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Exact planetary waves and jet streams
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We investigate exact nonlinear waves on surfaces locally approximating the rotating
sphere for two-dimensional inviscid incompressible flow. Our first system corresponds to a
β-plane approximation at the equator, and the second to a γ approximation, with the latter
describing flow near the poles. We find exact wave solutions in the Lagrangian reference
frame that cannot be written down in closed form in the Eulerian reference frame. The
wave particle trajectories, contours of potential vorticity and Lagrangian mean velocity
take relatively simple forms. The waves possess a non-trivial Lagrangian mean flow that
depends on the amplitude of the waves and on a particle label that characterizes values of
constant potential vorticity. The mean flow arises due to potential vorticity conservation
on fluid particles. Solutions over the entire space are generated by assuming that the flow
far from the origin is zonal and there is a region of uniform potential vorticity between this
zonal flow and the waves. In the γ approximation, a class of waves is found that, based
on analogous solutions on the plane, we call Ptolemaic vortex waves. The mean flow of
some of these waves, which we can describe in highly nonlinear scenarios due to the
exact nature of the solutions, resembles polar jet streams. Several illustrative solutions
are used as initial conditions in the fully spherical rotating Navier–Stokes equations,
where integration is performed via the numerical scheme presented in Salmon & Pizzo
(Atmosphere, vol. 14, issue 4, 2023, 747). The potential vorticity contours found from
these numerical experiments vary between stable permanent progressive form and fully
turbulent flows generated by wave breaking.
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N. Pizzo and R. Salmon

1. Introduction

We introduce and analyse two new waves satisfying Euler’s equations in Lagrangian
coordinates – one on the β-plane and another in the γ approximation. These flows are
planetary vortex waves and exhibit behaviour that is analogous to, but distinct from,
motions on the plane, due to variable rotation. The variable rotation induces a Lagrangian
mean flow for these waves. For particular configurations in the γ approximation, these
waves have a jet-like mean flow and describe polar jet streams. Exact solutions in the
Lagrangian frame allow us to examine highly nonlinear properties of these waves and
connect them to dynamically relevant quantities, such as the vorticity.

Motion on a rotating surface with non-zero curvature is distinct from its planar
counterpart due to variations in the planetary vorticity that support wave motions. These
waves represent oscillations in the amount of planetary and relative vorticity about lines of
constant latitude. The Coriolis parameter describing the planetary vorticity is considered
in a hierarchy of approximations by Taylor expanding it about a point of latitude: the lowest
order of approximation is the f -plane, the first-order approximation is the β-plane, and the
second-order approximation is denoted the γ approximation. Interestingly, the β-plane at
the equator corresponds to an embedding space with a metric that has zero curvature. That
is, curvature effects are necessary for a variable Coriolis parameter, but have no direct
impact on the geometry of the embedding space. The γ approximation describes motion
near the poles of a rotating sphere, where β vanishes. Solutions to these equations exist on
a plane with a variable rotation rate that again supports wave motion.

A remarkable set of exact solutions to Euler’s equations on the plane was found by
Abrashkin & Yakubovich (1984). This class of solutions includes Gerstner’s trochoidal
wave, the Kirchhoff ellipse, and a class of solutions known as Ptolemaic, or polygonal,
vortices, which are a rotationally symmetric analogue of Gerstner waves (Guimbard &
Leblanc 2006). For z = x + iy, where (x, y) are Cartesian coordinates, and i2 = −1, the
Abrashkin & Yakubovich (1984) solutions are of the form z = f (s)eiω1t + g(s̄)eiω2t, where
s = a + ib for (a, b) Lagrangian particle labels, ω1 and ω2 are constants, and the overline
denotes complex conjugate. The functions f , g are harmonic, but this is the only restriction
on their form. When viewed in a certain reference frame, both Gerstner and Ptolemaic
waves may be written as permanent progressive solutions of the form z = z(a − ωt, b).

A warning – exact solutions in one frame generally cannot be written in closed form
in a different frame. An example of this is the Gerstner wave (Lamb 1932), which has
a relatively simple form in the Lagrangian frame but cannot be written in closed form
in the Eulerian frame, as this reduces to solving Kepler’s equation: one would have
to find a as a function of x in closed form in the equation x = a − sin a, which is not
possible. In two dimensions, vorticity is conserved along fluid particles so there is a close
connection between the Lagrangian mean flow and the vorticity. This mass flux Doppler
shifts the wave frequency, and for certain vorticity distributions the particle trajectories
take relatively simple forms.

On the β-plane at the equator and in the γ approximation, we find a direct analogue
of Gerstner’s wave, but now the frequencies must depend on the particle label b in order
to satisfy the vorticity equation. For finite-amplitude waves, a nonlinear correction to the
wave phase speed arises, and this can be interpreted as being due to a Lagrangian mean
velocity, which leads to a departure in behaviour from their planar counterparts. These
waves exist only over a region of the embedding space, as the vorticity contours always
form cusps at some critical value of the parameters. In the plane, this is handled by taking
the vorticity to be constant outside a critical bounding vorticity contour. For example,
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Exact planetary waves and jet streams

Gerstner’s wave takes the flow to be irrotational outside a bounding vorticity contour that
is specified to be the free surface. On surfaces approximating the rotating sphere, we take
the ambient flow immediately outside the waves to have constant potential vorticity, then
take the flow to be zonal in the far field. This yields solutions that are well defined over the
entire embedding space.

