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ON THE NORM OF
SYMMETRISED TWO-SIDED MULTIPLICATIONS

BoJAN MAGAJNA AND ALEKSEJ TURNSEK

The authors provide precise lower bounds for the completely bounded norm of the
operator Tpp : B(H) — B(H) defined by To5(z) = azb + bza and the injective
norm of the corresponding tensor. Further, they compute the norm of the operator
z + a*zb + b*za acting on the space of all conjugate-linear operators on H.

1. INTRODUCTION

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear
operators on H. An operator

k
(1) ¢: B(H) - B(H), ¢(z)= _Zaixb,-,

where a;,b; € B(H), is called an elementary operator. As proved by Haagerup in an
unpublished manuscript and by Smith [11], the completely bounded norm of such an
operator is equal to the Haagerup norm of }_ a; ® b;. Sometimes the usual norm of ¢ is
equal to the completely bounded norm (in particular if we consider the operator ¢ acting
on, say, the Calkin algebra, instead of B(H), see [5]), but in general there is no known
simple expression for the norm of an elementary operator on B(H). (See (9] for a survey
of this problem.) Besides the simplest case when k£ = 1 in (1), the best understood case
is that of generalised derivations for which Stampfli [14] found an explicit formula for
the norm on B(H) (see also the survey article by Fialkow [2] for more references).
For a slightly more general operator

(2) Top: B(H) = B(H), Tap(z) = azb+ bza

no formula is known for computing the norm. Clearly ||T;,|| < 2||a]| ||8]|, but in estimat-
ing the norm of T, ; in the opposite direction, it is not known what is the largest possible
constant ¢ such that

(3) Il > cllall fi2]
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for all a,b € B(H). Mathieu [7] proved (3) with ¢ = 2/3 and Staché and Zalar [12, 13]
improved this to ¢ = 2(\/5 - 1) for general ¢ and b and to ¢ = 1 if a and b are self-adjoint.
It was conjectured in [6, p. 497] that ¢ = 1 in general. It turns out that it would be
sufficient to prove this conjecture when a and b are 2 x 2 matrices with e diagonal and
positive, but we have not been able to overcome the computational difficulties in this
special case. In principle the problem is solvable by the decision procedure of Tarski
[15] for inequalities involving polynomials of several variables (we are grateful to our
colleague Marko Petkovsek and to Professor Adam Strzebonski from Wolfram Research
for this information}, but practically the problem seems too hard for the current computer
implementations of this procedure.

Here we shall prove by a simple argument the estimate (3) with ¢ = 1 for the
completely bounded norm of T, ; instead of the usual norm. It is known that each positive
elementary operator of length 2 (that is, k = 2 in (1)) is automatically completely positive
(see [3, 4, 8, 16]); in contrast to this the completely bounded norm of such an operator
can be different from the usual norm even in the case of T,; (Example 4.9).

For the injective tensor norm ||-||, a very simple argument will show us that

la®b+b®all, > cllall bl

with the best possible constant ¢ = 2(\/§ - 1). By the minimality of the injective tensor
norm this implies the above mentioned result of [12].

When a, b are self-adjoint, and H real or dimH = 2 if H is complex, the norm of T,
can be computed explicitely. This is a consequence of the main result here (Theorem 4.2)
which provides a simple formula for the norm of the symmetrised two-sided multiplication
operator

(4) Sap : B(H) = B(H), S.4(z) =a’zb+b'za,

where B(H) is the space of all conjugate-linear bounded operators on H. The operator
Sep seems more accessible and natural than T, since it preserves the space of all self-
adjoint operators in B(H).

We conclude this introduction by recalling some notation and definitions. Any map
¢ : B(H) — B(H) induces a family of maps ¢, : M,(B(H)) = M,(B(H)), n > 1,
defined by

#n([z4]) = [¢(z4)]

for any matrix [zi;] € M,(B(H)). If sup, ||¢s]| is finite then ¢ is said to be completely
bounded, and this supremum defines the completely bounded norm ||¢||, of ¢. (Here, of
course, the norm in M, (B(H)) is given via the identification M, (B(H)) = B(H™).) (We
refer to [1] or [10] for more on completely bounded mappings.)
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The Haagerup norm on the algebraic tensor product B(H) ® B(H) is defined by

k 1/2 k
E a,-a; E b:b,
i=1 i=1

1/2

(5) ll#ll, = inf

b

k
where the infimum is over all possible representations of ¢ in the form ¢ = Y a; ® b; (see

.

