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On the Metric Compactification of
Infinite-dimensional ℓp Spaces

Armando W. Gutiérrez

Abstract. henotion of metric compactiûcation was introduced by Gromov and later rediscovered by
Rieòel. It has been mainly studied on proper geodesic metric spaces. We present here a generalization
of the metric compactiûcation that can be applied to inûnite-dimensional Banach spaces. herea�er
we give a complete description of the metric compactiûcation of inûnite-dimensional ℓp spaces for all
1 ⩽ p < ∞. We also give a full characterization of the metric compactiûcation of inûnite-dimensional
Hilbert spaces.

1 Introduction

In connection with topology andpotential theory, Gromov [2,8] introduced amethod
for attaching an ideal boundary X∞ at inûnity of a metric space X. he method con-
sists in mapping X into the set of real-valued continuous functions C(X) equipped
with the topology of uniform convergence on bounded subsets. If the metric space X
is proper and geodesic, thenGromov’s bordiûcation X⊔X∞ becomes a compact topo-
logical space that contains X as a dense open subset [1, 3]. Later, Rieòel [17] obtained
the compact space X ⊔ X∞ as the maximal ideal space of a unital commutative C∗-
algebra, and termed it the metric compactiûcation, although it is perhaps more o�en
known as the horofunction compactiûcation. For ûnite-dimensional Banach spaces,
this compactiûcation has been studied in [5, 9–11, 18].
Compactness is a fundamental tool in mathematics. Inûnite-dimensional Banach

spaces are not locally compact, so Gromov’s procedure does not yield a compactiûca-
tion, only a bordiûcation. However, there is an alternative method to compactify an
inûnite-dimensional Banach space X. By considering instead the topology of point-
wise convergence on C(X) and following [6, 7, 16] we obtain a metric compactiûca-
tion of X in a weak sense; see Section 2. While studying certain metric geometries
of inûnite-dimensional convex cones, Walsh [19] presented a description of a certain
subset of the metric compactiûcation of inûnite-dimensional Banach spaces, namely
the set of Busemann points. A Busemann point is an element of the metric com-
pactiûcation obtained as a limit of some almost-geodesic net, a concept that was ûrst
introduced by Rieòel and then slightly modiûed by Walsh.
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We emphasize that the techniques we use in this paper are signiûcantly diòerent
from those used byWalsh. Moreover, we provide explicit formulas for all the elements
of the metric compactiûcation of some classical inûnite-dimensional Banach spaces.

Let J be any nonempty index set. We denote by x = (x( j)) j∈J any element of the
real vector spaceRJ . For every 1 ≤ p < ∞we consider the p-norm ∥ ⋅ ∥p onRJ deûned

by ∥x∥p ∶= (∑ j∈J ∣x( j)∣
p
)

1/p
, where the sum is given by

(1.1) ∑
j∈J

∣x( j)∣
p
= sup{ ∑

j∈F
∣x( j)∣

p
∣ F a ûnite subset of J} ,

for all x ∈ RJ . We denote by ℓp(J) the space of all x = (x( j)) j∈J in RJ such that ∥x∥p

is ûnite. hat is, ℓp(J) = {x ∈ RJ ∣ ∥x∥p < ∞} . he space ℓ∞(J) consists of all
x = (x( j)) j∈J in RJ such that sup j∈J ∣x( j)∣ is ûnite.

In [9], the author gives a complete description of the metric compactiûcation of
ℓp({1, . . . ,N}) for all 1 ≤ p ≤ ∞ and N ∈ N. In this paper, we study the metric
compactiûcation of ℓp(J) for all 1 ≤ p < ∞ and J any countably inûnite or uncountable
index set.

he paper is organized as follows. In Section 2 we introduce the notion of metric
compactiûcation of inûnite-dimensional Banach spaces. In Section 3 we give a com-
plete description of the metric compactiûcation of the inûnite-dimensional Banach
space ℓ1(J). In Section 4 we give a complete description of the metric compactiû-
cation of inûnite-dimensional real Hilbert spaces. In Section 5 we give a complete
description of the metric compactiûcation of the inûnite-dimensional Banach space
ℓp(J) for all 1 < p < ∞.

Recent works have shown that the metric compactiûcation provides a powerful
modern tool for the study of deterministic and random dynamics of nonexpansive
mappings [6, 7, 12, 13]. he purpose of this paper is to present explicit formulas for
all the elements of the metric compactiûcation of inûnite-dimensional ℓp spaces.

2 Preliminaries

2.1 The Metric Compactification

Let (X , d) be a metric space. Fix an arbitrary base point b in X. For each y ∈ X we
consider the element hb ,y of RX deûned by

(2.1) hb ,y(x) ∶= d(x , y) − d(b, y), for all x ∈ X .