Taking our solutions as initial conditions in the fully spherical rotating Navier–Stokes
equations, using the scheme developed in Salmon & Pizzo (2023), we examine the
temporal evolution of these solutions. Unlike on the embedding spaces, we now connect
the solutions in the γ approximation to those on the sphere by choosing the zonal flow
in the outer region to be one that exactly solves the equations of motion on the rotating
sphere. The numerical experiments are a strong test of these solutions and yield solutions
that range from permanent progressive waves to waves that rapidly overturn and break,
generating turbulent motion.

The plan of the paper is as follows. In § 2 and Appendix A, the equations of motion
are presented. In § 3, new exact waves are discussed. These solutions are used as initial
conditions for the fully spherical rotating equations of motion in § 4. The connection
between these flows and jet streams is discussed in § 5, after which the conclusions of
the paper are given.

2. The β and γ approximations

We examine two-dimensional incompressible flow with coordinates (x, y) obeying
conservation of mass (a derivation of these equations from the full equations on a rotating
sphere is presented in Appendix A):

∂u
∂x

+ ∂v

∂y
= 0, (2.1)

for (u, v) the velocity, and conservation of potential vorticity

∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

= Dq
Dt

= 0, (2.2)

where the potential vorticity is given by

q = ∂v

∂x
− ∂u
∂y

+ F(x, y), (2.3)

and D/Dt = ∂t + u · ∇.
We consider the dynamics in two locations. First, near the equator F = βy, with the

Coriolis constant being zero at this location, corresponds to a β-plane approximation.
Similarly, we analyse flow near the poles, where F = f0 − γ (x2 + y2) corresponds to
the γ approximation. Following Phillips (1973), latitude-dependent scale factors do not
arise in these classical expansions in the β-plane because we are at the equator, and in
the γ approximation because we additionally assume that γ � 1. For a more thorough
discussion, see Dellar (2011) and the derivation presented in § A.4. Throughout this paper,
we repeatedly refer to ‘the’ β-plane approximation (and ‘the’ γ approximation), with the
understanding that this is one of many such approximations that bears this name. Here,
β, γ, f0 are constants, and we take the deformation length scale to be infinite, so there is
no vorticity associated with vertical stretching.

The main focus of this paper is on solutions in the γ approximation. Both of the
approximations contain variable rotation and make a simplifying assumption about the
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N. Pizzo and R. Salmon

curvature of the embedding surface. These approximations require non-zero surface
curvature to possess variable rotation rates, but the curvature of the geometry alone is
not present in both approximations.

Consider fluid particles labelled by coordinates a = (a, b) and rewrite the Eulerian
governing equations in the Lagrangian reference frame (x(a, b, τ ), y(a, b, τ )), where τ
is time and we emphasize that ∂τ with (a, b) fixed is the time derivative following a fluid
particle so that ∂τ = D/Dt.

We can assign labelling coordinates so that d(mass) = da db. Defining the reciprocal of
the non-dimensionalized mass density of the fluid ρ as J = J(a, b), we have

1
ρ

≡ J(a, b) = ∂(x, y)
∂(a, b)

, (2.4)

where
∂(x, y)
∂(a, b)

≡ xayb − xbya. (2.5)

(For a more thorough discussion of this map, see Salmon 1998.) The labels follow the
fluid, from which it follows that

∂J
∂τ

= ∂(xτ , y)
∂(a, b)

+ ∂(x, yτ )
∂(a, b)

=
(
∂(xτ , y)
∂(x, y)

+ ∂(x, yτ )
∂(x, y)

)
∂(x, y)
∂(a, b)

=
(
∂u
∂x

+ ∂v

∂y

)
∂(x, y)
∂(a, b)

= 0, (2.6)

where the term in parentheses vanishes due to the incompressibility of the fluid, i.e.
(3.1a,b). Therefore, J(a, b) is a time-independent function. Additionally, we require that
J(a, b) does not change sign so that the mass density ρ stays finite.

Equation (2.2) requires the potential vorticity to be conserved on fluid particles. The
relative vorticity in the Lagrangian frame is

vx − uy = ∂(v, y)
∂(x, y)

+ ∂(u, x)
∂(x, y)

= ∂(a, b)
∂(x, y)

(
∂(xτ , x)
∂(a, b)

+ ∂( yτ , y)
∂(a, b)

)
, (2.7)

so (2.3) becomes

q(a, b) J(a, b) = ∂(xτ , x)
∂(a, b)

+ ∂( yτ , y)
∂(a, b)

+ J(a, b)F(x, y). (2.8)

Our task is to find (x, y) that satisfy (2.4) and (2.8) subject to the constraints that J(a, b)
and q(a, b) are time-independent, and J(a, b) does not change sign.

Although the fluid acceleration is simpler in the Lagrangian frame, the above analysis
shows that the nonlinear mapping between frames can turn linear operators, such as
a partial derivative, into nonlinear operators. This leads to coupled partial differential
equations that are different in form from their Eulerian counterparts, therefore we must
employ different strategies to find classes of exact solutions. Although the Lagrangian
reference frame is considered here, there is the possibility of finding exact solutions in a
frame that is neither purely Eulerian nor Lagrangian, but a mixture of the two (see the
formulation given by Virasoro 1981).

To better understand flow on the β-plane and in the γ approximation in the Lagrangian
reference frame, we present zonal flow solutions to these equations. These flows prove
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Exact planetary waves and jet streams

useful for patching together solutions over the entire embedding space, as is discussed in
§ 3.3. In the β-plane, zonal flow takes the form

x = a + U(b) τ, y = b. (2.9a,b)

Here, J(a, b) = 1 and q(a, b) = U′ + βb, where U is the unspecified mean flow, and a
prime represents a derivative with respect to b. Contours of constant potential vorticity are
horizontal lines.

