps in Gn

α . Then for every a ∈ N, the set (−a, a) ∩ RN is finite. Let Ia
1 , . . . , Ia

N be
disjoint open subintervals of (−a, a) such that ‖AjAı̄|Im(Aj)‖ �= 0 for every α ∈ Ik

and every k = 1, . . . , L. For every k = 1, . . . , L and � ∈ N, let Ja
k,� ⊆ Ia

k be compact
intervals such that

⋃∞
�=1 Ja

k,� = Ia
k .

Applying theorem 3.2, there exists Ea
k,� ⊂ Ja

k,� such that dimH(Ea
k,�) = 0 and

dimH(Γn,α) = s(n)(α) for every α ∈ Ja
k,� \ Ea

k,�,

where s(n)(α) is the similarity dimension of Gn
α, that is,∑

ı̄∈⋃n
k=0(I∪J\{j})k

‖AjAı̄|Im(Aj)‖s(n)(α) = 1.

By lemma 2.2 and (2.3), limn→∞ s(n)(α) = s(Fα). Hence, by choosing E :=⋃∞
n=1 Rn ∪⋃

a,k,� Ea
k,�, the claim of the proposition follows. �

4. Exceptional parameters

The remaining part of the paper is devoted to prove theorem 1.1(2). Let Fw be a
family of affine IFSs as in (1.1) with attractor Λw. Suppose that supw s(Fw) < 1
and Fw satisfies the convex separation condition uniformly.

Lemma 4.1. Let us fix j ∈ J and i ∈ I ∪ J such that i �= j. Then there exists wj ∈
S1 such that fj and fj ◦ fi share the same fixed point. In particular, fj ◦ fj ◦ fi ≡
fj ◦ fi ◦ fj.
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Proof. Let U ⊂ R2 be the convex set with respect to the convex separation condition
holds uniformly. Let the map g

(α)
∅ : R �→ R and g

(α)
i : R �→ R be as in (3.3). Namely,

g
(α)
∅ (x) = ρj〈w(α), vj〉 · x + ρj〈w(α), tj〉 and

g
(α)
i (x) = ρj〈w(α), Aivj〉 · x + ρj〈w(α), Aitj + ti〉.

So, fj(xvj + tj) = g
(α)
∅ (x)vj + tj and fj ◦ fi(xvj + tj) = g

(α)
i (x)vj + tj . By

lemma 3.3, there exists α′ ∈ [0, π] such that projw(α′)(fj(U)) ∩ projw(α′)(fi(U)) =
∅, and similarly for w(α′ + π), where w(α) = (cos(α), sin(α))T . This implies that

g
(α′)
∅ (x) < g

(α′)
i (y) and g

(α′+π)
∅ (x)

> g
(α′+π)
i (y) for all x, y ∈ R with xvj + tj , yvj + tj ∈ fj(U).

Since the fixed point of the maps g
(α)
∅ and g

(α′)
i are continuous functions of α, by

Bolzano-Darboux theorem, there exist α ∈ [0, 2π] such that g
(α)
∅ and g

(α′)
i share

the same fixed points, and in particular fj and fj ◦ fi do. �

Proof of theorem 1.1(??)2). Let Fw be a family of affine IFSs as in (1.1) with
attractor Λw such that #J � 1 and #(I ∪ J) � 2. Suppose that supw s(Fw) < 1,
Fw satisfies the convex separation condition uniformly for every w ∈ T#J .

Let j ∈ J and i ∈ I ∪ J be arbitrary but fixed such that i �= j. By lemma 4.1,
there exists wj ∈ S1 such that fj ◦ fj ◦ fi ≡ fj ◦ fi ◦ fj . Let us fix this wj ∈ S1 and
choose every other wj′ for j′ ∈ J \ {j} arbitrarily. Let us define a new IFS

F ′
w = {fı̄}ı̄∈(I∪J)3 \ {fj ◦ fj ◦ fi}.

Hence, Λ′
w = Λw, where Λ′

w is the attractor of F ′
w.

However, by lemmas 2.2 and 2.3, one can see that s(F ′
w) < s(Fw), and by

Käenmäki and Nissinen [13, Lemma 3.2], we have that

dimB(Λw) = dimB(Λ′
w) � s(F ′

w) < s(Fw),

which implies the desired claim. �
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