By the natural map

© : B(H) ® B(H) — CB(B 0(3 aien) (@) =3 aub

we may algebraically identify B(H) ® B(H) with the space of all elementary operators
on B(H). As we already mentioned, for each ¢ € B(H) ® B(H) the completely bounded
norm of O(9) is equal to the Haagerup norm of ¢.

2. AN ESTIMATE FOR THE COMPLETELY BOUNDED NORM OF T,

Let M, denote the algebra of complex 2 x 2 matrices.

THEOREM 2.1. The inequality

1 Tapll, = llalf 18]

holds for all a,b € B(H).

PROOF: First assume that dim H = 2 and identify B(H) with M,. Let a = [a,b],
b = [b,a]*. We shall use the notation a®b = a® b+ b ® a. It suffices to prove that
the Haagerup norm of g O b satisfies ||a ® bl|, > lla| ||l Multiplying a by a suitable
constant ¢t and b by 1/t we may assume first that ||a|| = [|b]| and then (normalising) that
llall = 1 = ||b]|- Note that aA~!®Ab = a®b for each invertible matrix A € M,; moreover,
it follows from [1, Lemma 9.2.3] that

(6) la © bll, = inf |aA~"|| 1AL,

where the infimum is over all invertible matrices A € M,. Furthermore, since for each
unitary 2 X 2 matrix u we have that ||au| = ||e|| and similarly for columns, by using the
polar decomposition, it suffices to take in (6) the infimum over all positive matrices A
only, and clearly we may also assume that det A = 1. Thus, we have to prove that

(7 llaA="|* A8 > 1

for all positive A € M, with det A =1. So let

A=[g ﬂ, oy-18F=1, av>0.
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Then
aA"! © Ab = (ya — Bb) ® (Ba + ab) + (—Ba + ab) ® (ya + Bb).
To simplify the notation put

A=|8F++* B=Ba+7), C=do*+|8.

Then (7) can be written as

(8) ||Aaa® — 2Re(Bab*) + Cbb* > 1

-|Aa*a + 2Re(Bb*a) + Cb*b

We may assume that A > C (the case C > A is treated in the same way). Then, noting
that [|Tapll, = | Tuav,ubvll,, for all unitary u,v € M,, we may replace a and b by |a| and
u*b, respectively, where a = ula| is the polar decomposition of a. In other words, we

may assume that a is positive. So, a and b are of the form a = [(1) 2] and b= [gl B 2] ,
where h € [0,1] and By, B2, B3, B4 € C. Then s B

[ 3 2 2
Aaa* — 2Re(Bab*) + Cbb* = A - 2Re(BA) + C(AI + 15[ *} ,

* *
and i N . .
Aa*a+2Re(Bb'a) + Cbrb = |4 T 2Re(BAY) tc(lﬁll +18s[°) *} _
*

The fact that det A = 1 implies (by a simple computation) that |B |2 — AC = -1, hence,

since C > 0, we have that A+ 2|B||81| +C B> > 0. Since A > C and AC =1+ |B|?,
we also have A > 1 and it follows that

(4-2Re(BB,) + C(8:[" + |82F")) (4 + 2Re(BE,) + C(I6i + s
> (A+C|6I" - 2Re(BB)) (A + C |Bi[* + 2Re(BE)))
= (A+C|811")* - 4(Re(BB,))" > (A+C|6,1*)* - 4|BI* |,
= (A+C|B°)" - 4AC-1) | = (A~ C|A) + 4|8
> A2(1- 187 + 418 = (1= 18" + 4181 = (1 +1A)".

Since the norm of each matrix always dominates the maximal absolute value of its entries,
this proves (8) and the theorem when dim H = 2.

