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Abstract

The aim of this work is to adapt a construction of the so-called Um-numbers (m > 1), which are extended
Liouville numbers with respect to algebraic numbers of degree m but not with respect to algebraic
numbers of degree less than m, to the p-adic frame.
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1. Introduction

Let p be a fixed prime number, and let | · |p denote the p-adic absolute value function
on the field Q of rational numbers. We shall denote the unique extension of | · |p to
the field Qp of p-adic numbers, the completion of Q with respect to | · |p, by the same
notation | · |p.

By analogy with his classification of complex numbers, Mahler [3], in 1934,
proposed a classification of p-adic numbers. Let P(x) = anxn + · · · + a0 be a
polynomial with rational integral coefficients. The height H(P) of P is defined by
H(P) = max(|an|, . . . , |a0|), where | · | denotes the usual absolute value function on the
field R of real numbers, and we shall denote the degree of P by deg(P). Given a p-adic
number ξ and natural numbers n and H (recall that a natural number means a positive
rational integer), define the quantity (see Bugeaud [2])

wn(H, ξ) = min{|P(ξ)|p : P(x) ∈ Z[x], deg(P) ≤ n, H(P) ≤ H and P(ξ) , 0}

and set

wn(ξ) = lim sup
H→∞

− log(Hwn(H, ξ))
log H

and w(ξ) = lim sup
n→∞

wn(ξ)
n

.

The inequalities 0 ≤ wn(ξ) ≤∞ and 0 ≤ w(ξ) ≤∞ hold. If wn(ξ) =∞ for some
integers n, then µ(ξ) is defined as the smallest such integer. If wn(ξ) <∞ for every n,
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put µ(ξ) =∞. Hence, µ(ξ) and w(ξ) are uniquely determined and are never finite
simultaneously. Therefore, there are the following four possibilities for the p-adic
number ξ. We call ξ:
• a p-adic A-number if w(ξ) = 0 and µ(ξ) =∞;
• a p-adic S -number if 0 < w(ξ) <∞ and µ(ξ) =∞;
• a p-adic T -number if w(ξ) =∞ and µ(ξ) =∞;
• a p-adic U-number if w(ξ) =∞ and µ(ξ) <∞.
Every p-adic number ξ is of precisely one of these four types. The p-adic A-numbers
are precisely the p-adic algebraic numbers. Let S , T , and U denote the set of p-adic
S -numbers, the set of p-adic T -numbers, and the set of p-adic U-numbers,
respectively. Then the p-adic transcendental numbers are distributed into the three
disjoint classes S , T , and U. Let ξ be a p-adic U-number such that µ(ξ) = m, and let
Um denote the set of all such numbers, that is, Um = {ξ ∈ U : µ(ξ) = m}. Obviously,
the set Um (m = 1, 2, 3, . . .) is a subclass of U, and U is the union of all the disjoint
sets Um. An element of Um is called a p-adic Um-number. (See Bugeaud [2] for more
information about Mahler’s classification in Qp.)

Suppose that α is an algebraic number. Let P(x) be the minimal defining polynomial
of α such that its coefficients are rational integers and relatively prime, and its highest
coefficient is positive. Then the height H(α) of α is defined by H(α) = H(P), and the
degree deg(α) of α is defined as the degree of P.

Given a p-adic number ξ and natural numbers n and H, by analogy with
Koksma’s classification of complex numbers, define the quantity (see Bugeaud [2]
and Schlickewei [5])

w∗n(H, ξ) = min{|ξ − α|p : α is a p-adic algebraic number,

deg(α) ≤ n, H(α) ≤ H and α , ξ}

and set

w∗n(ξ) = lim sup
H→∞

− log(Hw∗n(H, ξ))
log H

and w∗(ξ) = lim sup
n→∞

w∗n(ξ)
n

.

The inequalities 0 ≤ w∗n(ξ) ≤∞ and 0 ≤ w∗(ξ) ≤∞ hold. If w∗n(ξ) =∞ for some
integers n, then µ∗(ξ) is defined as the smallest such integer. If w∗n(ξ) <∞ for every n,
put µ∗(ξ) =∞. Hence, µ∗(ξ) and w∗(ξ) are uniquely determined and are never finite
simultaneously. Therefore, there are the following four possibilities for the p-adic
number ξ. We call ξ:
• a p-adic A∗-number if w∗(ξ) = 0 and µ∗(ξ) =∞;
• a p-adic S ∗-number if 0 < w∗(ξ) <∞ and µ∗(ξ) =∞;
• a p-adic T ∗-number if w∗(ξ) =∞ and µ∗(ξ) =∞;
• a p-adic U∗-number if w∗(ξ) =∞ and µ∗(ξ) <∞.
Every p-adic number ξ is of precisely one of these four types. Let A∗, S ∗, T ∗, and U∗

denote the set of p-adic A∗-numbers, the set of p-adic S ∗-numbers, the set of p-adic
T ∗-numbers, and the set of p-adic U∗-numbers, respectively. Then the p-adic numbers
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are distributed into the four disjoint classes A∗, S ∗, T ∗, and U∗. Let ξ be a p-adic U∗-
number such that µ∗(ξ) = m, and let U∗m denote the set of all such numbers, that is,
U∗m = {ξ ∈ U∗ : µ∗(ξ) = m}. Obviously, the set U∗m (m = 1, 2, 3, . . .) is a subclass of U∗,
and U∗ is the union of all the disjoint sets U∗m. An element of U∗m is called a p-adic
U∗m-number.

