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An Inversion Formula of the Radon
Transform on the Heisenberg Group

Jianxun He

Abstract. In this paper we give an inversion formula of the Radon transform on the Heisenberg group

by using the wavelets defined in [3]. In addition, we characterize a space such that the inversion

formula of the Radon transform holds in the weak sense.

1 Introduction

Wavelet analysis has many applications in pure and applied mathematics. The the-

ory of wavelet analysis on Rn is familiar to us. The concept of continuous wavelet

transform is deeply related to the theory of square integrable group representations

(see [1]). In [3, 4, 7] the authors extended the theory of wavelet analysis to the

Heisenberg group. The Radon transform on Rn is a very useful analysis tool. New

developments, in particular applications to partial differential equations, X-ray tech-

nology, and radio astronomy, have widened interest in this subject. For research

about this see [5] and the references there. It is very useful to give the inversion

formula of the Radon Transforms by using inverse wavelet transforms because we

have a large choice of wavelets that we can use in the formula. The first result in

this area is due to M. Holschneider who considered the classical Radon transform

on the two-dimensional plane (see [6]). B. Rubin in [9, 10] extended the results in

[6] to the k-dimensional Radon transform on Rn and totally geodesic Radon trans-

forms on the sphere and hyperbolic space. R. S. Strichartz [12] discussed the Radon

transform on the Heisenberg group. When one considers the problems of radial

functions on the Heisenberg group, the fundamental manifold is the Laguerre hy-

pergroup K = [0,∞) × R. Using the generalized wavelets on K, M. M. Nessibi and

K. Trimèche [8] gave an inversion formula of the Radon transform on K. In this pa-

per we give inversion formulas of the Radon transform on the Heisenberg group by

using the wavelets defined in [3]. Furthermore, we show that the inversion formula

of the Radon transform on R(Hn) holds in the weak sense. The result of this paper is

an extension of that of M. M. Nessibi and K. Trimèche [8].

Let Hn = Rn × Rn × R denote the 2n + 1-dimensional Heisenberg group with the

multiplication law

(1.1) (x, y, t)(x ′, y ′, t ′) =
(

x + x ′, y + y ′, t + t ′ + 2(y · x ′ − x · y ′)
)
.
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Let

P = {(x, y, t, ρ) : (x, y, t) ∈ Hn, ρ > 0}.
Then P is a locally compact nonunimodular group, the left and right Haar measures

on P are, respectively, given by

dµl(x, y, t, ρ) =
dx dy dt dρ

ρn+2
, dµr(x, y, t, ρ) =

dx dy dt dρ

ρ

where dx and dy denote the Lebesgue measures on Rn. The square integrable unitary

representation of P on L2(Hn) is defined by

(1.2)

U (x, y, t, ρ) f (x ′, y ′, t ′) = ρ−
n+1

2 f

(
x − x ′
√

ρ
,

y ′ − y√
ρ

,
t ′ − t − 2(y · x ′ − x · y ′)

ρ

)
.

Let Z+
= {0, 1, 2, . . . }, k ∈ Z+, t ∈ R, the Hermite polynomials Hk(t) are defined by

(1.3) Hk(t) =

[k/2]∑

j=0

(−1) j k!

j!(k − 2 j)!
(2t)k−2 j

= (−1)ket2
( dk

dtk
e−t2

)
.

Thus the normalized Hermite functions are given by

(1.4) hk(t) = (2k
√

πk!)−
1
2 e−

1
2

t2

Hk(t).

Now let k = (k1, k2, . . . , kn) ∈ (Z+)n, x = (x1, x2, . . . , xn) ∈ Rn. The higher dimen-

sional Hermite functions denoted by Φk are then obtained by taking tensor products:

(1.5) Φk(x) =

n∏

j=1

hk j
(x j).