In the γ approximation, zonal flow takes the form

x = A0 sin(ka − (ω +Ω(b))τ ) ekb, y = A0 cos(ka − (ω +Ω(b))τ ) ekb, (2.10a,b)

where A0, ω and k are constants. These particle locations imply

J = A2
0k2 e2kb, q = f0 − γ

k2 J + 2(ω +Ω)+ Ω ′

k
. (2.11a,b)

The velocity is entirely in the azimuthal direction, and contours of constant potential
vorticity take the form of circles. Zonal flow solutions for the rotating sphere are presented
in Appendix A.

We can also write down Rossby wave solutions in the Lagrangian frame for the β-plane
approximation:

x = a, y = b + ε cos(ka − ωτ), (2.12a,b)

where ε, k, ω are yet to be specified constants. These expansions imply J(a, b) = 1, while

q(a, b) = β(b + ε cos(ka − ωτ))+ εωk cos(ka − ωτ). (2.13)

For q(a, b) to be τ -independent, we require

ω = −β
k
, (2.14)

in agreement with the classical result for the Rossby wave dispersion relationship in the
Eulerian frame.

In the γ approximation, the situation is complicated by the geometry of the domain.
In the Eulerian frame, Leblond (1964) and Nof (1990) show that the vorticity contours
have radial dependence in the form of Bessel functions, while the dispersion relationship
is a function of roots of these Bessel functions. As far as we can tell, there is no simple
Lagrangian analogue here, an illustration that there are solutions in the Eulerian frame that
cannot be simply written in the Lagrangian frame. The situation is even more complicated
for Rossby–Haurwitz waves on the sphere.

3. Exact solutions

We now present a description of waves on the β-plane and in the γ approximation. They
cannot cover the entire embedding space as the function J(a, b) would then change sign
and the vorticity contours would form cusps. Instead, we write down the particle locations
of these waves over some limited region of the embedding space. We then describe
ambient conditions outside these areas, where we specify the flow to have constant
potential vorticity over a limited region, before being smoothly connected with a region of
zonal flow. We consider each of these regions of the flow in turn.
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3.1. Waves on the β-plane
Our strategy is to take known planar solutions from Abrashkin & Yakubovich (1984) and
to allow the frequency to have label dependence. We first look for waves in the β-plane to
build up intuition on how to tackle the more complicated γ approximation. The analogue
of the Gerstner wave on the β-plane is given by

x = a + U(b) τ − ε sin θ ekb, y = b + ε cos θ ekb, (3.1a,b)

where

θ = ka − (ω − k U(b))τ, (3.2)

and the Lagrangian mean flow U is specified by

U(b) = β

2k2

(
ε2k2 e2kb

2
− kb

)
. (3.3)

Here, ε is the amplitude of the wave, k, ω are the (constant) wavenumber and frequency,
and b ≤ 0. We note that the mean velocity goes to ∞ as b → −∞, so that these flows,
analogous to constant shear flow in an infinite fluid in the plane, are not physical over the
entire embedding space.

These waves imply

J = 1 − ε2k2 e2kb (3.4)

and

qJ = 2ωε2k2 e2kb + β

(
1
2k

− ε4k3 e4kb + b
)
. (3.5)

J does not change sign as long as εk < 1, which also corresponds to lines of constant
potential vorticity remaining single-valued and differentiable. In the limit that β = 0, we
return to the Gerstner wave solution in the plane. The particle trajectories for these waves
are no longer perfect circles as they are in the plane, and instead are trochoids with a
distinct shape from the trochoidal contours of constant vorticity. Note that in the plane,
gravity acts as a restoring force for the waves that oscillate vertically and attenuate in
amplitude away from the free surface. On the β-plane, planetary vorticity is the restoring
force, with the waves oscillating about lines of fixed latitude and decaying far away from
the equator.

For b � 0, we have J → 1, U → −βb/2k and q → β(1/2k + b) so that U and q are
linear in b and easily related to one another far below the limiting contour (b = 0). The
curvature U′′ = βε2k2 e2kb is largest near the surface then rapidly attenuates with depth as
figure 1(b) shows. The geometry of lines of constant Lagrangian mean flow and vorticity
are shown in figure 1 for k = 2 and ε = 1/2.

The dispersion relationship (3.3) is distinct from Rossby waves as it has b dependence.
For ε small, U ≈ −βb/2k, so that these waves have an inverse wavenumber dependence,
like the Rossby wave, and also propagate to the left when b < 0. We can then interpret
these waves as being incident on a steady shear flow. Additionally, solutions can be made
to cover the entire domain, decaying exponentially away from the contour b = 0, by taking
x → x and y → −y, and choosing the parameter ε and an interval for b so that the waves
do not intersect.
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Exact planetary waves and jet streams
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Figure 1. (a) Geometry of lines of constant vorticity and Lagrangian mean velocity for the exact Gerstner wave
solution on the β-plane. Here, k = 2, ε = 1/2, b ≤ 0 and ω = 0. (b) The first two plots show the Lagrangian
mean velocity for these waves as a function of b and its curvature, with primes representing derivatives with
respect to b. The last two plots show the vorticity and its curvature. Both curvature terms rapidly go to zero for
b � 0.