For every y ∈ X, the function hb ,y is bounded from below by −d(b, y). Moreover,
{hb ,y ∣ y ∈ X} is a family of 1-Lipschitz functions with respect to themetric d. Indeed,
by the triangle inequality we have

∣hb ,y(x) − hb ,y(z)∣ = ∣d(x , y) − d(b, y) − d(z, y) + d(b, y)∣
= ∣d(x , y) − d(z, y)∣ ≤ d(x , z),
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for all x , z ∈ X. Furthermore, by taking z = b we obtain ∣hb ,y(x)∣ ≤ d(x , b) for all
x ∈ X. Hence,

(2.2) {hb ,y ∣ y ∈ X} ⊂ ∏
x∈X

[−d(x , b), d(x , b)].

By Tychonoò ’s theorem, the set on the right-hand side of (2.2) is compact in the
product topology. herefore, the set {hb ,y ∣ y ∈ X} has compact closure in this topol-
ogy, which is equivalent to the topology of pointwise convergence. Moreover, for any
two diòerent base points b, b′ ∈ X, the equality

(2.3) hb ,y(x) − hb ,y(b
′) = hb′ ,y(x)

holds for all x ∈ X. hen (2.3) induces a homeomorphism between the closures
cl({hb ,y ∣ y ∈ X}) and cl({hb′ ,y ∣ y ∈ X}). We write hy instead of hb ,y , and so
we say that

(2.4) X
h ∶= cl ({hy ∣ y ∈ X})

is themetric compactiûcation of (X , d). As in [7], the elements of Xh are calledmetric

functionals on X. By following [16], it will be convenient to consider the partition
Xh = Xh ,F ⊔ Xh ,∞, where

X
h ,F ∶= {h ∈ Xh ∣ inf

x∈X
h(x) > −∞} ,

X
h ,∞ ∶= {h ∈ Xh ∣ inf

x∈X
h(x) = −∞} .

he elements of Xh ,F are called ûnitemetric functionals, while the elements of Xh ,∞

are called metric functionals at inûnity. It is clear that Xh ,F contains the set {hy ∣ y ∈
X} of internal metric functionals.

Remark 2.1 Recall that ametric space (X , d) is geodesic if every pair of points x , y ∈
X can be joined by a path γ∶ [0, d(x , y)] → X such that γ(0) = x, γ(d(x , y)) = y and
d(γ(s), γ(t)) = ∣s − t∣ for all s, t. We say that X is proper if every closed ball of X is
compact. If (X , d) is a proper geodesicmetric space, then the set Xh in (2.4) coincides
with the usual Gromov metric compactiûcation. Indeed, since X is proper and {hy ∣
y ∈ X} is a family of 1-Lipschitz functions, it follows by the Arzelà-Ascoli theorem
that the topology of pointwise convergence and the topology of uniform convergence
on bounded subsets will produce the same compact closure (2.4). Moreover, since X
is geodesic, the set of internal metric functionals {hy ∣ y ∈ X} can be identiûed with
X, which becomes a dense open set in Xh . he set

∂hX ∶= X
h ∖ X

is called the horofunction boundary of X. For general metric spaces, however, al-
though the space Xh is always compact with respect to the pointwise topology, the
continuous injection y ↦ hy may not be an embedding from X to Xh ; see [6] for
more details.

Remark 2.2 If X is a Banach space with metric induced by a norm ∥ ⋅ ∥, we choose
the base point b = 0 ∈ X so (2.1) becomes

hy(x) = ∥x − y∥ − ∥y∥.
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If X is a ûnite-dimensional Banach space, then every metric functional h ∈ Xh can
be written as h = limn→∞ hyn , for some sequence {yn}n∈N in X. For an inûnite-
dimensional Banach space X, the compact space Xh may not bemetrizable. However,
for every metric functional h ∈ Xh there will always exist a net {yα}α in X such that
hyα Ð→α

h pointwise on X. For details about convergence of nets, we refer the reader
to [14].

he following is a characterization of the ûnitemetric functionals onBanach spaces.

Lemma 2.3 If {yα}α is a bounded net in aBanach space (X , ∥ ⋅ ∥) such that hyα Ð→α
h

pointwise on X, then h ∈ Xh ,F .

Proof Indeed, by passing to a subnet we may assume that ∥yα∥ Ð→
α
c. Also, for

every x ∈ X and for every α, we have

hyα(x) = ∥x − yα∥ − ∥yα∥ ≥ −∥yα∥.

hen h(x) ≥ −c for all x ∈ X, so the claim follows. ∎

It is important to notice that if X is a ûnite-dimensional Banach space, then Xh ,F =
{hy ∣ y ∈ X}. For inûnite-dimensional Banach spaces, the set Xh ,F of ûnite metric
functionals may be larger than the set {hy ∣ y ∈ X} of internal metric functionals.