The case when dim H > 2 can be reduced to the case just proved as follows. Let
€ > 0 and choose unit vectors &,7 € H such that [|a§|| > |la|| — £ and [|bn|] > ||b]] —¢. Let
K, be two dimensional space containing £ and 7, and let K, be two dimensional space
containing af and brn. Furthermore, let p € B(H) be the orthogonal projection onto K,
and let ¢ € B(H) be a partial isometry with the final space K and the initial space K.
Then ||gap|| > ||all—¢ and ||gbp|| > ||b]| —¢. It is easy to verify that || Tupll, > | Toap,etpll.ps
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hence, regarding gap and gbp as operators on the two dimensional space K, it follows
from what we have already proved that

I Taplles > llgapllllgbpll > (llall — ) (l1Bl} — €).

Finally, to complete the proof, let € — 0. 0

3. AN ESTIMATE FOR THE INJECTIVE TENSOR NORM OF a® b+ b®a

Recall ({1]) that the injective norm on the tensor product E ® F of Banach spaces
is defined for each w = Za,@b €eEQ®F by

i=1

lkoll, = sup{|(f ® )(w)| : £ € B*,[I£ll = 139 € F", gli = 1},

where E* denotes the dual of E and (f®g)(w) := Z f(a;)g(b;). In other words, denoting

by (E*), the unit ball of E* and associating with each w € EQ®F the (continuous) function
W on (E*); x (F*); by W(f,9) = (f ® g)(w), ||w||, is just the supremum norm of @.

Since the injective norm is the minimal reasonable tensor cross norm, the following
proposition immediately implies the main result of [12].

PROPOSITION 3.1. Leta,be B(H) andlet 7, =a®b+b®a. Then
I7aelly > 2(v2 = 1) lall 6] -

PrRoOOF: We may assume that ||a|| = ||b|| = 1 and regard a,b as functions on A
= (B(H)")l and 7,4 as a function on A X A in the usual way. Multiplying a and b by
suitable scalars of modulus 1, we may assume that a(sp) = 1 and b(ts) = 1 for some
So,to € A. Put a; = a(tp) and by = b(sg). Then we have

Tap(S0, S0) = 2b1,  Tap(to, o) = 2a1, Tap(So.t0) = 1+ a1by.

If |ay | or |by] is greater or equal than v/2 — 1, we are done. So suppose that |a;| < v2—1
and |b| < v/2 — 1. Then

Il +a1b1| >1- (\/5— 1)2 = 2(\/5— 1),
and the proof is completed. 0

REMARK 3.1. It is easy to see that the constant 2(v/2 — 1) in Proposition 3.1 can not
be improved; consider, for example the diagonal matrices

1 0 -(v2-1) 0
a=[0 \/f——l} and b=[ ( 0 )1]
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The following proposition (together with Proposition 3.1 and Remark 3.1) implies
that in general T, ; does not attain its norm on operators of rank 1.

k
PROPOSITION 3.2. Foreachw= ) a;®b; € B(H)® B(H) we have that
=1
k
[lwll, = sup{”Za,-zb,-“ :z € B(H),||z|| = 1,rank(z) = 1}.
i=1

k
PrOOF: Put w(z) = 3 ab; and |lwll, = sup{|lw(z)| : = € B(H), ||z

i=1
= 1,rank(z) = 1;. Since each rank 1 operator z € B(H) is of the form z = v ® ¢
for some v, € H, we have

k
Il = sup{ [ 3 (osati, o) ol = 1 rankte) = 1, el = Il =1}
i=1
k
= sup{ [ 3w, O] el =l = 1 = el =1}
i=1

= sup

gf(aog(bi)[,

where the last supremum is taken over all functionals of the form f = v @7, g = £ ® (.
Since each element in the predual T(H) of B(H) is a norm limit of convex combinations
of elements of the form v ® 77 and the unit ball of T(H) is weak* dense in the unit ball
of the dual of B(H), it follows that ||w||4 is equal to the injective norm [|wl|,. 0

4. THE NORM OF THE OPERATOR T + a’zb+ b*za ON B(H)

Let W(a) and w(a) be the spatial numerical range and the numerical radius, respec-
tively, of an operator a € B(H).

LEMMA 4.1. Let H be a finite-dimensional Hilbert space and let a,b € B(H).
Then

* * — : * 1 *
9) w(aa+b b)—rglélw(ta a+zb b)
if and only if there exists a unit vector £ € H such that
1 * *
(10) llagll® = ll6¢|I* = Sw(a"a +0b).