3.2. Ptolemaic vortex waves in the γ approximation
The main focus of this paper is on solutions in the γ approximation near the poles,
corresponding to F = f0 − γ (x2 + y2), where in our non-dimensionalized coordinates
the radius of the sphere that we are approximating is 1 (see Appendix A). Our strategy
is to once again start from a planar solution and take the rotation rate to depend on
a particle label. Planetary Ptolemaic vortex waves, with the nomenclature based on
analogous solutions in the plane (Abrashkin & Yakubovich 1984; Abrashkin, Zenkovich
& Yakubovich 1996; Guimbard & Leblanc 2006) and the fact that the particle trajectories
can be epitrochoids (i.e. the curve generated by tracing a point along a radial line of a
circle rolling along another circle), are described by

x/A0 = ekb sin θ − ε enkb sin nθ, (3.6)

y/A0 = ekb cos θ + ε enkb cos nθ, (3.7)

where

θ = ka − (ω +Ω(b))τ, (3.8)

for k, ω,A0 constants. We define x̃ = x/A0 and ỹ = y/A0, and drop the tildes from here
onwards.
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If

Ω(b) = γ

2n
(e2kb − ε2ne2knb), (3.9)

then

J = k2(e2kb − ε2n2e2nkb) (3.10)

and

qJ = k2

n
(γ (−2 + n) e4kb + γ (1 + 2n)ε4n3e4knb

− ( f0 + 2ω)ne2knb − ( f0 − 2nω)n3ε2e2knb). (3.11)

The term Ω should be interpreted as follows. Define ϕ implicitly as

tanϕ = y
x
; (3.12)

then

〈ϕτ 〉 = 1 − n
2

(ω +Ω), (3.13)

for 〈 〉 ≡ (2π)−1 ∫ 2π

0 da, so thatΩ is related to the mean azimuthal angular rate of change.
The zonal velocity corresponding to this, at this level of approximation, is given by rϕτ ,
where r2 = x2 + y2. Therefore, even if Ω is relatively weak, for planetary flows r can be
large when put in dimensional form, implying that these mean flows need not be weak.
Depending on the signs of n and b, this velocity does not necessarily diverge over the
region in the embedding space over which the waves are defined, unlike the scenario in
the β-plane.

The mean zonal velocity is

U ≡ 〈rϕτ 〉 = 1
2π

∫ 2π

0

ekb(e2k(1−n)b − nε2 + (1−n)εek(1−n)b cos((1+n)θ))(ω +Ω)√
e2k(1−n)b + ε2 + 2εek(1−n)b cos((1+n)θ)

da,

(3.14)

which may be integrated to give

U = eknb

π

(
(1 − n)(e(1−n)kb + ε)E(m)+ (1 + n)(e(1−n)kb − ε)K(m)

)
(ω +Ω), (3.15)

where K,E are the complete elliptical integrals of the first and second kind, respectively,
and

m = 4εe(1−n)kb

(e(1−n)kb + ε)2
. (3.16)

The exact solutions allow us to write down properties of these waves, such as their mean
zonal velocity, even in highly nonlinear scenarios when ε is not much less than 1. When
n > 0, we take the label b to be negative so that the waves are described for b ∈ (−∞, 0),
and when n < 0, we take b ∈ (0,∞).

998 A43-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.932


Exact planetary waves and jet streams

The parameters n and ε must be chosen to keep J same signed and the contours of q
single-valued. These contours are of the form (at b = t = 0)

x = sin θ0 − ε sin nθ0, (3.17)

y = cos θ0 + ε cos nθ0, (3.18)

for θ0 = ka, and have a cusp when xa = ya = 0, or

k cos θ0 − εnk cos nθ0 = −k sin θ0 − εnk sin nθ0 = 0. (3.19)

A solution to this is θ0 = 0 and εn = −1, so we must have

|εn| < 1. (3.20)

Figure 2 shows two Ptolemaic vortex waves. Figures 2(a,b) show the geometry of lines
of constant zonal Lagrangian mean flow U and potential vorticity q. The first wave has n =
−4 and b ≥ 0. Figures 2(b,d) display n = 2 with b ≤ 0. The blue line segments represent
the location where q and U are computed in the bottom row. Both waves have ω = 0 and
potential vorticity and zonal mean Lagrangian flows that change monotonically.

In figure 3, we take n = 5, b ≤ 0, and choose ω to be non-zero. The mean flow and
potential vorticity are shown in figure 3(b). Both contain a critical point. The mean flow
is peaked and represents a jet-like flow. The mean flow for various values of ω is shown in
figure 3(c). Increasing values of ω have critical points at increasing values of r.

The nonlinear term in Ω arises due to the variable Coriolis parameter. The amplitude
squared dependence of the frequency corresponds to the existence of a four wave
resonance (cf. the triad resonance of Rossby waves) and has stability implications for
these waves (see Pizzo et al. (2023) for analogous considerations of surface gravity waves).
Linear stability analysis for these waves is pursued elsewhere – here, we generate solutions
that may be tested numerically – as a much stronger check on the persistence of these
waves.

3.3. Ambient conditions and far-field behaviour
The waves presented above cannot exist everywhere when ε is non-zero, as the function
J would change sign and the potential vorticity contours would become multi-valued.
Therefore they exist over some range of label space (a, b). This is analogous to the scenario
described by Abrashkin & Yakubovich (1984) and discussed in more detail in Salmon
(2020). We extend the discussion presented in Salmon (2020) to generate solutions that
are valid over the entire β-plane and γ -plane by prescribing ambient conditions outside
the waves.

