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Abstract

For foliations on Riemannian manifolds, we develop elementary geometric and topological properties
of the mean curvature one-form « and the normal plane field one-form 8. Through examples, we show
that an important result of Kamber-Tondeur on « is in general a best possible result. But we demonstrate
that their bundle-like hypothesis can be relaxed somewhat in codimension 2. We study the structure of
umbilic foliations in this more general context and in our final section establish some analogous results
for flows.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 57R30; secondary 53C25.
Keywords and phrases: foliation, mean curvature.

Introduction

In this paper we study the geometry of the mean curvature one-form « and the normal
plane field one-form S in the setting of a foliation on a Riemannian manifold. The
rich properties of x« have been discussed by many authors ([17, 28, 11]), while 8
has been discussed in ([28, 16]). Much of the work on « has been developed in
the context of bundle-like foliations, which were an important focus for work on
foliations in the 1980’s. The bundle-like hypothesis is a severe restriction both on the
dynamical behaviour of the foliation, and on the topology of the ambient manifold;
for example, their leaf closures are always manifolds [20] and for bundle-like flows,
all the Pontryagin numbers are zero [9]. Our purpose has been to further expound on
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the properties of these forms under weak geometric assumptions. In particular, our
main motivation has been to remove the bundle-like hypothesis, where this proves
possible.

In Section 1 we recall « and 8 and a number of related concepts. If X and ¥ are
basic vector fields transverse to our foliation and L is a leaf of the foliation, we give
a new and simple proof of dx (X, Y) = —div, ¥[X, Y] where ¥[X, Y] denotes the
leaf component of the Lie bracket (Theorem 1.3).

In Section 2, we adapt the formalism so beautifully expounded in [29] and develop
some simiple consequences. Now Kamber and Tondeur have shown that for a compact
Riemannian manifold with bundle-like foliation, if the associated mean curvature one-
form « is a basic, then in fact « is closed [18], [28, p. 150]. This is an important
technical point, both in the work of [18] and [13]. Generally speaking, one could say
that this step gives real geometric meaning to the hypothesis that the foliation is tense.
For example, for a bundle-like flow .Z, if k is closed, then & is locally spanned by
Killing vectors [13]. In Example 2.4, we show that in general Kamber and Tondeur’s
compactness hypothesis cannot be dropped, and in Example 2.5, we show that in
general their bundle-like hypothesis cannot be dropped. Nevertheless, in Theorem
2.6 we are able to replace the condition on the bundle-like metric with a condition on
the transverse volume element provided the codimension of the foliation is 2.

In Proposition 2.9 we interpret what it means for d>~' 8 = 0 while in Proposition
2.10 we show that d*~!'8 # O represents an obstruction to the integrability of the
distribution orthogonal to the leaves, provided « is horizontally closed. Theorem 2.11
is a technical result which tells the story of allowable metric deformations when « and
B are exact.

In Section 3 we show that if the leaves of a foliation are totally umbilic and X and Y
are local basic vector fields transverse to the leaves, then ¥ [X, Y] is an infinitesimal
conformal transformation along the leaves of the foliation (Proposition 3.2). When
additionally the foliation codimension is 2 and the manifold admits a basic transverse
volume form, we show ¥'[X, Y] is really globally defined and has rich geometric
properties (Theorem 3.3). In the spirit of the earlier part of the paper, we do not
require that the metric of the ambient manifold be bundle-like for our results to obtain.

In Section 4 we study flows on a Riemannian manifold in a setting somewhat
more general than the bundle-like situation. When « is closed and X and Y are
basic ¥ [X, Y] is always an infinitesimal isometry along the leaves of a flow. When
the metric on the ambient manifold is bundle-like we have a generalization of the
Gromoll-Grove integrability Lemma for metric flows on the round sphere [13]. This
is our Proposition 4.2. Our proof mimics theirs but uses an equation of O’Neill in a
different way.
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Section 1

Throughout this paper all objects and maps are assumed to be of class C*™. We will
consider throughout this paper a transversally oriented foliation % on an oriented,
connected Riemannian manifold (M, g) without boundary. As usual, the subbundle
¥ of the tangent bundle T M is the distribution tangent to .# while ¢ denotes the
orthogonal complement of ¥ in T M determined by g. When there is no danger of
confusion, we denote by ¥ (respectively 7€) the projection TM - ¥ (respectively,
the projection TM — ). A vector field E on M is called vertical if ¥ E = E and
E is horizontal if ¢ E = E. Every vector field F can be written as the direct sum of
a vertical and horizontal field: F = ¥ F + 5F.