PRrROOF: We may assume that w(a”a + b*b) = 1. If (10) is satisfied, then

1 1 1 1
<(ta"a + ;b‘b)§,§> = tllagl + 5 o€ll* = 5 (¢ +7) > 1.
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Conversely, let us assume that (9) holds. Put K = ker(a*a + b*b — 1) and let p € B(H)
be orthogonal projection onto K. Put s, = 1/n, n > 2. By (9) there exists a sequence
{n.} of unit vectors in H such that

1
—_ * * > * * =
(11) <((1 sp)a*a + 1—snb b)n,.,n,.> 2> wl@'a+b'b) =1

for each n > 2. Put ¢ = a*a + b*b and d = b*b — a*a. Then from (11) we get

5%
1-s5,

(12) (CTns nn) + Sp(dnn, 77n> + <b‘b77n7 7ln> 21

Since H is finite dimensional, the unit ball of H is compact and so there is a convergent
subsequence of {n,}. Denote this subsequence again by {#,} and let = lim, n,,. Then
from (12) and {cn,n) < 1 it follows that {cn,n) = 1; hence cn = 7 (since |jc|| = 1) and
so n € K. From (12) it also follows that s,{dmn, ) + (s2)/(1 — 8,)(b*bn,, M) = 0, so

dividing by s,
Sn

1-3s,

(A, M) + (b*0n, ) = 0.

Letting n — oo we conclude that (dn, ) > 0. In the same way, starting from the sequence
tn = —(1/n) instead of s, = 1/n, we obtain a unit vector » € K such that (dv,v) < 0.
Since the numerical range is convex, from {dn,7) > 0 and (dv,v) < 0 it follows that
0 € W(pd|x). So there exists a unit vector £ € K such that {((b*b — a*a), &) = 0.
This together with (a*a + b*b)€ = £ implies that [a€||* = ||b¢||* = 1/2 and the proof is
completed. 0

Remember that B(H) denotes the space of all bounded conjugate-linear operators
on H and S, : B(H) — B(H) is the operator defined by S,4(z) = a*zb + b*za. Denote
by B(H ), self-adjoint operators in B(H).

THEOREM 4.2. Foralla,b€ B(H) we have that

1Sasll =

1
ta*a + Zb’b

SaplB(a).. || = min

PRrOOF: We may assume that ||a*a + b*b|| = 1. Furthermore, since S, = Sta,(1/6)6
for all scalars t # 0, we may assume that rgi(x)]”ta‘a + (1/6)b*b]| = lla*a +b*b|] = 1.
Suppose first that H is finite-dimensional. Then by Lemma 4.1 there exists a unit vector
€ satisfying ||a€||> = ||b€]]> = 1/2, hence on the linear span £ of {a,bf} we can define
a conjugate-linear isometry z by zaf = bf and zb = a€. By choosing a conjugate-
linear symmetry on £t, we can extend z to a conjugate-linear operator on H such
that £ = z* and z2 = 1. Then l((a":cb+ b‘za)é,f)l = 1, hence ||S,p]| = 1. Since
ISapll < NSaplle, < min|ta*e + (1/2)b%
finite-dimensional.

= 1, this completes the proof when H is
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If H is infinite-dimensional, let {p,} be a net of finite rank orthogonal projections
increasing to the identity. Denote by a, the restriction of p,a to the range of p,, and
analogously for b. For each n let t, be such that mln“ta an + (1/8)05bn]| = ltnasan
+ (1/ta)b3bn||- Then we have

| Sanll = ”sup lla*zb + b*za|| > 'sup ||a*Pazpnb + b*przpaal|
I = z =

> Sup || (Pra*Pr) (Pnps) (PnbPn) + (Pab”Pn) (Pnzpn) (Pnapn) ||

thanay, + —b; n
tn

Passing to a subnet, if necessary, assume that ¢, — to. Then

b" > minf|ta*a + b‘b
>0
Hence,
1
> min||ta* ~b*b||.
1Sasll = rglgl“ a‘a+ sb'b
Since the reverse inequality is clear, the theorem is proved. 0

PROPOSITION 4.3. Let R,;: B(H) — B(H) be (real) linear mapping defined
by R,s(z) = a*zb + b*z*a. Then

: * 1 *
| Rapll = rgl}lngta a+ ?b bif.