We know that the family {Φk : k ∈ (Z+)n} is an orthonormal basis for L2(Rn). For

λ ∈ R \ {0} = R∗, let πλ(x, y, t) denote the Schrödinger representation of Hn which

acts on L2(Rn) by

(1.6) πλ(x, y, t)Φ(η) = eiλt−2iλx·y+4iλη·y
Φ(η − x),

where Φ ∈ L2(Rn). The group Fourier transform of a function f ∈ L1(Hn) is defined

by

(1.7) f̂ (λ) =

∫

Hn

f (x, y, t)πλ(x, y, t) dx dy dt.

For f , g ∈ L2(Hn), one has the following formula

(1.8) 〈 f , g〉L2(Hn) =
2n−1

πn+1

∫ +∞

−∞
tr

(
ĝ(λ)∗ f̂ (λ)

)
|λ|n dλ,

where ĝ(λ)∗ denotes the adjoint of ĝ(λ). Let S(Hn) denote the Schwartz space on Hn.

From [13] we know that if f ∈ S(Hn), then for all (x, y, t) ∈ Hn, the inversion of the

Fourier transform holds:

(1.9) f (x, y, t) =
2n−1

πn+1

∫ ∞

−∞
tr

(
πλ(x, y, t)∗ f̂ (λ)

)
|λ|n dλ.

The further details of harmonic analysis on Hn can be found in [2] and [13].
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2 Wavelet Transform

Let R+ denote the set of all positive real numbers, R−
= −R+. Let h ∈ L2(Hn), if

there exists a positive constant Ch such that for all k ∈ (Z+)n and σ = + or −,

(2.1) Ch =

〈∫

Rσ

ĥ(λ)∗ĥ(λ)
dλ

|λ|Φk, Φk

〉

L2(Rn)

,

then we call h a wavelet on Hn (see [3]), and write h ∈ AW . Let h ∈ AW, f ∈ L2(Hn),

the continuous wavelet transform of f with respect to h is defined by

(2.2) (Wh f )(x, y, t, ρ) = 〈 f ,U (x, y, t, ρ)h〉L2(Hn).

Thus we can obtain the following

Theorem 1 Let h ∈ AW , f ∈ S(Hn). Then for all (x ′, y ′, t ′) ∈ Hn, we have the

following inversion:

(2.3)

f (x ′, y ′, t ′) =
1

Ch

∫ ∞

0

∫

Hn

(Wh f )(x, y, t, ρ)U (x, y, t, ρ)h(x ′, y ′, t ′)
dx dy dt dρ

ρn+2
.

Proof It is not difficult to verify that

(2.4)

∫

Hn

U (x, y, t, ρ)h(x ′, y ′, t ′)πλ(x ′, y ′, t ′) dx ′ dy ′ dt ′ = ρ
n+1

2 πλ(x, y, t)ĥ(ρλ)

and

(2.5)

∫

Hn

(Wh f )(x, y, t, ρ)πλ(x, y, t) dx dy dt = ρ
n+1

2 f̂ (λ)ĥ(ρλ)∗.

Let Pk (k ∈ (Z+)n) be the projection from L2(Rn) to 1-dimensional subspace spanned

by Φk, and let

Hσ
k = { f ∈ L2(Hn) : f̂ (λ) = f̂ (λ)Pk, and f̂ (λ) = 0 if λ /∈ Rσ}.

By Theorem 1 in [7],

L2(Hn) =

⊕

k∈(Z+)n

(H+
k ⊕ H−

k ),

thus h and f can be expressed in the form f =
∑

k,σ f σ
k , h =

∑
k,σ hσ

k , where f σ
k , hσ

k ∈
Hσ

k . By (2.4) and (2.5) we have

〈∫

Hn

( 1

Ch

∫ ∞

0

∫

Hn

(Wh f )(x, y, t, ρ)U (x, y, t, ρ)h(x ′, y ′, t ′)
dx dy dt dρ

ρn+2

)

× πλ(x ′, y ′, t ′)dx ′ dy ′ dt ′Φk, Φk

〉
L2(Rn)