Let {V,, V,, ..., V,} denote a local orthonormal frame for ¥, where p = dim ¥
and let {X,, X», ..., X,} denote a local orthonormal frame of .7, where ¢ = dim J#.
Then p+q = n = dimM. The tension field T of the foliation is defined by
T =) ! JVyV, where V is the Levi-Civita connection on M. We denote by w
the volume form of the leaves: w(Ey, E,, ..., E,) = det(g(V,, E;)) and by u the
transverse volume form w(E,, E,, ..., E;) = det[g(X;, E;)].

DEFINITION 1.1. The mean curvature 1-form « of % is the 1-form dual to 7:
® k(E) = g(z, E)
for any vector field E on M. One has the following equivalent definition of «:

—(Lgw)(V1, V,, ..., V,), if E is horizontal

i K(E) =
(1) (E) {O, if E is vertical,

where Zrw denotes the Lie derivative of w with respect to E. The equivalence of (i)
and (ii) is well known: see for example Tondeur (28, p. 66]. Condition (ii) may be
rephrased as [28, page 67]:

it C(E) — {25;1 g((E,V;1, Vi), if E is horizontal
0, if E is vertical.

DEFINITION 1.2. Recall (see [20]) that a vector field £ on M is said to be foliate
provided for every vertical vector field W, one has that [E, W] is vertical. Thus a
foliate vector field is an infinitesimal symmetry of #. Let {U,, f.}.es beanatlason M
with submersions f, : U, — f,(U,) € R? defining %, with the usual compatibility
conditions. Then a vector field E on M is foliate if it projects under each map f, to
give a vector field on f,(U,). We say that E is basic if it is foliate and horizontal.
A form y on M is basic provided on each U,, one has y = fy, where y, is a form
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of the same degree on f,(U,). Note that « is basic if Zya = 0 for all vertical W,
or equivalently iy = 0 = iyda for all vertical W, where iy denotes the interior
product. We say the metric g on M is bundle-like with respect to F provided each of
the f, is a Riemannian submersion onto its image. By common abuse of language,
Z is said to be bundle-like in this situation.

Notice that .# is bundle-like if its leaves are locally equidistant. Equivalently, this
means that the horizontal bundle # has local orthonormal bases comprised of basic
vector fields. If g is bundle-like, then g establishes a duality between basic vector
fields and basic forms.

We are now in a position to give a simple proof of the following formula mentioned
in the introduction. The original derivation in the appendix to [12] ran 4 pages. The
simplicity of the proof below results from the Jacobi identity. Here div, ¥ denotes
the divergence along the leaf L of &

THEOREM 1.3. For basic fields X and Y, one has dx(X,Y) = —div, ¥[X,Y]. In
particular, when « is closed, V[ X, Y] leaves invariant the induced volume form of the
leaves.

PROOF. Since X and Y are basic, [X, V;] = >_ A;;V;and [Y, V;] = ) B;;V;. Then
di(X,Y) = X«(Y)—Yr(X)—«([X, Y]). So by (iii) of Definition 1.1, this becomes

de(X,Y)=X) Bi—Y) Ai— Y g(HIX, Y], V] V).
But

Y gUAIX, YL VL Vi) = ) (X, Y1, Vi1, V) — ) _ g(¥IX, Y1, Vi, Vi)
=Y g(llX, Y], V], V;) + div, ¥[X, Y]
=Y eUX, Vi, Y], V) + D e(X,[¥, iIl, Vi) + div, ¥[X, Y]

=Y ([Doa0viv] Vi) + 28 ([%. 22 B3V ] Vo) +eiv 71X, ¥)
=Y (X Ay 11 V) = X8 (3, anvi. vi)

+> 8 (30, X BV Vi) + 38 (30, BulX, Vi1, Vi) +div, ¥ (X, 7]
==Y 8 (X, AuBaVe Vi) ~ Y A

+XY B+ g (Z B,AyVi, V, )+de1/[X Y]

=—Y) Ai+X)_ Bi+div, ¥[X, Y]

Hence dx (X, Y) = — div, ¥[X, Y], as claimed.
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DEFINITION 1.4. Recall that

(a) (M, g, #)is harmonicifx =0.

(b) (M, g, F) has constant mean curvature if « (t) is constant on the leaves of &.
(c) (M, g, F) is mean curvature invariant provided t is basic.

d) (M, g, F)is tense if « is basic.

REMARK 1.5. Since « annihilates vertical vector fields, « is basic if and only if
di (X, W) = 0 for all vertical W and horizontal X (see [12, Lemma 1.7]).

Corresponding to t, there is another vector field T+ defined as follows. For a local
orthonormal frame {X,, X, ..., X,} of ¥, onesets Tt =Y 7 ¥ Vy X,. If t+ =0,
we say the normal plane field is minimal.

