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ON THE NORM OF
SYMMETRISED TWO-SIDED MULTIPLICATIONS

BOJAN MAGAJNA AND ALEKSEJ TURNSEK

The authors provide precise lower bounds for the completely bounded norm of the
operator Ta<b : B(H) -> B(H) defined by Ta,b(x) = axb + bxa and the injective
norm of the corresponding tensor. Further, they compute the norm of the operator
x i-» a*xb + b*xa acting on the space of all conjugate-linear operators on H.

1. INTRODUCTION

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear
operators on H. An operator

(1) </>: B(H) ^ B(H), 4>(x) =

where a,i,bi € B(H), is called an elementary operator. As proved by Haagerup in an
unpublished manuscript and by Smith [11], the completely bounded norm of such an
operator is equal to the Haagerup norm of Yl a« ® k- Sometimes the usual norm of cj> is
equal to the completely bounded norm (in particular if we consider the operator <j> acting
on, say, the Calkin algebra, instead of B(H), see [5]), but in general there is no known
simple expression for the norm of an elementary operator on B(H). (See [9] for a survey
of this problem.) Besides the simplest case when k — 1 in (1), the best understood case
is that of generalised derivations for which Stampfli [14] found an explicit formula for
the norm on B(H) (see also the survey article by Fialkow [2] for more references).

For a slightly more general operator

(2) Ta>b:B{H)-+B{H), Taib(x) = axb + bxa

no formula is known for computing the norm. Clearly \\Tatb\\ ^ 2 ||a|| ||6||, but in estimat-
ing the norm of Ta^b in the opposite direction, it is not known what is the largest possible
constant c such that

(3)
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28 B. Magajna and A. Turnsek [2]

for all a,b <E B(H). Mathieu [7] proved (3) with c = 2/3 and Stacho and Zalar [12, 13]
improved this to c = 2(\/2 — l) for general a and b and to c = 1 if a and b are self-adjoint.
It was conjectured in [6, p. 497] that c = 1 in general. It turns out that it would be
sufficient to prove this conjecture when a and b are 2 x 2 matrices with a diagonal and
positive, but we have not been able to overcome the computational difficulties in this
special case. In principle the problem is solvable by the decision procedure of Tarski
[15] for inequalities involving polynomials of several variables (we are grateful to our
colleague Marko Petkovsek and to Professor Adam Strzebonski from Wolfram Research
for this information), but practically the problem seems too hard for the current computer
implementations of this procedure.

Here we shall prove by a simple argument the estimate (3) with c = 1 for the
completely bounded norm of Ta<b instead of the usual norm. It is known that each positive
elementary operator of length 2 (that is, k = 2 in (1)) is automatically completely positive
(see [3, 4, 8, 16]); in contrast to this the completely bounded norm of such an operator
can be different from the usual norm even in the case of TOIJ (Example 4.9).

For the injective tensor norm ||-||A a very simple argument will show us that

with the best possible constant c = 2(\/2 — l ) . By the minimality of the injective tensor
norm this implies the above mentioned result of [12].

When a, b are self-adjoint, and H real or dimH = 2 if H is complex, the norm of Ta<b

can be computed explicitely. This is a consequence of the main result here (Theorem 4.2)
which provides a simple formula for the norm of the symmetrised two-sided multiplication

operator

(4) Sa<b:B(H)->B(H), Sa>b(x) = a"xb + b"xa,

where B(H) is the space of all conjugate-linear bounded operators on H. The operator
Saj, seems more accessible and natural than Ta<b since it preserves the space'of all self-
adjoint operators in B(H).