=

〈 1

Ch

∫ ∞

0

f̂ (λ)ĥ(ρλ)∗ĥ(ρλ)
dρ

ρ
Φk, Φk

〉
L2(Rn)

=
1

Ch

〈∫ ∞

0

ĥσ
k (ρλ)∗ĥσ

k (ρλ)
dρ

ρ
Φk, Φk

〉
L2(Rn)

〈 f̂ σ
k (λ)Φk, Φk〉L2(Rn)

= 〈 f̂ (λ)Φk, Φk〉L2(Rn),
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where σ = + if λ > 0, otherwise σ = −. By (1.9) we complete the proof.

3 Inversion of the Radon Transform

The Radon transform R on Hn is defined by

R( f )(x, y, t) =

∫

Rn×Rn

f
(

(x, y, t)(u, v, 0)
)

du dv

=

∫

Rn×Rn

f
(

u, v, t + 2(y · u − x · v)
)

du dv(3.1)

(see [12]). Write

F3( f )(u, v, λ) =

∫

R

f (u, v, t)eiλt dt.

Then we can get

(
R̂( f )(λ)Φk

)
(η) =

∫

Hn

R( f )(x, y, t)eiλt−2iλx·y+4iλη·y
Φk(η − x) dx dy dt

=

∫

Rn×Rn

F3( f )(u, v, λ)
(∫

Rn×Rn

e−2iλx·y+4iλη·y−2iλ(y·u−x·v)
Φk(η−x) dx dy

)
du dv.

Let Φ̂k denote the ordinary Fourier transform of Φk on Rn. Then we have

∫

Rn×Rn

e−2iλx·y+4iλη·y−2iλ(y·u−x·v)
Φk(η − x) dx dy

=

∫

Rn

e2iλη·v−2iλy·u+2iλη·y
(∫

Rn

Φk(η − x)e−2iλ(η−x)·(v−y) dx
)

dy

= e2iλη·v−2iλv·(u−η)

∫

Rn

Φ̂k

(
2λ(v − y)

)
e2iλ(v−y)·(u−η) dy

= (2|λ|)−n(2π)ne−2iλv·u+4iλη·v
Φk(u − η).

On the other hand, by the recursion formula of Hermite polynomials (see [11, pp.

198–199]) we can obtain

Φk(−η) = (−1)|k|Φk(η)

where |k| =
∑n

j=1 k j . Hence

(3.2)
(

R̂( f )(λ)Φk

)
(η) = (−1)|k|πn|λ|−n

(
f̂ (λ)Φk

)
(η).

Thus we can get

Theorem 2 Let f ∈ L2(Hn). Then

(3.3) |λ|n
(

R̂( f )(λ)Φk

)
(η) = (−1)|k|πn

(
f̂ (λ)Φk

)
(η).
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Let L = ( ∂
∂t

)n, h ∈ S(Hn). Then

∫

R

L(h)(x, y, t)eiλt dt = (−iλ)n
F3(h)(x, y, λ).

Furthermore,

(3.4) L̂(h)(λ) = (−iλ)nĥ(λ).

By Theorem 2 we have

(3.5)
(

L̂R(h)(λ)Φk

)
(η) =

{
in(−1)n+|k|πn

(
ĥ(λ)Φk

)
(η), if λ > 0,

in(−1)|k|πn
(

ĥ(λ)Φk

)
(η), if λ < 0.

It is easy to see that if ̂(LR)2(h)(λ) = (−1)nπ2nĥ(λ), then R−1
= (−1)nπ−2nLRL.

Let hρ(x, y, t) = h( x√
ρ , y√

ρ , t
ρ ). Then

(3.6) (ĥρ)(λ) = ρn+1ĥ(ρλ).

Define the operator

(W̃h f )(x, y, t) =

∫

Hn

f (x ′, y ′, t ′)h̄
(

(x ′, y ′, t ′)−1(x, y, t)
)

dx ′ dy ′ dt ′.