DEFINITION 1.6. The normal plane field one-form 8 is the 1-form dual to t+:

@) B(E) = g(z*, E) =) g(¥VxX;, E).
Hence (see [28, p. 71])

—(ZLew)(Xy, ..., X,),  forvertical E
0, for horizontal E,

(i) B(E) = {

where (. is the volume element on #, and equivalently

I, 8UE, X1, X)), for vertical E
0, for horizontal E.

(iii) B(E) = {
COROLLARY 1.7. If B = 0, then for basic vectors fields X and Y,
de(X,Y) = —divy ¥[X, Y].
PROOF. Given Theorem 1.3, it suffices to note that
divy VX, Y1=div. ¥[X, Y1+ ) ' ¢(Vx,¥[X, Y], X))
=div, 7[X, Y]—Z;;lg(‘//[X, Y], Vx, X;) =div, ¥[X, Y] - gV [X, Y], t).

REMARK 1.8. (i) There are various commonly used names for the conditions in
the above definitions. In particular, bundle-like foliations are called Riemannian
foliations. The terminology ‘harmonic foliation’ was introduced by Kamber and
Tondeur: in codimension 1, a foliation is harmonic if its canonical projection TM —
S is a harmonic 1-form. Harmonic foliations are known as minimal foliations [23],
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since the leaves of harmonic foliations are minimal submanifolds. Note that condition
B = 0 just says that u is a basic form. Foliations verifying this condition are said to
have ‘minimal normal plane field’ [16] or to have ‘a holonomy invariant transverse
volume form’ {28, p. 71]. Tense foliations [17] are also called ‘isoparametric’ [13].
Constant mean curvature foliations are also called ‘tense’ foliations by some authors.
Mean curvature invariant foliations were introduced only recently by Walczak in [30];
this notion coincides with that of tense foliations when the metric is bundle-like, but
in general it is quite different.

(ii) All of the conditions in Definition 1.4 are genuinely weak geometric conditions.
Indeed, one of the fundamental methods of constructing examples of foliations is the
method of suspension: here one has a group homomorphism ¢ : m,(B) — Diff(F),
from the fundamental group of one manifold B to the group of diffeomorphisms of
another, F. Then m;(B) acts naturally on F x 1§, where B is the universal cover of B,
and the quotient F x4 B is a fibre bundle over B with fibre F, called the suspension of
¢. Importantly, the second factor in F x B induces a foliation on F x4 B whose leaves
are covering spaces of B. The dynamics of this foliation are precisely the dynamics
of the discrete group action of 7r;(B) on F, so it can be extremely complicated. Since
these foliations are transverse to the fibers of the fibration F x4, B — B, they are all
harmonic (for an appropriate choice of metric).

More generally, according to [26], a codimension 1 foliation # on a compact
manifold M is harmonic if and only if every leaf of # meets a closed transversal.
The higher codimensional harmonic foliations have been given homological charac-
terizations by Sullivan [27] and Haefliger [14]. For bundle-like foliations, another
cohomological characterization of harmonicity was conjectured by Y. Carri¢re. This
was the subject of many papers (see [25]) and was finally proven in [19]. Recently
it was shown in [10] that for bundie-like foliations on compact manifolds, there is
always a metric for which the foliation is tense. An example of a foliation which is
not tense is given by the Reeb foliation (see the Corollary to the proof of 2.11 below).

Section 2

We follow Tondeur in ([28, 29]). Let Q#*° = I'(A*3#* @ AY¥™). The non-zero
range of the groups Q*” is0 < u < gand 0 < v < p where p = dim ¥ and
q = dim#. Thend = d®' + d'® + d*>~! where d"/ : Q** — Q*+v¥/ From the
identity d* = 0, one has

(D1) A4 = 0 = g214%1
(D2) dh g 4 @%1g10 — o

(D3) 4> gt 4 ghog2-1 — g

(D4) d21g0 4 O g2l 4 glog10 — .
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Now consider (M, .#, g) with vertical volume element w as above.

LEMMA 2.1. d'%(—w) =k A .

PROOF. This is immediate from Definition 1.1(ii). See [28, p. 66].

Recall that if (M, g, &) is tense and % has codimension 1, then « is closed [12].
Generalizing, one has:

LEMMA 2.2. If (M, g, F) is tense and if € is integrable, then k is closed.

PROOF. If 5% is integrable, then d>~'w = 0. Now one clearly has d*'w = 0. So
by (D4) one has d'°d"%w» = 0. But by Lemma 2.1, we see d'%(k A w) = 0. Thus

@) Aw=k A @ 0)=—k Ak Aw=0.

But d"% A w = 0 implies d"% = 0. Finally, since « is basic, d*'x = 0. Thus
dx = 0 as claimed.