We conclude this introduction by recalling some notation and definitions. Any map
<j> : B(H) -> B(H) induces a family of maps <f>n : Mn(B(H)) -> Mn(B(H)), n ^ 1,
defined by

M M = [*(**)]
for any matrix [iy] G Mn(B(H)). If supn ||^n|| is finite then </> is said to be completely
bounded, and this supremum defines the completely bounded norm H^H^ of <j>. (Here, of
course, the norm in Mn(B(H)) is given via the identification Mn{B(H)) = B{Hn).) (We
refer to [1] or [10] for more on completely bounded mappings.)
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[3] Symmetrised two-sided multiplications 29

The Haagerup norm on the algebraic tensor product B(H) <g» B(H) is defined by

* l l 1 / 2 II k 1/2

1 t= l

k

(5)

where the infimum is over all possible representations of <f> in the form <j> = Y^ai ® h (see

[1]). •

By the natural map

6 : B{H) ® B(H) -* CB(B(H)), Q(^. en ® fc) (x) = ^ . atz&,

we may algebraically identify B{H) ® B(H) with the space of all elementary operators
on B(H). As we already mentioned, for each <j> E B(H) ® B(H) the completely bounded
norm of 0 (0) is equal to the Haagerup norm of <j>.

2. A N ESTIMATE FOR THE COMPLETELY BOUNDED NORM O F TO,(,

Let M.2 denote the algebra of complex 2 x 2 matrices.

THEOREM 2 . 1 . The inequality

holds for alia, b£ B(H).

P R O O F : First assume that dim if = 2 and identify B(H) with M2. Let a = [a,b],
b = [b,a]1. We shall use the notation aOb = a<g>b + b<8>a. It suffices to prove that
the Haagerup norm of a Ob satisfies H a © ^ ^ ||a|| \\b\\. Multiplying a by a suitable
constant t and b by 1/i we may assume first that ||a|| = ||6|| and then (normalising) that
||a|| = 1 = ||6||. Note that aA"1 ©A& = aQb for each invertible matrix A s M^', moreover,
it follows from [1, Lemma 9.2.3] that

(6) | |«O 6|U = inf IfaA-1!! ||/L6||,

where the infimum is over all invertible matrices A 6 M.2- Furthermore, since for each
unitary 2 x 2 matrix u we have that ||au|| = ||a|| and similarly for columns, by using the
polar decomposition, it suffices to take in (6) the infimum over all positive matrices A
only, and clearly we may also assume that det A = 1. Thus, we have to prove that

(7)

for all positive A € Mi with det A = 1. So let
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Then

aA" 1 O A6 = (7a - ~J3b) <g> (0a + ab) + {-fid + ab) <g> (7a + ~0b).

To simplify the notation put

Then (7) can be written as

(8) \\Aaa" - 2Re{Bab*) + Cbb'\\ • \\Aa*a + 2Re(Bb'a) + Cb*b\\ > 1.

We may assume tha t A ^ C (the case C ^ A is treated in the same way). Then, noting

tha t IITQ^H^ = HTua^utoH^ for all unitary u,v € M2, we may replace a and 6 by \a\ and

u*b, respectively, where a — u \a\ is the polar decomposition of a. In other words, we

may assume that a is positive. So, a and b are of the form a = and b —
where h € [0,1] and A,02,f t ,A € C. Then ^ J

Aaa' - 2 R e ^ ' ) + CW =

and

The fact that det A = 1 implies (by a simple computation) that \B\2 - AC = — 1, hence,
since C > 0, we have that A ± 2 \B\ |/?i| + C |A|2 ^ 0. Since A ^ C and AC = 1 + |B|2,
we also have A ^ 1 and it follows that

(,4-2 R e ( ^ ) + C(|ft|2 + |/32|
2)) (

Since the norm of each matrix always dominates the maximal absolute value of its entries,
this proves (8) and the theorem when dim// = 2.

The case when dim H > 2 can be reduced to the case just proved as follows. Let
e > 0 and choose unit vectors f, 7? G H such that ||a£|| ^ ||a|| —e and \\bq\\ ^ ||6|| —e. Let
K\ be two dimensional space containing f and r/, and let K2 be two dimensional space
containing a£ and brj. Furthermore, let p € B(H) be the orthogonal projection onto K\.
and let g e B(i?) be a partial isometry with the final space Kx and the initial space K2-
Then \\qap\\ > \\a\\-e and ||96p|| ^ | |6 | | -c It is easy to verify that
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hence, regarding qap and qbp as operators on the two dimensional space K\, it follows
from what we have already proved that

\\Ta,b\\cbZ\\qap\\\\qbp\\>(\\a\\-e)(\\b\\-e).