Then

(3.7) (
̂̃

Wh f )(λ) = f̂ (λ)ĥ(λ)∗.

By the relations (3.4) and (3.6) together with (3.7), we deduce

( ̂̃WL(h)ρ
f )(λ) = f̂ (λ)L̂(h)ρ(λ)∗

= inρ2n+1λn f̂ (λ)ĥ(ρλ)∗.

Similarly, we have

( ˜̂Whρ
L( f ))(λ) = L̂( f )(λ)ĥρ(λ)∗

= (−1)ninρn+1λn f̂ (λ)ĥ(ρλ)∗.

Then we obtain

(3.8) (W̃L(h)ρ
f )(x, y, t) = (−1)nρn

(
W̃hρ

L( f )
)

(x, y, t).

Theorem 3 Let h ∈ S(Hn) ∩ AW , f ∈ S(Hn). Then

(3.9)
(

W̃LRL(h)ρ
R( f )

)
(x, y, t) = π2nρ

3n+1
2 (Wh f )(x, y, t, ρ).
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Proof It is easy to verify the commutative relation of L and R, i.e. LR = RL. Thus by

(3.8) we have

(
W̃LRL(h)ρ

R( f )
)

(x, y, t) = (−1)nρn
(

W̃LR(h)ρ
LR( f )

)
(x, y, t).

Using the identities (3.5) (3.6) and (3.7), we obtain

( ̂W̃LRL(h)ρ
R( f )

)
(λ) = (−1)nρn

( ̂W̃LR(h)ρ
LR( f )

)
(λ)

= π2nρ2n+1 f̂ (λ)ĥ(ρλ)∗.

On the other hand we can compute

(Ŵh f )(λ) = ρ
n+1

2 f̂ (λ)ĥ(ρλ)∗.

This completes the proof of the formula (3.9).

From Theorem 1 we obtain

Theorem 4 Let h ∈ S(Hn) ∩ AW, f ∈ S(Hn). Then for all (x, y, t) ∈ Hn we have

(3.10) f (x, y, t)

=
1

π2nCh

∫

Hn×R+

W̃LRL(h)ρ
R( f )(x ′, y ′, t ′)U (x ′, y ′, t ′, ρ)h(x, y, t)

dx ′ dy ′ dt ′ dρ

ρ
5(n+1)

2

and

(3.11) R−1( f )(x, y, t)

=
1

π2nCh

∫

Hn×R+

W̃LRL(h)ρ
f (x ′, y ′, t ′)U (x ′, y ′, t ′, ρ)h(x, y, t)

dx ′ dy ′ dt ′ dρ

ρ
5(n+1)

2

.

Let h = hσ
k ∈ S(Hn) ∩ Hσ

k , if it satisfies the condition

0 < Chσ
k

=

∫

Rσ

‖ĥ(λ)‖2
HS

dλ

|λ| < ∞

(see [7]), then for all f σ
k ∈ S(Hn)∩Hσ

k , we have a simple inversion formula as follows:

(3.12) R−1( f σ
k )(x, y, t)

=
1

π2nChσ
k

∫

Hn×R+

W̃LRL(hσ
k

)ρ
f σ
k (x ′, y ′, t ′)U (x ′, y ′, t ′, ρ)hσ

k (x, y, t)
dx ′ dy ′ dt ′ dρ

ρ
5(n+1)

2

.