For the next lemma, we suppose that all the leaves of F are dense. The significance
of this hypothesis is that it implies that every basic form on M is either nowhere zero
or identically zero.

LEMMA 2.3. If M is compact and (M, g, F) is tense and all the leaves are dense,
then

(@) if & has codimension 1, then (M, g, F) is harmonic.
(b) if F has codimension 2, then k is a closed 1-form.

PROOF. (a) Since .# has codimension 1, we have d*>~!w = 0. Since d%'w = 0, we
have dw = d"%w = —k A w, by Lemma 2.1. So x A w is exact. Thus, [, k Aw = 0.
It follows that x = O for some point ¢ € M, so k = 0 on the leaf containing ¢.
Consequently, since « is basic and the leaves of % are dense, k = 0.

(b) Using d®'w = 0 and Lemma 2.1, one has

kK Adw = —k A (@0 +d" o+ d 7 w)
=k AdPw+d*'w) = —k AdP o,
Butk Ad*'w € Q*P~! where p = dim . Since £ has codimension 2, k Adw = 0.

Thus, dk Aw = d(k Aw). Since d(k A w) is an n-form, we have by Stokes’ Theorem,
f, dx A @ = 0. Since dx is basic, dk = 0 as required.
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Now in the case that (M, g, %) is a bundle-like foliation with M compact, Kamber
and Tondeur have shown that if « is basic, then « is closed [17], [28, pp. 150-151].

EXAMPLES 2.4. The following example shows if the compactness hypothesis on M
is removed « basic does not imply that « is closed. Let M be a Lie group with Lie
algebra generators X, Y, V, W subject to the following relations:

[X,Y]=Y+V, (V,W]l=W, Y, W]=-w.

Then the distribution on M spanned by V and W is completely integrable and hence
gives rise to a foliation #. Let g be the left invariant metric on M with respect to
which X, Y, V and W are orthonormal. Then % is bundle-like with respect to this
metric and X and Y are basic vector fields. The mean curvature one form « of % is
the 1-form dual to —Y; it is basic but not closed.

EXAMPLES 2.5. This example shows that Kamber and Tondeur’s result doesn’t hold
without the bundle-like hypothesis. First consider the following basis for s/(3, R):

E, =4, E;, =6, E; =681, — 62 Ey =463,
E5 = 53,1, E6 = 52,3» E7 = 53,2, Es = 51,1 - 53,3,

where §; ; is the 3 x 3 matrix which has 1 in the (i,j) position and 0 elsewhere. The
bracket relations for this algebra are given in Table 1. The vector fields {E;, E;} span
a foliation F on § L(3, R). Now SL(3, R) has a uniform lattice, say I" [3]. The left
invariant fields E,, ..., Eg induce vector fields on M = I'\SL(3, R), which we will
denote by the same letters. Let g be the Riemannian metric on M for which the fields
E,, ..., Eg are orthonormal and let F be the foliation induced by F on M. While
{E,, E4, Es, Eg, Eq, Eg} are all horizontal fields of unit length, only Ej is basic., If E;
is in the above list, i # 8, then either [E;, E|] or {E;, E3] has a non-zero horizontal
component and hence E; is not basic. Direct calculation shows that « is the 1-form
dual to Eg. In fact, « is basic but not closed since dx(E;, E¢) = 1. Now taking
into account the Kamber-Tondeur result mentioned in the introduction, we see that
the metric cannot be bundle-like for our foliation. We might add that Table 1 together
with the techniques of Example 2.5 can be used to find many other foliations with
varying properties of « and B.

Despite the above example, the following generalization of Kamber and Tondeur’s
result obtains if codimension # = 2.

THEOREM 2.6. Suppose that M is compact and that (M, g, F) is a codimension 2
foliation with a basic transverse volume form . Then « is closed if k is basic.
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L [ E | B [ B | E | Bs [ B [ E [ Es |
E,] 0| B | 2E] 0 | -E, | E 0 | -E
E, | —E| 0 | 2E, | B | 0 0 “E, | E
E, | 2E, | 2E,| 0 | E. | <Es | —E, | E 0
E.| 0 | -E | —E, | 0 | E 0 E, | —2E,
E;| E, | 0 | B |-E]| 0 | -F 0 | 2E,
E, |-E.| 0 | B | 0 | E 0 | E—E, | —E
E, | 0 | BEs | B | -E| 0 |E:—E;| 0 E,
Es | Ei | —E, | 0 | 2E, | 2Es| E, | -E | 0

TABLE 1. The brackets [E;, E|]

PROOF. First, let us present a technical lemma. This played an important role in [8]
and we will use it in the next theorem and again in Section 3 below.