Finally, to complete the proof, let e -» 0. D

3. AN ESTIMATE FOR THE INJECTIVE TENSOR NORM OF a®b+b®a

Recall ([1]) that the injective norm on the tensor product E ® F of Banach spaces
k

is defined for each w = ^2 a* ® h € E ® F by

HIA = = l},

where £* denotes the dual of E and (}®g){w) := 53 fiai)9{bi)- In other words, denoting
i=l

by {E*)i the unit ball of E* and associating with each w € £ ® F the (continuous) function
w on (£^*)i x (F')i by u»(/, 5) = (f <8> g)(u>), \\w\\x is just the supremum norm of w.

Since the injective norm is the minimal reasonable tensor cross norm, the following
proposition immediately implies the main result of [12].

PROPOSITION 3 . 1 . Let a,b e B(H) and let ra,6 = a® b + b<g> a. Tien

PROOF: We may assume that ||a|| = ||6|| = 1 and regard a, b as functions on A
:= (B(H)*)1 and rO](, as a function on A x A in the usual way. Multiplying a and 6 by
suitable scalars of modulus 1, we may assume that a(sQ) = 1 and b(tQ) — 1 for some
So, £0 € A. Put ai = a(to) and 61 = b(so)- Then we have

= 26], 0,t0) -

If |ai| or |6i| is greater or equal than \/2 — 1, we are done. So suppose that |ai| < \/2— 1
and \bi\<y/2-l. Then

> 1 - (y/2- I)2 = 2 ( ^ 2 - 1 ) ,

Dand the proof is completed.

REMARK 3.1. It is easy to see that the constant 2(\/2 — l) in Proposition 3.1 can not
be improved; consider, for example the diagonal matrices

a =
1 0
0 N / 2 - 1

and b —
- ( N / 2 - 1 ) O'
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The following proposition (together with Proposition 3.1 and Remark 3.1) implies
that in general Ta$ does not attain its norm on operators of rank 1.

k

PROPOSITION 3 . 2 . For each w = £ a{ ® b{ e B{H) ® B{H) we have that
t=i

= sup j l ^ a ^ l l : x 6 B(H), \\x\\ = l,rank(x)= 1 j.

k f

PROOF: Put w(x) = J2aixbi a n d \\w\\p = sup^||w(x)|| : x € B(H), \\x\\
i=i '•

= l,rank(x) = 1 >. Since each rank 1 operator x € B(H) is of the form x — u ® C
for some u, C € H, we have

|| = l , rank(x) = 1,\\Z\\ = \\v\\ = l }

: IICII = IHI = IIHI = U\\ - l }
t= l

k

= sup

where the last supremum is taken over all functionals of the form f = v ®r), <7 =
Since each element in the predual T{H) of B{H) is a norm limit of convex combinations
of elements of the form v ® r\ and the unit ball of T(H) is weak* dense in the unit ball
of the dual of B(H), it follows that ||w||^ is equal to the injective norm ||u>||A. D

4. T H E NORM OF THE OPERATOR X 1-4 a*xb + b'xa ON ~B{H)

Let W(a) and w(a) be the spatial numerical range and the numerical radius, respec-
tively, of an operator a € B(H).

LEMMA 4 . 1 . Let H be a finite-dimensional Hilbert space and let a,b G B(H).