In the plane, the flow may be taken to have uniform vorticity outside the bounding
curve given by b = constant. A simple analogue is to assume that our planetary waves
are surrounded by regions of uniform potential vorticity, which may be subsequently
connected to far-field regions that have zonal flow. Physically, regions of constant potential
vorticity can occur from wave breaking that leads to potential vorticity mixing and
homogenization where the vorticity contours have most curvature, that is, near their
bounding contours.

In both scenarios, we must specify regions where the potential vorticity ∇2ψ + f0 −
γ (x2 + y2) is constant, whereψ is the stream function associated with the relative vorticity
of the flow in this yet-unspecified region evaluated near the equator (the β approximation
considered in this paper) or near the poles (the γ approximation considered in this paper).
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Figure 2. Two Ptolemaic vortex waves. (a,b) The geometry of lines of constant potential vorticity and
Lagrangian zonal mean flow. The blue line segments show the transect where U (in black, with values given by
the left ordinate) and q (in red, with values given by the right ordinate) are plotted in (c,d). (a,c) A wave with
n = −4, A0 = 0.2, ε = 0.2, γ = 1, ω = 0 and b ≥ 0. The zonal Lagrangian mean flow and potential vorticity,
as a function of r =

√
x2 + y2, both increase away from the boundary of the wave. (b,d) A wave with n = 2,

A0 = 0.2, ε = 0.4, γ = 1, ω = 0 and b ≤ 0. The potential vorticity and Lagrangian zonal mean flow decrease
in magnitude towards the boundary of the wave.
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Figure 3. (a) Ptolemaic wave with n = 5, ε = 0.1, A0 = 0.2, γ = 1 and b ≤ 0. Geometry of contours of
constant Lagrangian mean flow and potential vorticity. The blue line is where the mean flow and potential
vorticity are computed in (b,c). (b) Here, ω = 0.004 is non-zero, yielding a localized maximum in the zonal
Lagrangian mean flow and potential vorticity, corresponding to jet stream motion near the centre of this vortex
wave. (c) The Lagrangian mean flow for ω varying between ±0.016 in equal increments, showing that the
location of the maximum Lagrangian mean velocity varies as a function of ω.
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Figure 4. Black indicates contours of potential vorticity and Lagrangian mean flow, for (a,b) the γ

approximation, and (c) the stereographic coordinates on the southern hemisphere of the sphere. (a) The case for
n = −2. The red dashed line partitions the two regions: inside the polar cap, the solution has uniform potential
vorticity while beyond that the potential vorticity is given by (3.11). As the radius of the contours gets large,
the Ptolemaic solutions tend towards zonal flow. (b) A Ptolemaic solution with n = 5. There are three regions
here: the innermost region has potential vorticity given by (3.11); the region between the two dashed red lines
has uniform potential vorticity; the outer region is zonal flow in the γ approximation. (c) The same as (b), but
now we take the flow in the outer region to describe zonal flow on the rotating sphere, as given by (A27). The
entire southern hemisphere is shown in stereographic coordinates (ξ, η).

The potential vorticity can be discontinuous across this boundary, but the velocity must
remain continuous. This sets the boundary condition on ψ : the tangent velocity of the
particle locations provided in §§ 3.1 and 3.2 should be equal to ψñ, for ñ the normal to the
contour. Then ψ is determined at each point in time, and specifies a solution everywhere
valid on the β- and γ -planes. Of central importance here is the fact that we need not specify
the actual trajectories in this region, which can be complicated because of the geometry, as
knowledge of q is enough to specify the problem once the continuity of the velocity field
has been ensured.

The region over which the potential vorticity is uniform must be finite for the relative
vorticity to stay bounded. Subsequently, when n > 0, we can connect the constant potential
vorticity region to a region with the zonal flow solutions presented in § 2. The choice
of ω and Ω for the zonal flow solutions again allows the velocity field to remain
continuous. Figure 4 shows a sketch of these scenarios, depending on the sign of n in
the γ approximation. For n < 0, the polar cap is taken to have constant potential vorticity,
and outside this, the flow takes the form of a Ptolemaic wave. When n > 0, the inner region
is the Ptolemaic wave, while immediately outside this wave the flow has constant potential
vorticity, and in the far field the flow is zonal. Figures 4(a,b) are on the γ -plane, while
figure 4(c) shows the configuration on the southern hemisphere. For this scenario, we take
the far field to be zonal flow solutions on the fully rotating sphere (see (A27)).

4. Numerics

Salmon & Pizzo (2023) presented a numerical model of two-dimensional flow on
the sphere using stereographic coordinates and a generalization of Arakawa’s method
developed by Salmon & Talley (1989). This solver can be run inviscidly or viscously,
and provides an opportunity to examine the solutions presented above. The numerical
formulation is Eulerian in nature, so we must carefully provide the initial potential vorticity
conditions in this frame. In addition to mass and potential vorticity conservation, the Gauss
constraint requires the potential vorticity to integrate to zero over the sphere.
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By construction, Arakawa’s method conserves discrete analogues of energy, potential
vorticity and enstrophy when the viscosity vanishes. The equations of motion are solved
in two sets of stereographic coordinates in the unit disc, one corresponding to the northern
hemisphere, and the other to the southern hemisphere. At the equator, we require the
solutions to be continuous. These discs are covered in quadrilateral elements, and the nodal
values of the stream function and potential vorticity serve as the dependent variables of
the model.