LEMMA 2.7. If (M, g, &) is a codimension 2 foliation with a basic transverse
volume form ., then there is a globally defined vertical vector field V,, defined loc-
ally by setting V, = ¥[X, Y], where X, Y are local basic vector fields satisfying
w(X,Y)=1

PROOF. It suffices to note that if X’ and Y’ are basic with (X', Y’) = 1 on some
open set on which both pairs {X, Y} and {X’, Y’} are defined, then

X’ X
()=2(2)
where the B is a matrix whose entries are basic functions and which has determinant 1.

A straightforward calculation shows that ¥ [X', Y'] = det(B)¥[X, Y] = V[X, Y].

Now choose local basic vector fields X and Y such that u(X,Y) = 1. By the
above lemma, the vector field V, = #[X, Y] has a global meaning. Similarly, since
Kk is basic, f = dk (X, Y) is a globally defined basic function on M. In the same way,
de(fX,Y)and ¥[fX, Y] have a global meaning. Now because u is basic, 8 = 0
and hence t* = 0 [28, p. 71]. It follows that

de(fX,Y) = —div, V[fX, Y] = —divy ¥[fX, Y],

by Corollary 1.7. Hence

/f2=de(fX,Y)=/ —divy Y[fX, Y] =0,
M M

M
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by the divergence theorem. Thus, f? = 0on M andso f = 0on M. Hence d"%« = 0.
But « € Q"0 implies d>~'x = 0 and « basic implies d®'«x = 0. Thus « is closed.

We now turn to 8. We first recall:

LEMMA 2.8. For an arbitrary foliation (M, g, F), the 1-form B is & -closed. That
is,d*'B = 0.

PROOF. From Definition 1.6, d*'x = —8 A . So, as d*! o d*! = 0 by (D1), one
has

0=d""odu=-d""Bru+BArd'u=—-d""Bru—BArBApu.

Hence, d*' B A . = 0. But d%' 8 is a form of type (0, 2) while p is one of type (g, 0).
Hence, d%'8 = 0.

Note, one could also show that 8 is % -closed using 1.6 (iii) and imitating the
technique of Theorem 1.3.

From Theorem 1.3 we know if X and Y are basic thendk (X, Y) = —div, ¥[X, Y]
and so from [11], many nice geometric properties obtain. A natural question to ask, is
when does di (X, Y) = —divy ¥[X, Y]? Asnoted in [11, Theorem 1.4], this occurs
when (M, g, &) is bundle-like. More generally, by Corollary 1.7 of this paper, if
B =0,thendk(X,Y) = —divy, ¥[X, Y]. The following observation along the same
lines is elementary.

PROPOSITION 2.9. If d*> '8 = 0, then dx (X, Y) = —divy ¥[X, Y] for any basic
vector fields X and Y. In particular, if k is closed (or more generally, d“°k = 0) and
d>~'B =0, then ¥ [X, Y] leaves invariant the volume form of the ambient manifold.

PROOF. It suffices to note that
. . q
divy ¥[X, Y] = div; 7[X, Y]+ Z,-=1 g(X;, Vx, ¥I[X, Y]

= —dk(X.Y) = ) | ¢(Vx,X;, VX, Y]
= —dc(X,Y) - B(¥Y[X,Y) = —de(X,Y) +d*7'B(X, Y).

Notice that this same calculation gives:

PROPOSITION 2.10. Suppose d'"%« = 0 and d*>~'B # 0. Then divy, ¥[X, Y] # 0
for some basic fields X and Y. In particular, 5 is not integrable.
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Because d*!8 = 0, the 1-form B defines a member of H'(L), for every leaf L.
Because 8 is globally defined on M, it makes sense to consider what happens when
B is trangressive; that is, when dp is basic (see [4, p. 247]). Notice that in this case
dp is a pure form of type (2, 0). So, as df = d'°B + d*~'B, this gives df = d*~' 8.
Hence we can reformulate Proposition 2.10 as follows.

PROPOSITION 2.10*. Suppose d"°k = 0 and B is transgressive with df # 0. Then
Y'[X, Y] # 0 for some basic vector fields X and Y, and so 5 is not integrable.

It is sometimes useful for us to have a metric on M so (M, g, #) has B = 0.
In codimension 1, 8 = 0 if and only if .# is bundle-like with respect to g. In the
codimension ¢ case, if ¢ is integrable the vanishing of 8 is just what is required for
the leaves of % to be minimal submanifolds of M. We have:

THEOREM 2.11. Let F be a transversally oriented foliation on an oriented Rieman-

nian manifold (M, g).