PROOF: The proof is very similar to the previous one, so we shall skip the details.
Choose a unit vector £ satisfying the condition (10) in Lemma 4.1 and a unitary operator
z such that zb€ = a. Then [[Rop| = ((a*zb + b*z*a)E, &) = w(a*a + b*b) = |ja*a + b*b||.
For the reverse inequality note that

IR |

PROPOSITION 4.4. Leta,bec B(H) be self-adjoint. If H is real or dim H = 2,

then
ITes ]| = | Tuslsione I

PROOF: If H is real this is just Theorem 4.2 for real scalars. So let H be complex
with dimH = 2. Choose an orthonormal basis {n;,72} of H relative to which a is
diagonal. Since b is self-adjoint, the diagonal entries of b are real, and the two (in
general complex conjugate) off-diagonal entries of b can be made real by replacing 7,
with 87, for an appropriate scalar 8 of modulus 1. Thus, we may assume that a and

|| Rap(z)|| = < lla*a + 6| ||z|| (z € B(H)).

= min
t>0
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b are real matrices. As in the proof of Theorem 4.2, we may assume that r{1>i51||ta2

+ (1/t)8*|| = lla® + 6?|| = 1. Then from Lemma 4.1 we obtain a unit vector £ such that
lla€]l* = ||b€]I> = 1/2. Furthermore, £ is an eigenvector of the real symmetric matrix
(a® +b%)¢ = £ (corresponding to the eigenvalue 1), hence £ is real. Then (a¢, bf) € R and
we can find a unitary self-adjoint matrix z satisfying zaf = bf and zb€ = af. The rest
of the proof is the same as in Theorem 4.2 and will be omitted. 0

COROLLARY 4.5. Ifa,b€ M, are self-adjoint, then
”Ta,b”cb = ”Ta,b” .
PROOF: By Proposition 4.4 we have
1 1
: 2 2 S 2 2
e+ 30 1l > 1 = g+ ],

hence ||Topll,, = 1T pll- .

The main result in [13] states that, whenever a, b € B(H) are self-adjoint, || Ty s|5(#),,
> |la|l ]} . The following estimate is sharper.

COROLLARY 4.6. Leta,be B(H) be self-adjoint. Then

. 1
ITesloune | > sup  minepap)? + < (pbp)?|| > llal o]
=p*=p? >0 4

rank(p)=2
PRrROOF: The first inequality follows immediately from Proposition 4.4 since
“Ta,blB(H)sa“ P ”Tpap,pb'p ' B(pH)sa“
for each projection p € B(H). To prove the second inequality, we may assume that
llall = llbll = 1. Note that if ¢ > 1 then ||t(pap)® + (1/¢)(pbp)?|| > |lpap|® and ||papl|

approximates ||a}| when p is the projection to the span of {¢,af}, where £ is a vector on
which a almost achieves its norm. A similar argument is available if (1/t) > 1. 0

For 2 x 2 matrices we have a better estimate. Denote by ||-||, the Hilbert-Schmidt
norm.

COROLLARY 4.7. .Ifa,b€ M, are self-adjoint, then

| Taslpta).a || = Nlall H0ll -
PROOF: We may assume that rtn)i(;l”ta.2 + (1/)6?|| = lla® + b?||. Put m = ||a® + b?|.

By Lemma 4.1 there exists a unit vector £ satisfying (a? + *)€ = £ and ||aé||* = ||b¢||”
= m/2. Let £* be a unit vector orthogonal to £ and put ¢ = ”a{"-”?. Since a?+b% < ml,
we have ||b§l||2 < m —c. From

1
lall3 = lla€l + flag*||* = 1m+c
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and 5
IoIE = 11511 + [og*[* < 5m -,

it follows that

) .
' 0
Clearly, the inequality ”Ta,b“ > ||a||2”b||2 can not be generalised to self-adjoint n xn
matrices for n > 2. As an example, consider the 3 x 3 diagonal matrices a = diag(1, 1, 0)
and b = diag(0,0,1). (In this example we also have that ||T,p(|,, = 1 = [|a|| |[b]|, hence
the estimate in Theorem 2.1 can not be improved.)

