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Abstract. Forthcoming data from the Vera Rubin Observatory, Fuclid and Roman telescopes
are expected to increase the number of strong lenses by two orders of magnitude. With current
discovery methods these would be accompanied by an even greater number of false positives. In
that context we find that using an ensemble of classifiers would provide a more complete sample
of high-purity lenses and present methods to post-process the outputs of such classifiers to give
reliable probabilities that a given image contains a lens.
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1. Introduction

With the arrival of wide-area telescopes such as the Vera Rubin Observatory, Euclid
and Roman space telescopes, the number of strong lenses identified will increase to ~ 10°
(Collett (2015), Holloway et al. (2023)). Current lens detection techniques require sig-
nificant time-investment to remove false positives identified by automated or human
classifiers which will only increase when such telescopes come online. This motivates our
investigation into methods for improving the performance of strong lens finding.

2. Data and Method

To develop and test our method, we use outputs from two strong lens classifiers
applied to Hyper-Suprime Cam (HSC) data. These classifiers are 1) a neural network
(HOLISMOKES VI, Canameras et al. (2021)) and 2) citizen science classifications from
Space Warps (SuGOHI VI, Sonnenfeld et al. (2020)). These were cross-matched to within
17, producing ~ 110, 000 galaxies for which outputs from both classifiers were available.
For a subset of 3,514 typically high-scoring objects, grades were available following sub-
sequent visual inspection. We used these grades as a ‘ground-truth’ to determine the
performance of each classifier.

We mapped the classifier output to calibrated probability as follows. We took the
distribution of grade A+B candidates (here considered true lenses) as a function of
classifier output ranking and applied the following procedures to determine this mapping
for each classifier: isotonic regression (Zadrozny & Elkan (2002)), variable bin fitting (akin
to a moving average, but with a fixed number of lenses per bin), and the Kullback-Leibler
Importance Estimation Procedure (KLIEP, Sugiyama et al. (2008)). These calibration
mappings are validated against a separate validation set in Figures la & 1b which show
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Figure 1. a & b) Validation for the 3 calibration methods applied to (a) the citizen science
classifier and (b) the neural network: a perfectly calibrated classifier would lie along the y =«
line. ¢) Receiver operating characteristic (ROC) curve for the individual lens classifiers (dashed)
and combined methods. Ungraded subjects were treated as non-lenses for this plot.

that across a wide region of probability-space, such a mapping can provide an accurate
probability a given object is a lens.

To combine the calibrated outputs we used a generalised mean of the form: P(p;, a) =
(% va pf‘)é where p; denotes the calibrated outputs from the N different classi-
fiers, and « is a tuneable parameter; o — +oo corresponds to Max({p;,...pn}) and
Min({p;, ...pon }). We also trialled Bayesian probability combination using multivariate
normal mixtures detailed in Pir§ & Strumbelj (2019). The results of the best per-
forming methods are shown in Figure 1lc. We find at the high-purity end of the curve
(FPR~ 10~*), combining the two classifiers can roughly double the expected complete-
ness from ~ 15% to ~ 30% though the ensemble classifier doesn’t improve significantly
that of the citizen science for larger false positive rates. With forthcoming wide-area
surveys, this will help reduce the amount of time-consuming visual inspection required
to verify lens candidates. A more in-depth analysis and further results will be presented
in a forthcoming paper, Holloway et al. (2023, in prep).

3. Conclusion

We find the outputs of strong lens classifiers can be post-processed to give reliable
probabilities that a given image contains a lens allowing the accurate ranking of lens
candidates identified across multiple different methods. We find an ensemble classifier
would provide a more complete sample of lenses for a given (high) value of purity than
the individual classifiers by themselves. This will allow a larger sample of strong lenses
to be used for future population-level analysis enabled by LSST, Fuclid and Roman
surveys.
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