(1) If B is exact, there exists a new metric g* on M so that the associated normal
plane field one-form B* = 0 and the associated mean curvature one-formk* = k
and the associated transverse volume element p* is basic. If X and Y are basic
vector fields, dc*(X,Y) = —divy ¥ [X, Y]

(2) If B and k are exact, then one can define a new metric g so the associated mean
curvature one form & = 0, and the associated normal plane field one-form = 0,
and so the transverse volume form p is basic. In particular, with respect to g,
the leaves of % are minimal submanifolds, and if 7€ is integrable, the leaves of
F are likewise minimal submanifolds of M.

PROOF. (1) Suppose B = df. Let h = f/q and consider a new metric e**g = g*.
Now if E is horizontal, then by definition 8*(E) = B(E) = 0. If E is vertical, then
from Definition 1.6(iii),

q9

BUE)=Y) " e"g(lE,e"Xle"X) =) e'g(E,e™X,], X))
=) " "g(E(e™) Xi + e [E, Xi1, X)
q
=—q.Em)+ ), elE, X, X)
= —E(f) + B(E) = —df (E) + B(E) = 0.

So g* = 0 and by [28, p. 71], the transverse volume element p* is basic. Similarly, if
E is vertical, k*(E) = x(E) and if E is horizontal, then by Definition 1.1(ii1),

K'(E)=)" e”g(E,eVil,e™"V;) = k(E) — E(f).
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But by definition of 8,0 = 8(Y) = Yf, so f is annihilated by horizontal fields. So
E(f) = 0 and hence «*(E) = «(FE) and « is unchanged by the metric alteration. It
follows from 2.9 that &y y12* = 0 when «* is closed.
(2) Suppose S = df and ¥k = do. As in part (1), replacing g by the new metric
e*//ig = g*, one obtains f* = 0 and k*(E) = «(E). Then, in an entirely analogous
manner, by replacing g* by the new metric ¢**/?g* = £, one obtains k¥ = 0 and
/3 B*. Thus ﬂ = k = 0. The last part of the theorem then follows immediately
when 7 is integrable by the definition of B.

We now recover the following result (see [28, p. 131]).

COROLLARY TO PROOF OF 2.11 Suppose (M, g, &) is a codimension one foliation
on a closed 3-manifold with finite fundamental group. Then ¥ cannot be tense.

PROOF. If .Z is tense, then « is closed. So if H!(M, R) = 0, then « is exact.
Mimicing the proof of (2) of the previous theorem, the metric g can be deformed to
a new metric ¢ with corresponding mean curvature one-form ¥ = 0, contradicting a
result of Sullivan [29, p. 21].

Section 3

In this section we will deal with foliations % having leaves which are totally
umbilic. This situation has already been treated in [12] and [7] in the case the metric
is bundle-like. On compact 3-manifolds, a recent classification of totally umbilic
foliations was given in {5].

Recall a submanifold L of a manifold M is rotally umbilic, provided there is a
vector field N perpendicular to L such that for each pair of tangent vectors U and V,
one has T,V = g(U, V)N, where T is the second fundamental form. N is called the
normal curvature vector field. In our setting N is globally defined on M because M is
foliated by a foliation with totally umbilic leaves. As observed in [12], T = pN where
p is the leaf dimension. Since we will not be working under the assumption that the
metric g on M is bundle-like, we need to make severe alterations on the work of {12],
if similar results are to be forthcoming. Structure equations similar to those of O’Neill,
see Ranjan [24], will not yield what we need because the identity AxY = ¥ [X, Y}/2
for X, Y horizontal obtains only when the metric g is bundle-like for #. (Recall that
A is the integrability tensor of [22] or [21]: AgF = ¥ Vg F + SV oy V' F.)
We will use the following well-known identity, which will be applied with X and Y
basic and V and W vertical.
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PROPOSITION 3.1. (Zix.r1@)(V, W) = (L g)(V, W) — L (L) (V, W), or
equivalently,
(X, YIg(V, W) — g([X, Y], V], W) — g(V,[[X, Y], W])
= X (&9 V, W) — (L)X, VI, W) — (Lg)(V, [X, W)
=Y (&(V, W) + (£ (Y, VL, W) + (Zxg)(V, [T, W]).

PROOF. Simply expand both sides. The result follows from the Jacobi identity.

We have the following result.

PROPOSITION 3.2. Let M be a Riemannian manifold with totally umbilic foliation
F. Then if X and Y are basic vector fields, ¥[X, Y] is an infinitesimal conformal
transformation along the leaves of F. If dx(X,Y) is basic, then ¥[X,Y] is an
infinitesimal homothetic transformation on these leaves. Finally, if « is closed, then
Y[X, Y] is an infinitesimal isometry on these leaves.