Both classifications are equivalent, that is, the classes A, S , T, and U are the same
as the classes A∗, S ∗, T ∗, and U∗, respectively. Moreover, Um = U∗m (m = 1, 2, 3, . . .)
holds. (See Bugeaud [2] for all references and Schlickewei [5].)

The main purpose of this work is to give a new method for constructing p-adic
Um-numbers ξ with upper bounds for w∗n(ξ), where n = 1, . . . , m − 1. In the present
work, the method given in [1] is extended to the p-adic case. Our new results are stated
in Section 2 and proved in Section 4, and the lemmas we need to prove the main result
of this work are given in Section 3.

2. The main result

The following theorem can be regarded as a p-adic version of the theorem in [1],
and in the proof of the following theorem, the method given in [1] is extended to the
p-adic case.

T 2.1. Let m ≥ 2 be an integer, and let ε > 0 be any real number. Then there
are uncountably many p-adic Um-numbers ξ with

w∗n(ξ) ≤ n + m − 1 + ε for n = 1, . . . , m − 1. (2.1)

To prove Theorem 2.1, we construct by induction a rapidly converging sequence of
p-adic algebraic numbers of degree m, whose limit is a p-adic Um-number with (2.1).

3. Auxiliary results

The following lemma is a consequence of Bugeaud [2, Theorem 9.4], and the proof
of the main result of this work is based on it.

L 3.1. Let m ≥ 2 be an integer and ξ be a p-adic algebraic number of degree
m, and let ε > 0 be any real number. Then there exist a real constant κ(ξ, ε, m) > 1,
depending only on ξ, ε, and m, and infinitely many p-adic algebraic numbers α of
degree m such that

0 < |ξ − α|p < κ(ξ, ε, m)H(α)−m+ε.

The following lemma is a form of the so-called Liouville inequality the proof of
which can be found in many references (see, for example, Pejkovic [4, Lemma 2.5]).

L 3.2. Let α1 and α2 be two distinct p-adic algebraic numbers of degree n1 and
n2, respectively. Then

|α1 − α2|p ≥ (n1 + 1)−n2 (n2 + 1)−n1 H(α1)−n2 H(α2)−n1 .
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4. Proof of Theorem 2.1

Let m ≥ 2 be an integer, β be any p-adic algebraic number of degree less than or
equal to m − 1, and ξ1 be a p-adic algebraic number of degree m. By Lemma 3.2,

|ξ1 − β|p ≥ (m + 1)−2mH(ξ1)−deg(β)H(β)−m. (4.1)

Let ε be any real number satisfying 0 < ε ≤ 1. Then, by Lemma 3.1, there exist a real
constant κ(ξ1, ε, m) > 1, depending only on ξ1, ε, and m, and infinitely many p-adic
algebraic numbers ξ2 of degree m such that

0 < |ξ1 − ξ2|p < κ(ξ1, ε, m)H(ξ2)−m+ε. (4.2)

If
H(β) ≤ (m + 1)−2H(ξ1)−1κ(ξ1, ε, m)−1/mH(ξ2)1−ε/m =: A

holds, then it follows from (4.1) and (4.2) that

|ξ2 − β|p ≥ c1H(β)−m, (4.3)

where
c1 := (m + 1)−2mH(ξ1)−m < 1.

In the case H(β) > A, we use Lemma 3.2 and obtain

|ξ2 − β|p ≥ (m + 1)−2mH(ξ2)−deg(β)H(β)−m. (4.4)

We deduce from (4.4) and H(β) > A that

|ξ2 − β|p > c2H(β)−m−deg(β)/(1−ε/m) > H(β)−m−deg(β)/(1−ε/m)(log(3H(β)))−1, (4.5)

where
c2 := (m + 1)−2m((m + 1)2H(ξ1)κ(ξ1, ε, m)1/m)−deg(β)/(1−ε/m),

holds true if

H(β) > c3 := 1
3 exp((m + 1)2m((m + 1)2H(ξ1)κ(ξ1, ε, m)1/m)m/(1−ε/m)).

But we choose ξ2 such that A > c3. Then we infer from (4.3) and (4.5) that

|ξ2 − β|p > c1H(β)−m−deg(β)/(1−ε/m)(log(3H(β)))−1 (4.6)

holds for any p-adic algebraic number β of degree less than or equal to m − 1. We now
prove the following claim by induction.