Then

(9) w(a*a + b*b) = min w (ta'a + -b'b\

if and only if there exists a unit vector £ € H such that

(10) ^

P R O O F : We may assume that w(a*a + b'b) = 1. If (10) is satisfied, then
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Conversely, let us assume that (9) holds. Put K - ker(a'a + 6*6 - 1) and let p e B(H)
be orthogonal projection onto K. Put sn = 1/n, n ^ 2. By (9) there exists a sequence
{r/n} of unit vectors in H such that

(11) /[{I - sn)a'a+ r^-b'b)rin,Vn) > to(a*a + 6*6) = 1

for each n ^ 2. Put c = a*a + 6*6 and d = b*b — a*a. Then from (11) we get

s2

(12) (crin> 7?n) + Sn(dVn, Vn) + ^—(b'bfh, 7?n) ^ 1.

Since / / is finite dimensional, the unit ball of H is compact and so there is a convergent
subsequence of {77,,}. Denote this subsequence again by {?/„} and let 77 = limn77n. Then
from (12) and (077,77) ^ 1 it follows that (077,77) = 1; hence cq —-q (since ||c|| = 1) and
so 77 € K. From (12) it also follows that sn{dr]n,r)n) + (s£)/(l - sn)(b*brin,r]n) ^ 0, so
dividing by sn,

Letting n —¥ oo we conclude that (dn, n) ̂  0. In the same way, starting from the sequence
tn — —(1/n) instead of sn — 1/n, we obtain a unit vector v € K such that (du, v) ^ 0.
Since the numerical range is convex, from (dr/, 77) ^ 0 and (dz/, f) ^ 0 it follows that
0 e W{pd\K)- So there exists a unit vector £ 6 A" such that ((6*6 - a*a)f,£) = 0.
This together with (o*a + 6*6)f = £ implies that ||a£||2 = ||6f ||2 = 1/2 and the proof is
completed. D

Remember that B(H) denotes the space of all bounded conjugate-linear operators
on H and Sa,b '• B(H) —> B(H) is the operator defined by Sa<b{x) = a*xb + b'xa. Denote
by B{H)sa self-adjoint operators in B(H).

THEOREM 4 . 2 . For all a,b € B(H) we have that

\\Sa,b\\ = \\Saj,\-B(H)M || = ™j« | | t e*a + 7&*6|| •

PROOF: We may assume that ||a*o + 6*6|| = 1. Furthermore, since Sa,b
 = t̂a,{i/t)6

for all scalars t ^ 0, we may assume that min||ta*a + (l/t)6*6|| = \\a*a + 6*6|| = 1.

Suppose first that H is finite-dimensional. Then by Lemma 4.1 there exists a unit vector

£ satisfying ||a£||2 = ||6f||2 = 1/2, hence on the linear span C of {a£,6£} we can define

a conjugate-linear isometry x by xa£ = 6£ and xb£ = a£. By choosing a conjugate-

linear symmetry on £ x , we can extend 1 to a conjugate-linear operator on H such

that x = x' and x2 = 1. Then \((a*xb + 6*za)f,£)| = 1, hence | |5a,6| | ^ 1. Since

ll'Sa.&ll ^ Il^i-IL ^ minllta'a + (l/t)6*6|| = 1, this completes the proof when H is

finite-dimensional.
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If H is infinite-dimensional, let {pn} be a net of finite rank orthogonal projections
increasing to the identity. Denote by an the restriction of pna to the range of pn, and
analogously for b. For each n let tn be such that min||ia*an -I- (l/i)6*6n|| = ||tna*an

+ (l/tn)b^bn\\. Then we have
t>o

| |S a J | = sup \\a*xb + b*xa\\ ^ sup \\a*pnxpnb + b*pnxpna\\
11*11=1 11*11=1

^ SUp \\(pna'Pn)(PnXPn){PnbPn) + (Pnb'pn)(pnXpn){pnapn)\\
I N I = i

1 ,*. II

Passing to a subnet, if necessary, assume that tn —> i0- Then

lim \\tna'nan + -b*nbn\\ = toa'a H 6*6 ^ min\\ta'a + -6*6 .
t>o

Hence,

Since the reverse inequality is clear, the theorem is proved. D

PROPOSITION 4 . 3 . Let Ra,b : B(H) -> B{H) be (real) linear mapping defined
by Ra,b(x) = a*xb + b*x*a. Then