PROOF. We work locally. Let V and W be vertical vector fields. We will show
(Zrixng)(V, W) = fg(V, W). First note that for every horizontal vector field Z
one has

(ZLz8)(V, W) =Zg(V,W) —g(IZ, V], W) — g(V,[Z, W])
=g(WZ,Wy+g(V,VyZ)=—g(Z, Ty1W)—g(Z,TyV)
= —2g(Z, TyW) = —-2g(Z,N)g(V, W).

Then, rewriting Proposition 3.1,

(Erwixn8)V, W) + (Lyx.rig)(V, W)
= X(Z )V, W) — (L)X, V], W) = (Lg)V,[X, W]
—Y(Zg)(V, W) + (L)Y, VI, W) + (Zg)(V, [Y, W],

gives

—28(A#[X, Y], N)g(V, W) + (Lyxng)(V, W)

= —~X{2¢(Y, N)g(V, W)} +2¢(Y, N)g([X, V], W) + 2g(Y, N)g(V, [X, W]
+ Y{2g(X, N)g(V, W)} —2g(X, N)g(lY, V], W) —2¢(X, N)g(V, [Y, W])

=2[-g(¥Y, N)(Lxg)(V, W) — g(V, W)Xg(Y, N)
+ 8(X, N)(Zyg)(V, W) + g(V, W)Yg(X, N)]

=2[g(Y, N)2g(X, N)g(V, W) — g(V, W)Xg(¥, N)
—8(X, N)2g(Y, N)g(V, W) +g(V, W)Yg(X, N)]

=2[g(V, W)Yg(X, N) — g(V, W)Xg(¥, N)]
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and so
(ZLyix @)V, W) =2g(V, W)[g(#[X,Y], N)+Yg(X,N) — Xg(¥, N)].

This means that £y x y;g(V, W) = fg(V, W) and so ¥[X, Y] is alocal infinitesimal
conformal transformation on the leaves of #. Finally, note that

(Lyan)(V, W) = g(WY[X, Y], W) +g(V, Vw V[X, Y])

2 2
=2 div, VX, Y1g(V, W) = —;dK(X, Y)g(V, W)

by Theorem 1.3 and the fact ¢ = pN. The last part of 3.2 follows directly from [11,
Theorem 3.1}.

We are now in a position to formulate one of the main results of this paper. Note,
while the ambient manifold has a Riemannian metric we do not require that the metric
be bundle-like for the foliation.

THEOREM 3.3. Let M be an oriented Riemannian manifold with transversally ori-
ented foliation & of codimension 2 having totally umbilic leaves. Assume (M, g, F)
admits a basic transverse volume form 1.

(1) When restricted to a leaf of &, the globally defined vector field V, = V[X, Y],
given by Lemma 2.7, is an infinitesimal conformal transformation along the leaf.

(2) If « is basic, then ¥'[X, Y] is an infinitesimal homothetic transformation when
restricted to a leaf of .

(3) Ifxisclosed, then ¥[X, Y]is infact an infinitesimal isometry on the leaves of F
and an infinitesimal volume preserving diffeomorphism of M. These properties
are independent of the choice of representative of the basic cohomology class
represented by k. In fact, if «* = k + do where o is a basic function on M, then
(M, g*, F), where g* is the metric associated with the mean curvature one-form
x*, is totally umbilic and admits a basic transverse volume form.

(4) Suppose each leaf of F has quasi-negative Ricci curvature and additionally each
of the following added conditions obtains:

(i) M is compact.
(i1) « is basic or the leaf dimension of F is 2.

Then F is integrable.

PROOCF. (1) follows immediately from Proposition 3.2.
(2) If « is basic, then d« (X, Y) is constant on the leaves of % and so, by (1), ¥ [X, Y]
is an infinitesimal homothetic transformation when restricted to the leaves of #.
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(3) Because p is basic, B = 0 by [28, p. 71]. By Theorem 1.3 and Corollary
1.7, it follows ¥[X, Y] is an infinitesimal isometry along the leaves of L and its
diffeomorphisms preserve the volume of M. By [11] all of the geometric properties
of the leaves persist under the conformally altered metric g* = ¢~2°/?g, when o is
basic.

(4) If « is basic and M is compact, then « is closed by Theorem 2.6 above. Let V be
the induced connection on the leaves. Then since ¥ [X, Y] is conformal on the leaves,
one has when « is closed that ¥[X, Y] is Killing on each leaf so

(**) Ag(V[X, YL, VIX, Y]
p
gV YIX, Y], Vy ¥[X, YD) — SL(¥IX, Y], ¥[X,Y]) > 0

i=1

where {V;} is a local orthonormal frame of V and S; is the Ricci tensor of L. Thus,
g(¥(X, Y], ¥[X, Y]) is subharmonic on each leaf. If M is compact, let p be the point
where g(¥'[X, Y], 7{X, Y]) attains its maximum. Then by the maximum principle
for subharmonic functions, A; g(¥[X, Y], ¥[X, Y]) = 0. But the right hand side of
(**) is positive somewhere on L unless ¥ [X, Y] =0on L. Thismeans ¥ [X,Y]=0
on L and hence on M since p € L. Thus, S# is integrable.

