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Abstract. For each n>2 ,we find the minimum value of the topological entropies
of all continuous self-maps of the circle having a fixed point and a point of least
period n, and we exhibit a map with this minimal entropy.

1. Introduction
This paper is concerned with the following problem.

For each n a 2, find a continuous map /„ of the circle to itself, having a fixed
point and a point of least period n, minimal in the sense that ent (/K)<ent (/)
for every continuous map / of the circle having a fixed point and a point of least
period n. Determine ent (/„).

Here ent (•) denotes topological entropy.
The solution to the analogous entropy-minimizing problem for maps of the

interval was discovered in the course of investigations having to do with
Sarkovskii's theorem. Recall the Sarkovskii ordering o of the positive integers

3o5<i- • -o2-3<i2-5<3 ci22• 3o22• 5<i =a22<i21<i20.

Sarkovskii's theorem [4], [5], [3] states that, if a continuous map of a compact
interval to itself (or to the reals) has a point of least period n, then it has a point
of least period m for every mon.

P. Stefan [5] has described a set of constructions which, for each n > 2 , yields
a map gn of the interval having a point of least period n but no point of least period
m for any m o n. It turns out [5], [3] that the maps gn are the solution to the
entropy-minimizing problem for maps of the interval: ent (gn)<ent (g) for every
continuous map g of the interval having a point of least period n. (If g maps a
compact interval / into the reals, then ent (g) is defined to be ent (g\I'), where
/ ' = p | g~'(I)- Note that I' need not be an interval.)

The topological entropy of gn is given by the formula

ent (gn) = log an,
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where crn is defined as follows. For k a 3, let Lk(x) = xk - 2xk~2 -1 and let \k denote
the largest root of Lk. For n = 2sk where k is odd, let <rn = 1 if k = 1 and <rn = (Afc)

2

if it a 3 .
The result corresponding to Sarkovskii's theorem for maps of the circle is the

following [2]: if a continuous map of the circle to itself has a fixed point and a
point of least period n, then either (a) it has a point of least period m for every
m o- n or (b) it has a point of least period m for every m>n.

The examples gn of Stefan can be extended to maps of the circle without
changing the set of least periods or the topological entropy. L. Block [1] has
constructed maps /„ of the circle having a fixed point and a point of least period
n, but no point of least period m for any m, l<m<n. The topological entropy of
/„ is given by the formula

ent (fn) = log fj,n,

where /j,n is the largest root of Mn(x) = xn+1 -x" -x - 1 .

THEOREM A. / / a continuous map of the circle has a fixed point and a point of least
period n > 2, then ent (/) amin {log fin, log crn}.

This result was proved in [3] except for certain maps of degree — 1. See § 2 for details.
In light of the constructions described above, in order to solve the problem stated

at the beginning of this paper we need only determine which is smaller, fin or an.

THEOREM B. Let2sn = 2"k where k is odd.
(1) 7/5=0, then fin < an except that fi3 = cr3.
(2) / / 1 < s <6, then <rn <(*„ when k<2s + 3 and (nn <crn when k>2s + 5.
(3) If s>7, then crn</j,n when k<2s+5 and fin <o-n when k>2s+7.

2. Proof of theorem A
We prove theorem A by restricting our attention to maps of the circle of a fixed
degree, denoted by deg (•), and using the following result.

THEOREM [3]. Let f be a continuous map of the circle having a fixed point and a
point of least period n > 2.

(a) If |deg (/)| > 2, then ent (/) > log |deg (/)|.
(b) If deg (/) = 0, then ent (/) > log an.
(c) / / deg (/) = 1, then, ent (/) > min {log fin, log an}.
(d) If deg (/) = - 1 and n is odd, then ent (/) > log an.

It is an elementary fact (see § 3) that fin, crn<2. Therefore to prove theorem A it
suffices to show that (d) holds when n is even.

LEMMA 1. Let f be a continuous map of the circle having a fixed point and a point
of least period n a 3. / / / has no point of least period n + l, then ent (/) > log o~n.

Proof. By theorem K\ of [2], the hypotheses of theorem A2 of [2] are satisfied.
Then, as in the proof of theorem A2, there is a proper closed subinterval K of the
circle, containing the orbit of a point of least period n, a homeomorphism h from
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K onto a compact subinterval / of the reals, and a continuous map g from / into
the reals such that for all x e K, f(x) e K if and only if g(h(x)) e I, and in this case
h(f(x)) = g(h{x)). In particular, g has a point of least period n.