Viscosity on non-Euclidean surfaces has been a source of confusion as various
reasonable sounding constraints lead to different forms of the final form of the viscosity.
Following the recommendation of Gilbert, Riedinger & Thuburn (2014), we use a viscosity
that conserves angular momentum, which takes a particularly simple form in stereographic
coordinates. There is an error in the form of the viscosity presented in Salmon & Pizzo
(2023), which is corrected in Salmon & Pizzo (2024).

We integrate the waves presented in § 3. As discussed in the previous section, for
n < 0, we require a constant potential vorticity region at the polar cap surrounded by the
Ptolemaic waves. For n > 0, we prescribe a region of constant potential vorticity outside
the wave region. Then a third region of potential vorticity, using the known exact zonal
flow solutions on the sphere (presented in Appendix A), is chosen so that the velocity
remains continuous and the vorticity tends towards zero as the equator is approached.

In all scenarios, we mirror the potential vorticity distribution in the northern hemisphere
with that in the southern hemisphere to automatically satisfy the Gauss constraint. We
choose ω so that the potential vorticity exactly vanishes at the equator. This allows us
to avoid introducing a vortex sheet at the equator. The initial conditions are chosen to
illustrate the range of behaviours that these waves exhibit, but we do not perform a
thorough examination of parameter space. We start by illustrating a solution where n < 0
that has stable vorticity contours for the relatively small value of |nε| considered. Then we
consider a solution where n > 0 but |nε| is taken to be large, so that the waves rapidly
overturn and break. Finally, we examine vorticity contours that again have permanent
progressive form but in this instance take n > 0.

First, in figure 5, we show the evolution of waves with ε = 0.075, A0 = 0.2, n = −4
and γ = 10. Figure 5(a) shows the evolution of the contour at b = 0, in black, and the
theoretical prediction in red. The two curves are in agreement. Note that these curves are
shown in the stereographic plane for the fully spherical geometry. The evolution of the
potential vorticity in the southern hemisphere is shown in figure 5(b).

In figure 6, we show the evolution of a wave with ε = 0.4, A0 = 0.2, n = 2 and γ = 10.
The evolution of the potential vorticity is shown. These waves are unstable and break
almost immediately. The potential vorticity contours become multi-valued, and the flow
near the polar vortex becomes turbulent and potential vorticity from higher latitudes is
advected to lower latitudes.

Finally, in figure 7, we consider a wave with ε = 0.03, A0 = 0.2, n =, γ = 10,
ω = 0.004, following the configuration shown in figure 3. The geometry of the solutions
is reminiscent of the polar jet stream on the north pole of Saturn, as is discussed further in
§ 5. The flow retains its structure over the integration time, which exceeds a wave period.
Viewed in an inertial frame, the waves are rotating.

5. Discussion

The generation of the vortex waves considered in this paper, and their degree of symmetry,
arises as an accident of the initial conditions. Their geometry, stability and potential
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Figure 5. Contours of constant potential vorticity for a Ptolemaic wave with ε = 0.075, a0 = 0.2, n = −4
and γ = 10 integrated over a period of revolution. The region in the polar cap has constant potential
vorticity. (a) The flow of one contour in black, versus the theoretical prediction given by the dashed red line.
(b) The evolution in the southern hemisphere. Note that (ξ, η) are the stereographic coordinates as defined in
Appendix A.
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Figure 6. Contours of potential vorticity for Ptolemaic waves with ε = 0.4, A0 = 0.2, n = 2 and γ = 10.
The region outside the waves starts with uniform potential vorticity, while the flow in the far field is zonal.
These waves rapidly go unstable and overturn and break, generating turbulent flow and advecting high potential
vorticity into the region outside the waves, showing that mass is being transported by these breaking events.

vorticity distributions in the numerical simulations invite comparison between these flows
and polar jet streams on Earth and other planets, such as Saturn. The meandering of
the jet stream is still an active area of research (Nakamura & Huang 2018), particularly
under a changing climate (Hoskins & Woollings 2015). The flows studied here are
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Figure 7. Contours of potential vorticity for Ptolemaic waves with ε = 0.03, A0 = 0.2, n = 5 and γ = 10. The
flow outside the waves has uniform potential vorticity, before becoming zonal in the far field. The Lagrangian
mean flow corresponds to the distribution drawn in figure 3, with a jet-like structure. The configuration is
approximately stable over the integration time. The geometry of the solutions is reminiscent of the polar jet
stream on the north pole of Saturn, as is discussed further in § 5.

two-dimensional and unforced, so any comparison with the real atmosphere is admittedly
qualitative.

The Voyager spacecraft first observed the hexagonal flow pattern on Saturn’s north
pole (Godfrey 1988). Later, the Cassini mission (Ingersoll 2020) captured the hexagon
in more detail (Sayanagi et al. 2018). These observations show that the hexagon pattern
is quasi-stationary in a frame rotating with the atmosphere, even though the jet velocity
is approximately 125 m s−1. The pattern has been observed for more than three decades,
implying a long-time stability. Additionally, the relative vorticity gradient is extremely
strong across the jet, i.e. it is a relative vorticity front (see the criteria discussed in § 12.7.3
of Sayanagi et al. 2018). The hexagonal solutions presented in figure 7 are qualitatively
consistent with these criteria, but a quantitative comparison is left for future work.

Exact solutions have been proposed on the sphere in an Eulerian frame (Crowdy &
Cloke 2003; Crowdy 2004) that require singular vorticity distributions in the form of point
vortices. The γ approximation was employed by Siegelman, Young & Ingersoll (2022) to
explain the vortex crystal structure found on the pole of Jupiter. The waves in this paper
are chosen over parameter regimes so that they avoid singular behaviour in the form of
potential vorticity contour cusps or multi-valued solutions.