\\Ra,b\\ =

PROOF: The proof is very similar to the previous one, so we shall skip the details.
Choose a unit vector f satisfying the condition (10) in Lemma 4.1 and a unitary operator
xsuch that xb£ = a£. Then \\Ra,b\\ ^ ((atxb + b*x*a)Z,t) =w(a*a + b*b) = ||a*a + 6'6||.
For the reverse inequality note that

a* 6*
0 0

\x 0
0 x' a 0

D

PROPOSITION 4 . 4 . Let a, b€ B(H) be self-adjoint. IfH is real or dim H - 2,
then

\\Ta,b\\ = | |T o , t | 8 W l . | | = mjn|ta2 + -62 | | .

PROOF: If H is real this is just Theorem 4.2 for real scalars. So let H be complex
with d i m i / — 2. Choose an orthonormal basis {771,772} of H relative to which a is
diagonal. Since b is self-adjoint, the diagonal entries of 6 are real, and the two (in
general complex conjugate) off-diagonal entries of 6 can be made real by replacing 772
with 6r)i for an appropriate scalar 6 of modulus 1. Thus, we may assume that a and
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[9] Symmetrised two-sided multiplications 35

b are real matrices. As in the proof of Theorem 4.2, we may assume that min||ia2

+ ( l / i )62 | | = ||a2 + 62|| = 1. Then from Lemma 4.1 we obtain a unit vector £ such that

||a£||2 = ||6£||2 = 1/2. Furthermore, £ is an eigenvector of the real symmetric matrix

(a2 +62)£ = £ (corresponding to the eigenvalue 1), hence £ is real. Then (a£, b£) € K and

we can find a unitary self-adjoint matrix x satisfying xa£ = b£ and xb£ = a£. The rest

of the proof is the same as in Theorem 4.2 and will be omitted. D

COROLLARY 4 . 5 . If a, b e M2 are self-adjoint, then

PROOF: By Proposition 4.4 we have

min||ta2 + h2\\ > ||TOl6||rt ^ ||TOi6|| =

hence ||Ta,6||c6 = ||Ta,6||. D

The main result in [13] states that, whenever a, b S B(H) are self-adjoint, ||Ta](,|B(//)ja ||
^ ||a|| ||6||. The following estimate is sharper.

COROLLARY 4 . 6 . Leta,be B{H) be self-adjoint. Then

\\Ta,b\B{H).a\\ 7* sup minllt(pap)2 + -(p6p)2| | ^ ||a|| | |6| | .
p = p . = p 2 t > 0 l l t II
rank(p)=2

PROOF: The first inequality follows immediately from Proposition 4.4 since

||TOi6|B(tf),o|| > ||Tpap,p6p | B(pH)ia\\

for each projection p £ B(H). To prove the second inequality, we may assume that
\\a\\ = ||6|| = 1. Note that if t > 1 then \\t(pap)2 + (l/t){pbp)2\\ > \\pap\\2 and ||pop||
approximates ||a|| when p is the projection to the span of {£>a£}> where £ is a vector on
which a almost achieves its norm. A similar argument is available if (1/i) ^ 1. D

For 2 x 2 matrices we have a better estimate. Denote by ||-||2 the Hilbert-Schmidt
norm.

COROLLARY 4 . 7 . . If a, b e M2 are self-adjoint, then

|| ^ I H I 2 11*112-
PROOF: We may assume that minllia2 + (l/t)62|| = ||a2 + 62||. Put m = ||a2 + 62||.

By Lemma 4.1 there exists a unit vector £ satisfying (a2 + 62)£ = £ and ||a£||2 = ||6f ||2

= TO/2. Let £x be a unit vector orthogonal to £ and put c = \\a£±\\ . Since a2 + b2 ^ ml,
we have ||&£x|| ^ m — c. From
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36 B. Magajna and A. Turnsek [10]

and

it follows that

-m-c,

Clearly, the inequality ||TO|4|| > IHI2IHI2 c a n n o t ^ e generalised to self-adjoint nxn
matrices for n > 2. As an example, consider the 3 x 3 diagonal matrices a = diag(l, 1,0)
and b = diag(0,0,1). (In this example we also have that HT^H^ = 1 = ||a|| ||6||, hence
the estimate in Theorem 2.1 can not be improved.)