Let r = f l r W and / ' = P l g " ' ( / ) . Then / I * ' and g|J' are topologicaily

conjugate (via the appropriate restriction of h) and by definition, ent (g) = ent (g\I').
Then

ent (/) > ent (/[*') = ent (g|/') = ent (g) > log crn,

the last inequality by Stefan's results. •

We now complete the proof of theorem A. Suppose / is a map of the circle of
degree - 1 having a fixed point and a point of least period n, where n is even. We may
assume that n > 2 for, if n = 2, then crn = 1 and there is nothing to prove. If / has
no point of least period n +1 , then by lemma 1, ent (/) a log crn. If / has a point
of least period n +1 , then since n +1 is odd, ent (/) 2 log <rn+\. But it is another
elementary fact (see § 3) that <rm > V2 if m is odd, and <rm < V2 if m is even. Thus
logo-n+i>log<rn. •

3. Proof of theorem B
We begin by listing some elementary facts about the polynomials

Mn{x) = xn+1-xn-x-l (n>2)

and

Lk(x) = xk-2xk~2-l (ik>3).
Mn is increasing on (1, oo). Since Mn(l)<0 and Mn(2)>0, Mn has a unique root

fin in (l,oo) and

(1)

(2)(fin) = T-
U l

Lie has exactly one root in (0, oo) and L'k changes from negative to positive at
this root. Since Lk(0) < 0, Lk{-Jl) < 0 and Lfc(2) > 0, Lk has a unique root Xk in (0, oo)
and

•2. (3)

Recall that for n = 2sk where k is odd, o-n = 1 if k = 1 and trn = (Ak)
2~s if fc > 3.

<rn > V2 if n is odd and <jn < V2 if n is even. (4)

LEMMA 2. Lef n = 25k where k <s odd. Ifks:2s + 7, then fj.n <<rn.

Proof. Let q = 2~(s+1>. By (3), an >2q. On the other hand,

Mn(2")>0 if 2k/2>^~.

But
2^ + 1 4
— < — whenever 0 < x £ 1.
2 - 1 x
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(Tosee this, look atF(x) = ( 4 - x ) 2 x - * - 4 ; F ( 0 ) = 0andFX*)>0if0<x<l . ) Thus

and hence Mn (2") > 0 if k > 2(s + 3). Therefore

1^2'k < 2" < ark
for all odd k> 2s + 7. •

We shall find it desirable to use the polynomials

TS(X) = X2' + 1-X-1 (5 2:0).

Ts is increasing on (1, oo). Since r s ( l )<0 and Ts{2)>0, TS has a unique root rs in
(l,oo) and

(rs)
2s+1 = rs + l. (5)

LEMMA 3. Let n = 2sk where kz3 is odd. Then o-n -fin has the same sign {positive,
negative, zero) as (TS + l)k~2(Ts - 1 ) 2 - 1 .

Proof. Suppose o-n-fj.n>0. Let r = 2s. Then Afc>(/in)r and hence Lk(((ji,n)
r)<0.

Writing fi in place of fin and using (2), we have

Lk(/J<r) = ̂ r , 7TT,((I).
fi (/x - 1)

Hence Ts(fi)<0 and so n <rs. Writing r in place of TS, using (2) and (5) and the
fact that G(x) = ((x + \)/(x -1))2 is decreasing on (1, oo), we have

VT-1/ \fi-l) M

The same argument goes through with all the inequalities reversed or all replaced
by equalities. •

An immediate consequence of lemma 3 is

LEMMA 4. Let i t > 3 be odd. If iA2>k < a2*k, then ii2'i < o~i'i for all odd I > k.

LEMMA 5. Ifo-2'o.s+s) <f^2'(2s+s), then a2<i2,+s) </j.2'(2,+s)for all t>s.

Proof, t It suffices to show that the result holds for t = s +1. Let a =TS and /3 = Ts+i.
Using (5), we have that r j +i(a) = a(a +1)>0, and so 0 <a. Using (5) again,

(P2"1)2 = p2-*2 = fi + l<a + l = a2'*\

Thus /82 < a and hence (fi2 -1)2 < (a -1)2 . Then
(j8 + tfi'+Wtf - if = {p +1)2'+3(02 -1 ) 2 < (« + l)2s+3(a - I)2 < 1,

the last inequality by lemma 3. By lemma 3 again, <T2s+1(2(S+i)+5) </t2!+1(2(«+i)+5). •

We now complete the proof of theorem B.
Since M3(;c) = (x 2 -*- l ) ( ; t 2 + l) and L3(x) = (x2-x-l)(x + l), ^ 3 = A3 = o-3.

Since L5(1.5)<0<M5(1.5), fis< 1.5<\5 = o-5. Then (1) follows from lemma 2.
t This proof is due to M. L. Ginsberg (personal communication).
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It can be checked (using, for example, a hand-held calculator) that if 1 < 5 s 6, then

C2s(2s+3)

and

/"•2'(2s+5)

and if s = 7, then

CT2'(2s+S)

Then (2) follows from lemma 4 and (3) follows from lemmas 2, 4 and 5. •
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