We have presented two new waves in Euler’s equations on the β-plane at the equator and
in the γ approximation. They are motivated by analogous motions on the plane, but differ
crucially in that they are describing wave motion where the restoring force is planetary
vorticity. Solutions are constructed with prescribed potential vorticity distributions outside
the wave fields. Several examples are considered, but our analysis was not a thorough
examination of the broad range of solutions that can be constructed. Additionally, only
two-dimensional flows have been considered here – analogous exact planar solutions can
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be unstable to three-dimensional high-frequency perturbations (Leblanc 2004; Guimbard
& Leblanc 2006).
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Appendix A. Derivation of governing equations

We now derive the equations presented in § 2.

A.1. General equations on the sphere in stereographic coordinates
Consider two-dimensional incompressible flow on the unit sphere, where

X2 + Y2 + Z2 = 1 (A1)

for (X, Y, Z) the Cartesian coordinates. We use the stereographic coordinates (ξ, η) to
describe these motions. To derive the governing equations on a surface (X, Y, Z) =
(X(ξ, η), Y(ξ, η), Z(ξ, η)), begin by taking the square of a line element

ds2 = dXi dXi = ∂Xi

∂ξj

∂Xi

∂ξk
dξj dξk = gjk dξj dξk, (A2)

where (ξ1, ξ2) = (ξ, η), gjk is the metric tensor, and Einstein summation is assumed
throughout. When the coordinates (ξ, η) are orthogonal, the metric tensor is diagonal and
we have

ds2 = h2
1 dξ2 + h2

2 dη2, (A3)

where

g11 ≡ h2
1 =

(
∂X
∂ξ

)2

+
(
∂Y
∂ξ

)2

+
(
∂Z
∂ξ

)2

(A4)

and

g22 ≡ h2
2 =

(
∂X
∂η

)2

+
(
∂Y
∂η

)2

+
(
∂Z
∂η

)2

(A5)

are the tensor components. The kinetic energy of a particle on this surface can be found
by dividing (A3) by 2(dt)2, so that

1
2

(
ds
dt

)2

≡ 1
2
(U2 + V2) = 1

2

(
h2

1

(
dξ
dt

)2

+ h2
2

(
dη
dt

)2
)
, (A6)

where the velocities are given by

U = h1
dξ
dt
, V = h2

dη
dt
. (A7a,b)
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The stereographic coordinates are (see e.g. Needham 1997)

ξ = X
1 − Z

, η = Y
1 − Z

, (A8a,b)

with inverse mapping

X = 2ξ
1 + ξ2 + η2 , Y = 2η

1 + ξ2 + η2 , Z = −1 + ξ2 + η2

1 + ξ2 + η2 , (A9a–c)

and the metric components of this conformal map are

h1 = h2 ≡ h = 2
1 + ξ2 + η2 . (A10)

Next, a unit of area of the fluid is

dA = h2 dξ dη, (A11)

so the kinetic energy T is

T =
∫

1
2
(U2 + V2)h2 dξ dη

=
∫

1
2
(U2 + V2)J da db (A12)

in the Lagrangian reference frame, where (a, b) are particle labels, and we define

J ≡ h2 ∂(ξ, η)

∂(a, b)
. (A13)

The time independence of J can be established directly by assuming that the area of the
fluid does not change. As the fluid has constant density, this implies conservation of mass.
Equation (A11) implies

h′2 dξ ′ dη′ = h2 dξ dη, (A14)

where
ξ ′ = ξ(a, b)+ δτ ξτ (a, b), η′ = η(a, b)+ δτ ητ (a, b) (A15a,b)

and h′ = h(ξ ′, η′). Equation (A14) is equivalent to

h′2 ∂(ξ ′, η′)
∂(a, b)

= h2 ∂(ξ, η)

∂(a, b)
, (A16)

so to first order in δτ , (A16) implies

∂(h2ξτ , η)

∂(a, b)
− ∂(h2ητ , ξ)

∂(a, b)
= 0, (A17)

from which it follows that
∂J
∂τ

= 0, (A18)

with J defined in (A13). For the mapping to be invertible, J must not change sign.
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To find the vorticity, begin with the circulation Γ of the fluid:

Γ =
∮

dXi

dt
dXi, (A19)

where the contour is moving with the fluid on our surface. Using the definition of the fluid
velocity and a Green’s identity, we have

Γ =
∫

hU dξ + hV dη

=
∫∫ (

∂(hV)
∂ξ

− ∂(hU)
∂η

)
dξ dη

=
∫∫

h2q dξ dη, (A20)

where

q = 1
h2

(
∂

∂ξ
(h2ηt)− ∂

∂η
(h2ξt)

)
. (A21)

In Lagrangian coordinates, this becomes

q = 1
h2

(
∂(h2ξτ , ξ)

∂(ξ, η)
+ ∂(h2ητ , η)

∂(ξ, η)

)
= 1

h2
∂(a, b)
∂(ξ, η)

(
∂(h2ξτ , ξ)

∂(a, b)
+ ∂(h2ητ , η)

∂(a, b)

)
, (A22)

which can be rewritten as

qJ = ∂(h2ξτ , ξ)

∂(a, b)
+ ∂(h2ητ , η)

∂(a, b)
, (A23)

where q = q(a, b), which follows from Kelvin’s circulation theorem and implies that the
vorticity is conserved along fluid particles. When h = 1, the mass and vorticity constraints
reduce to those found on the plane.