Here the condition on h is weaker than that in Theorem 4. From Theorem 1 in [4],

we know that

L2(Hn) =

⊕

l∈Z+

(H+
l ⊕ H−

l ),
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where

Hσ
l = { f ∈ L2(Hn) : f̂ (λ) = f̂ (λ)Pl, and f̂ (λ) = 0 if λ /∈ Rσ},

and Pl is the orthogonal projection from L2(Rn) to subspace spanned by {Φk :

|k| = l}. Let h = hσ
l =

∑
|k|=l hσ

k ∈ S(Hn) ∩ Hσ
l , if Chσ

l
is a positive number

such that

Chσ
l

=

〈∫

Rσ

ĥσ
k (λ)∗ĥσ

k (λ)
dλ

|λ|Φk, Φk

〉

L2(Rn)

=

〈∫

Rσ

ĥσ
k ′(λ)∗ĥσ

k ′(λ)
dλ

|λ|Φk ′ , Φk ′

〉

L2(Rn)

for all |k| = |k ′| = l, then for all f σ
l ∈ S(Hn)∩Hσ

l , we also have the inversion formula

(3.13) R−1( f σ
l )(x, y, t)

=
1

π2nChσ
l

∫

Hn×R+

W̃LRL(hσ
l

)ρ
f σ
l (x ′, y ′, t ′)U (x ′, y ′, t ′, ρ)hσ

l (x, y, t)
dx ′ dy ′ dt ′ dρ

ρ
5(n+1)

2

.

Generally, for f ∈ L2(Hn), R( f ) /∈ L2(Hn) (see [12]). We naturally hope to find

a space such that the inversion formula of the Radon transform holds in the weak

sense. Let Z be the set of all integers. We define R(Hn) by

R(Hn) =

{
f ∈ L2(Hn) :

∫

R

‖ f̂ (λ)‖2
HS|λ|(2m+1)ndλ < ∞, m ∈ Z

}
.

Obviously, if f ∈ R(Hn), then R( f ) ∈ L2(Hn). From (3.2) it is easy to verify that

if f1, f2 ∈ R(Hn), f1 6= f2, then R( f1) 6= R( f2). Furthermore, for any g ∈ R(Hn),

we can find f ∈ R(Hn), such that g = R( f ). In fact, we take f satisfying f̂ (λ) =

(−1)|k|π−n|λ|nĝ(λ). Since

∫

R

‖ĝ(λ)‖2
HS|λ|(2m+1)ndλ = π2n

∫

R

‖ f̂ (λ)‖2
HS|λ|(2m−1)ndλ,

we can see that f ∈ R(Hn). Thus the Radon transform R is a bijection from R(Hn)

onto itself. On the other hand, we can see that (3.9) is also valid if h ∈ S(Hn),

f ∈ R(Hn). In fact, we only need to show

( ̂W̃LRL(h)ρ
R( f )

)
(λ) = π2nρ2n+1 f̂ (λ)ĥ(ρλ)∗.
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By (3.4) and (3.5) we have

(
̂LRL(h)ρ

)
(λ) = ρn+1(L̂RL(h))(ρλ)

=

{
in(−1)n+|k|πnρn+1L̂(h)(ρλ), if λ > 0,

in(−1)|k|πnρn+1L̂(h)(ρλ), if λ < 0

= (−1)|k|πnρ2n+1|λ|nĥ(ρλ).

It follows that

( ̂W̃LRL(h)ρ
R( f )

)
(λ) = R̂( f )(λ) ̂LRL(h)ρ

∗
(λ) = π2nρ2n+1 f̂ (λ)ĥ(ρλ)∗.

From the Calderón reproducing formula of continuous wavelet transform we have

the following inversion formula of Radon transform in the weak sense.

Theorem 5 Let h ∈ S(Hn)∩AW , f ∈ R(Hn). Then the following formulas hold in the

weak sense:

(3.14)
f (x, y, t)

=
1

π2nCh

∫

Hn×R+

W̃LRL(h)ρ
R( f )(x ′, y ′, t ′)U (x ′, y ′, t ′, ρ)h(x, y, t)

dx ′ dy ′ dt ′ dρ

ρ
5(n+1)

2

and

(3.15)
R−1( f )(x, y, t)

=
1

π2nCh

∫

Hn×R+

W̃LRL(h)ρ
f (x ′, y ′, t ′)U (x ′, y ′, t ′, ρ)h(x, y, t)

dx ′ dy ′ dt ′ dρ

ρ
5(n+1)

2

.
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