C. There exist p-adic algebraic numbers ξ2, ξ3, . . . of degree m such that

|ξi+1 − β|p > c1H(β)−m−deg(β)/(1−ε/m)(log(3H(β)))−1 (i = 1, 2, . . .) (4.7)

for any p-adic algebraic number β of degree less than or equal to m − 1,

0 < |ξi − ξi+1|p < κ(ξi, ε, m)H(ξi+1)−m+ε and H(ξi+1) > κ(ξi, ε, m)H(ξi)i

(i = 1, 2, . . .), (4.8)

where κ(ξi, ε, m) > 1 is a real constant depending only on ξi, ε, m.
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P   . By (4.6) and (4.2), the claim is true for i = 1. Let us assume
that the claim is true for i = k − 1 (k > 1, k ∈ N), that is, there exist p-adic algebraic
numbers ξ2, . . . , ξk of degree m such that (4.7) and (4.8) hold true for i = 1, . . . , k − 1.
By Lemma 3.1, there exists a p-adic algebraic number ξk+1 of degree m such that

0 < |ξk − ξk+1|p < κ(ξk, ε, m)H(ξk+1)−m+ε and H(ξk+1) > κ(ξk, ε, m)H(ξk)k, (4.9)

where κ(ξk, ε, m) > 1 is a real constant depending only on ξk, ε, m. By assumption,

|ξk − β|p > c1H(β)−m−deg(β)/(1−ε/m)(log(3H(β)))−1 (4.10)

for any p-adic algebraic number β of degree less than or equal to m − 1. If

H(β)m+deg(β)/(1−ε/m) log(3H(β)) ≤ c1κ(ξk, ε, m)−1H(ξk+1)m−ε (4.11)

holds, then it follows from (4.9) and (4.10) that

|ξk+1 − β|p > c1H(β)−m−deg(β)/(1−ε/m)(log(3H(β)))−1. (4.12)

By Lemma 3.2,
|ξk − β|p ≥ (m + 1)−2mH(ξk)−deg(β)H(β)−m. (4.13)

If
H(β)m ≤ (m + 1)−2mH(ξk)−deg(β)κ(ξk, ε, m)−1H(ξk+1)m−ε =: B

holds, then it follows from (4.9) and (4.13) that

|ξk+1 − β|p ≥ (m + 1)−2mH(ξk)−deg(β)H(β)−m.

If β satisfies
((m + 1)2mH(ξk)deg(β))(1−ε/m)/deg(β) ≤ H(β) ≤ B1/m, (4.14)

then
|ξk+1 − β|p ≥ H(β)−m−deg(β)/(1−ε/m). (4.15)

On the other hand, if

H(β) < ((m + 1)2mH(ξk)deg(β))(1−ε/m)/deg(β),

then we choose ξk+1 with sufficiently large H(ξk+1) such that (4.11), and so (4.12),
is satisfied. Thus we infer from (4.14), (4.15) and the previous sentence that (4.12) is
satisfied for H(β) ≤ B1/m. Let us assume that H(β) > B1/m. By Lemma 3.2,

|ξk+1 − β|p ≥ (m + 1)−2mH(ξk+1)−deg(β)H(β)−m. (4.16)

We deduce from (4.16) and H(β) > B1/m that

|ξk+1 − β|p > c4H(β)−m−deg(β)/(1−ε/m) > H(β)−m−deg(β)/(1−ε/m)(log(3H(β)))−1, (4.17)
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where

c4 := (m + 1)−2m−2deg(β)/(1−ε/m)H(ξk)−(deg(β))2/(m−ε)κ(ξk, ε, m)−deg(β)/(m−ε),

holds when H(ξk+1) is large enough. By (4.17), we see that (4.12) is satisfied for
H(β) > B1/m. Then (4.12) is satisfied for any p-adic algebraic number β of degree less
than or equal to m − 1. We infer from (4.9) and the previous sentence that the claim is
true for i = k, and so the proof of the claim is complete. �

We deduce from (4.8) that

0 < |ξi − ξi+1|p < H(ξi)−i for i = 2, 3, . . . . (4.18)

By (4.18) and using the non-Archimedean property of the p-adic absolute value,

|ξi − ξ j|p < H(ξi)−i (4.19)

for any integers i, j with 2 ≤ i < j. Thus, {ξ j}
∞
j=2 is a Cauchy sequence in Qp which is

complete with respect to | · |p; let us denote its limit by ξ ∈ Qp. By letting j tend to
infinity in (4.19),

|ξ − ξi|p ≤ H(ξi)−i for i = 2, 3, . . . . (4.20)

We infer from (4.20) that w∗m(ξ) =∞, and so we obtain ξ ∈ U∗ with µ∗(ξ) ≤ m. On the
other hand, it follows from (4.7) that

w∗n(ξ) ≤
n

1 − ε/m
+ m − 1 for n = 1, . . . , m − 1. (4.21)

By (4.21) and the fact that ξ ∈ U∗ with µ∗(ξ) ≤ m, we get µ∗(ξ) = m, and hence it
follows that ξ ∈ U∗m. Since U∗i = Ui for any natural number i, we see that ξ is a
p-adic Um-number with w∗n(ξ) ≤ (n/(1 − ε/m)) + m − 1, for n = 1, . . . , m − 1. Finally,
we observe that, at each step, we have infinitely many choices for the p-adic algebraic
number ξi (i ≥ 2). Thus, we can construct uncountably many p-adic Um-numbers
satisfying the required properties. This completes the proof of Theorem 2.1.
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