In the special case when the leaf dimension is 2, the extra term that arises in
the computation of A;g(¥[X, Y], ¥[X, Y]) on the leaf when ¥[X, Y] is just an
infinitesimal conformal transformation, disappears by the computation of Bochner
himself [2, Lemma 2]. The argument above now leads to the conclusion ¥ [X, Y] =0
without the added requirement that « be closed.

Section 4

We now consider (M, g, %) when .# is a foliation of leaf dimension 1 (that is, a
Sflow). We make no assumption at first that the metric g is bundle-like. Analogous to
Theorem 3.3, we have the following result.

THEOREM 4.1. Let (M, g) be an oriented Riemannian manifold with transversally
oriented flow F. Let X and Y be basic vector fields.

(1) Ifdx is basic, then when restricted to a leaf of &, ¥ [ X, Y1is alocal infinitesimal
homothetic transformation.

(2) Ifx isclosed, then when restricted to a leaf of &, ¥ {X, Y] is alocal infinitesimal
isometry. If «* = k —do , where o is basic, then ¥ [X, Y] remains an infinitesimal
isometry along the leaves of F with respect to the conformally altered metric
g* = ¥ g whose associated mean curvature one-form is k*.
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(3) Ifk isexact, x = do, then F is geodesible. In particular, the leaves of F are
totally geodesic with respect to the metric g* = e*° g.

(4) If k and B are both exact, k = do and B = df, then there exists a metric for
which & is geodesic and has minimal normal plane field.

PROOF. (1) If « is basic, then dk (X, Y) is basic and by Theorem 1.3, —dk (X, Y) =
div; ¥[X, Y] is constant on the leaves of #. So ¥'[X, Y] is homothetic.
2)Ifdi(X,Y) = 0, the above means ¥ [X, Y] is a local infinitesimal isometry along
each leaf of #. The rest of (2) follows from Theorem 3.1 of [11].

(3) If k is exact, k = do then 0 = k* = k — do is the associated mean curvature
one-form for the metric e*° g = g* by the argument of Theorem 2.11. Now if k* = 0,
this means that the leaves are totally geodesic because they have dimension 1.

(4) follows from 2.11.

In the special case that g is bundle-like for the flow # we have the following
generalization of a result of [13] for spheres S”.

PROPOSITION 4.2. Let M be a complete connected Riemannian manifold with
bundle-like flow F . Suppose « is closed and assume that

(1) there is a point g € M so for all basic X, Y one has V[X,Y]=0atgq.
(ii) for all horizontal X, Y, Z and vertical W, g(RxyZ, W) = 0, where R is the
curvature tensor on M.

Then the orthogonal distribution F€ is integrable.

PROOF. The argument mimics that of [13] (the same sort of argument is employed
in [1], for example). Clearly the subset S where S is integrable is closed. Alsog € S
so § is non-empty. By 4.1, if X and Y are basic and « is closed, then ¥ [X, Y] = aV
where a is constant on the leaf. Hence S is a union of leaves of F. We will show
S is open. Let p € L be any point of M. We will show AxY vanishes along any
horizontal geodesic y emanating from p. We use {3} of O’Neill [22] which says for
X, Y, Z horizontal and V vertical,

8(RxyZ,V) =g(Vz(AxY), V) — g(Afvzst V) — g(ijszY, V)
+8(AxY, TvZ) — g(AvyZ, Ty X) — g(Az X, TvY).

Here A is the integrability tensor and T is the second fundamental form of the leaves.
Suppose {X,, X5,..., X,_;} is an orthonormal family of basic vector fields in a
neighbourhood N of p. Setting X = X;, ¥ = X;,Z = X,, Vy X, = I‘f‘ij
and Ax, X; = f;;V the above curvature equation and assumption (ii) means that
along y we have a system of iomogeneous differential equations satisfying the usual
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initial conditions. Since f;;(p) = 0, the uniqueness theorem for differential equations
guarantees f;; = 0 along an open interval on y around p. This means S is open.

It would be wonderful to have a result like 4.2 in a more general setting for flows
which are not bundle-like. While there are structure equations like the equations in
[22] (see the paper of Ranjan [24] for these equations), the crucial property 2AxY =
¥'[X, Y] fails when the metric is not bundle-like.
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