We rewrite the system in a reference frame rotating at angular velocity Ω about the
z-axis. This rotation does not change the mass conservation equation, but the potential
vorticity becomes (see (34) in Salmon & Pizzo 2023)

q → q + 2Ωz = q + 2Ω
−1 + ξ2 + η2

1 + ξ2 + η2 , (A24)

where in Lagrangian coordinates, q is defined by (A23).
Zonal flow may also be written down for this system, and takes the form

ξ = A0 sin(ka − (ω +Ω(b))τ ) ekb, η = A0 cos(ka − (ω +Ω(b))τ ) ekb, (A25a,b)

where

J = k2 sech2(kb), (A26)

qJ = 2ς tanh(kb)+ k sech2(kb) (−2k tanh(kb) (ω +Ω)+Ω ′). (A27)

Just as in the β and γ approximations, we may choose ω and Ω(b) such that the velocity
has a prescribed value at the boundary, and the vorticity contours take the form of zonal
flow. We have utterly failed at finding more interesting exact solutions on the sphere in
Lagrangian coordinates.
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A.2. Approximate governing equations
We may perform the asymptotics at the order of the Lagrangian, so that the conservation
laws are readily available, or to the final system of equations presented in the previous
subsection. We choose the latter for clarity of presentation. There are two assumptions
used to simplify the system (see the related discussion in Phillips (1973), and also the
informative overview in Dellar (2011)). First, we assume that disturbances are small
deviations from some rest position. That is,

ξ = ξ0 + ε ξ̃(a, b, t), η = η0 + ε η̃(a, b, t) (A28a,b)

for ε � 1 and (ξ0, η0) constants.
Following Phillips (1973), our second condition is that Ω � O(U/2R), where U is a

characteristic velocity scale, and R is the planetary radius, here taken to be 1. We impose
this constraint on Ω by writing

Ω = ω

ε
, (A29)

which yields the classical form of these approximations without additional curvature terms
(Dellar 2011).

A.3. The β-plane
Take ξ0 and η0 to be non-zero so that (A13) and (A23), with q defined by (A24), become

J = ε2h2
0[ξ̃ , η̃] + O(ε3) (A30)

and

qJ = ε2h2
0([ξ̃τ , ξ̃ ] + [η̃τ , η̃])

+ 8εh4
0[ξ̃ , η̃]ωt(1 − (η2

0 + ξ2
0 )

2 + 4ε(−2 + ξ2
0 + η2

0)(η0η̃1 + ξ0ξ̃ ))+ O(ε3), (A31)

where

h0 = 2
1 + ξ2

0 + η2
0

(A32)

and

[ξ, η] ≡ ∂(ξ, η)

∂(a, b)
. (A33)

To illustrate the structure of the equations, first let ξ0 = 0 and η0 = 1, corresponding to
flow near the equator, which yields the equations

J = ε2[ξ̃ , η̃] (A34)

and

qJ = ε2([ξ̃τ , ξ̃ ] + [η̃τ , η̃])+ 2ωη̃J. (A35)

Let ε2Ĵ = J, and drop the hats for clarity of presentation. Defining (where we recall that
the radius of the sphere is 1, which must be taken into account to establish the equivalence

998 A43-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.932


Exact planetary waves and jet streams

of the units of this relationship)
2ω ≡ β, (A36)

the governing equations become
J = [ξ, η] (A37)

and
qJ = [ξτ , ξ ] + [ητ , η] + βJη, (A38)

which describe our β−plane approximation near the equator. When β = 0, we return the
equations governing motion in the plane (Abrashkin & Yakubovich 1984; Salmon 2020).

Next, let ξ0 = 0 and keep η0 arbitrary. The equations of motion become

J = h2
0ε

2[ξ̃ , η̃], (A39)

qJ = ε2h2
0([ξ̃τ , ξ̃ ] + [η̃τ , η̃])+ 2ΩJ(μ+ ελη̃), (A40)

where
μ = h2

0(1 − h0), λ = −4h2
0η0(−2 + η2

0), (A41a,b)

and

h0 = 2
1 + η2

0
. (A42)

Defining ε2Ĵ = J and again letting 2ω = β, the governing equations become (dropping
the hats again)

J = [ξ, η], (A43)

qJ = [ξτ , ξ ] + [ητ , η] + μβJ + βληJ. (A44)

Redefining q as q − μβ removes the first term from the right-hand side of the vorticity
equation, while λ can be absorbed into the definition of β, leaving a system of equations
that is mathematically equivalent to (A37) and (A38).

A.4. The γ approximation
To find our approximate equations of motion near the (south) pole, let ξ0 = η0 = 0 and
Ω = ω/ε2, so that

J = 4ε2[ξ̃ , η̃] + O(ε3), (A45)

qJ = 8ω[ξ̃ , η̃] + 4ε2([ξ̃τ , ξ̃ ] + [η̃τ , η̃])− 8ωJ(ξ̃2 + η̃2)+ O(ε3). (A46)

Let ε2Ĵ = J, ξ̂ = 2ξ̃ , η̂ = 2η̃, and define

2ω = γ (A47)

so that our governing equations become, dropping the hats,

J = [ξ, η], (A48)

qJ = f0J + [ξτ , ξ ] + [ητ , η] − γ J(ξ2 + η2), (A49)

as we concluded from mapping the Eulerian formulation presented in § 2. Note that in
the text, we take f0 = γ /ε2, which maybe re-absorbed into the definition of q. This is in
agreement with the Eulerian form presented by Nof (1990) and Siegelman et al. (2022).
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