1 3
lal318l; < (5m + <) (5m = ¢) < m2 = | Tuslam,

‘EXAMPLE 4.8. If H is complex and dimH > 2, then Itn>iglw(ta2 + b%/t) can be greater

than ”Ta,blg(mw . To see this, first observe the following.
If H is finite dimensional and a,b € B(H) are such that

=w(a®+b) =1,

| Ta0l8(H)2a

then there exists a unit vector £ € H such that (a® + b2)¢ = £ and (a&, b¢) € R.

Indeed, choose x = z* € B(H) with |lz|| = 1 and a unit vector £ € H such that
'((aa:b+ bra)f, §>‘ = 1. Using the fact that equality holds in the Schwarz inequality only
if the two vectors are linearly dependent, we deduce from

1= [{(azb + bra)g, €)| = |(abt, a€) + (za, b6)| < 2lag]l 1s€]
< llagll” + 15€]1° = ((a® +¥)¢,€) < 1

that (a2 + b2)€ = £ and then |ja€|® = |Ib€||*> = 1/2 and zbf = Paf, zaf = abf
for some complex numbers o and 8 of modulus 1. Then from |(zb€,af) + (zaf, b)|
= |(1/2)a+ (1/2)B] = 1 it follows that & = B. Since z is a contraction, we have ||z(a¢
+ AbE)|| < |la€ + AbE|| for each complex number A. But this is equivalent to the condition
Re (AM(a&, b€)) < Re (A(b€, a)), which implies (a&, b€) € R.

Now let _

1 i 1
0 —= 0 0 -5 5
V2 ; 2 2
a= L 0 0 and b= 5 0 0
V2 1
0 0 - 0 0
L2
Then .
1 0 O
0 3 1
a?+ b = 4 4
i 1
0 -7 4l
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and since the norm of 2 x 2 matrix in the lower right corner of a® + % is (2 + v2)/4 < 1,
we have [|a® + 82| = 1. If || Tusls(#).. || = 1, then by the above observation we would have
(&, b€) € R, where £ = [1 0 0]‘ is the only eigenvector of a? + b? corresponding to the
eigenvalue 1 = w(a? + b?). However, in our case (a,b¢) = —(i/2v/2) € R.

In view of Corollary 4.5 one may ask if || Tusll,, = [|Tos/| for all 2 x 2 matrices a and
b. The following example shows that this is not the case.

EXAMPLE 4.9. Put a = e — ity and b = (e + iu)/2, where
10 01

e= , u= .
I:O 0} |:O O]

Tap(z) = ["5‘ ”glJ :

$0 ||T, || = 1. We shall show that ||T,||, = /2. First we note that T, 4(z) = azb + bza

Let z = [z;;]. Then

= eze + uzu. Furthermore, as in the proof of Theorem 2.1, denote by A = [B ﬁJ a
Y

positive matrix with det A = 1. Let A = |8]° + 42, B = Bla+7), C = o2 + |B|* and
note that det A = 1 is equivalent to the condition AC — |B |2 = 1. Then, as in the proof
of Theorem 2.1, to compute ||Tq ||, that is, the Haagerup norm of w = e® e +u®u, it
suffices to consider the representations of w of the form

w = (ve — Bu) ® (e + fu) + (—Be + au) @ (Be + vu).
Then by a short computation,
lloll, = mf{”(A +C)el|'||Ae* + Ce+ 2Re(Bu)||' : 4C - |BI* = 1},
where e+ = 1 — e. Furthermore,
C B

Aet + Ce +2Re(Bu’) = B A

and the norm of the last matrix is equal to (A +C+ \/(A -C)2+ 4|B|2)/2. By
symmetry we may assume that A > C, hence

2%(A+C+|A—C’|)=A

Therefore
1/2
IToslle = llwlly > (4+C)2AY2 > 24C)7* = (2(1 +1BF)) > V2.

1/2

In fact [ Tosll,, = V2, since [[wll, < lle? +wu|* [le? + wuf* = V2.
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