EXAMPLE 4.8. If H is complex and d i m # > 2, then minu/(ta2 + b2/t) can be greater

than ||TO,6|B(H)JO||- TO see this, first observe the following.

If H is finite dimensional and a, b € B(H) are such that

\\Ta,b\B(H)J=w(a2 + b2) = l,

then there exists a unit vector t; e H such that (a2 -I- 62)f = f and (of, if) € R.

Indeed, choose x = x* € B{H) with ||ar|| = 1 and a unit vector f € H such that

ax6+ bxa)£, £) = 1 . Using the fact that equality holds in the Schwarz inequality only

if the two vectors are linearly dependent, we deduce from

that (a2 + 62)C = ? and then ||af||2 = ||6^||2 = 1/2 and xb£ = Pa£, xa£ =
for some complex numbers a and /? of modulus 1. Then from |(a;&£,a£) + (xa£,b£)\
= | ( l /2 )a + (l/2)/0| = 1 it follows that a = /?. Since x is a contraction, we have \\x(a^

\\a£ + \bt;\\ for each complex number X. But this is equivalent to the condition

Re R e w h i c h implies € R.

Now let

a =

0

J_
71
o

~7= 0

Then

+ b2 =

and b — x 0

- 0 0

0
3

4

0 - - -

0
i
4
1
4J
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and since the norm of 2 x 2 matrix in the lower right corner of a2 + b2 is (2 + \/2)/4 < 1.
we have \\a2 + b2\\ = 1. If ||Tait,|B(#)jo || — 1, then by the above observation we would have
(a£i K) € ^ where £ = [l 0 0] is the only eigenvector of a2 + b2 corresponding to the
eigenvalue 1 = w(a2 + b2). However, in our case (a£, 6£) = — (i/2y/2) £ E.

In view of Corollary 4.5 one may ask if ||Ta,(,||cil = \\Tafi\\ for all 2 x 2 matrices a and
b. The following example shows that this is not the case.

EXAMPLE 4.9. Put a = e - iu and b — (e + iu)/2, where

e =
1 0
0 0 u =

0 1
0 0

Let x = [Xij]. Then

TaJI,{x) =
\Xu X2l\

0 0

so ||TO>A|| = 1. We shall show that HT^H^ = y/2. First we note that Ta,b(x) = axb + bxa

= exe + uxu. Furthermore, as in the proof of Theorem 2.1, denote by A = —
\fi

positive matrix with det A = 1. Let A = |/9|2 + j 2 , B = /3(a + 7), C = a2 + |/3|2 and
note that det A = 1 is equivalent to the condition AC - \B\2 — 1. Then, as in the proof
of Theorem 2.1, to compute ||T'a]6||c6, that is, the Haagerup norm of w = e ® e + u <8> u, it
suffices to consider the representations of w of the form

w = (7e — fiu) ® (ae + flu) + (-/3e + au) ® (Pe + ju).

Then by a short computation,

|M|fc = inf{||(>l + C)e||1/2||Aex + Ce + 2Re(BU*)||1/2 : AC - \B\2 = l } ,

where ex = 1 - e. Furthermore,

\C B
2Re(Bu') =

B A

and the norm of the last matrix is equal to (A + C + J(A - C)2 + 4 |B|2 \/2. By
symmetry we may assume that A ^ C, hence

e-1 + Ce + 2 Re(Bu')|| ^ \{A + C + \A - C\) = A.

Therefore

= IkI = (2(1

In fact H^IU = v/2, since ||t«||ft ^ ||e2 + UU *||1/2 ||e2 + u'uf2 =
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