2.2 Some Facts in Banach Space Theory

For convenience of the reader we establish some notation and recall some important
facts in Banach space theory that will be useful in the following sections. Let (X , ∥ ⋅ ∥)
be a Banach space with dual space (X∗ , ∥ ⋅ ∥∗). Let {xα}α be any net in X, and let x
be any vector in X. We say that xα converges strongly to x, and denote it by xα Ð→

α
x,

if limα ∥xα − x∥ = 0. We say that xα converges weakly to x, and denote it by xα
w
Ð→
α
x,

if limα ν(xα) = ν(x) for all ν ∈ X∗. Let {µα}α be any net in X∗ and let µ be any
vector in X∗. We say that µα converges to µ in the weak-star topology, and denote it

by µα
w∗
Ð→
α

µ, if limα µα(x) = µ(x) for all x ∈ X.
hroughout we will make use of Alaoglu’s theorem [15, Prop. 6.13], which states

that the closed unit ball of the dual space X∗ is compact in the weak-star topology.
Likewise, it is well known that a Banach space X is re�exive if and only if its closed
unit ball is compact in the weak topology; see [15, Prop. 6.14]. In particular, every
bounded net in a re�exive Banach space has a weakly convergent subnet.

In the following sections we will denote by c0(J) the space of all x ∈ ℓ∞(J) such
that the set { j ∈ J ∣ ∣x( j)∣ ≥ є} is ûnite for all є > 0. he space c0(J) is a Banach
space with respect to the norm inherited from ℓ∞(J). We denote by c00(J) the space
of all x ∈ ℓ∞(J) such that the set { j ∈ J ∣ x( j) ≠ 0} is ûnite. For every x ∈ ℓp(J)
the sum in (1.1) is ûnite, so by considering the set inclusion ⊆ as a partial order on the
set of all ûnite subsets F of J, the set {∑ j∈F ∣x( j)∣

p
}
F is a net in R that converges to
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∑ j∈J ∣x( j)∣
p
= ∥x∥

p
p for all 1 ≤ p < ∞. herefore, it follows that c00(J) is dense in

ℓp(J) for all 1 ≤ p < ∞.

3 The Metric Compactification of ℓ1

hroughout this section, for each y ∈ ℓ1(J) we denote by hy the function deûned on
ℓ1(J) by

hy(x) ∶= ∥x − y∥1 − ∥y∥1 , for all x ∈ ℓ1(J).

In order to ûnd possible metric functionals on ℓ1(J) we will need the following
argument, which was also used in [9, Lemma 3.1] to describe the metric compactiû-
cation of the ûnite-dimensional space ℓ1({1, . . . ,N}).

Proposition 3.1 Let {aβ}β be a net of real numbers. hen for every r ∈ R,

∣r − aβ ∣ − ∣aβ ∣ Ð→
β

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−r if aβ Ð→
β
+∞,

r if aβ Ð→
β
−∞.

Moreover, since {∣ ⋅ − aβ ∣ − ∣aβ ∣}β is a family of 1-Lipschitz functions on R, the conver-
gence above is uniform on compact subsets of R.

Remark 3.2 For every x ∈ c00(J) there exists a ûnite subset F of J such that x( j) ≠ 0
for all j ∈ F, and x( j) = 0 for all j ∈ J ∖ F. herefore,

hy(x) = ∑
j∈J

∣x( j) − y( j)∣ −∑
j∈J

∣y( j)∣

= ∑
j∈F

( ∣x( j) − y( j)∣ − ∣y( j)∣) .

Lemma 3.3 Let {yα}α be any net in ℓ1(J). hen there exists a subnet {yβ}β , a subset

I of J, a vector of signs ε ∈ {−1,+1}I , and a vector z ∈ RJ∖I such that the net {hyβ}β
converges pointwise on ℓ1(J) to the function

x z→ h
{I ,ε ,z}(x) ∶= ∑

j∈I
ε( j)x( j) + ∑

j∈J∖I
( ∣x( j) − z( j)∣ − ∣z( j)∣) .

Proof Since ℓ1(J) ⊂ RJ ⊂ [−∞,+∞]J , we can think of {yα}α as a net in the compact
topological space [−∞,+∞]J with respect to the product topology. herefore, there
exists a subnet {yβ}β and a vector z̃ ∈ [−∞,+∞]J such that

yβ( j) Ð→
β

z̃( j), for all j ∈ J .

Hence, there exists a subset I (possibly empty) of J such that z̃( j) ∈ {−∞,+∞} for all
j ∈ I, and z̃( j) ∈ R for all j ∈ J ∖ I. Put z( j) = z̃( j) for all j ∈ J ∖ I, and for every j ∈ I,

ε( j) =

⎧⎪⎪
⎨
⎪⎪⎩

−1 if z̃( j) = +∞
+1 if z̃( j) = −∞.
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Now let x be any element of c00(J). It follows from Remark 3.2 that there exists a
ûnite subset F of J such that x( j) ≠ 0 for all j ∈ F, and x( j) = 0 for all j ∈ J ∖ F for
which

hyβ(x) = ∑
j∈F∩I

( ∣x( j) − yβ( j)∣ − ∣yβ( j)∣)

+ ∑
j∈F∩(J∖I)

( ∣x( j) − yβ( j)∣ − ∣yβ( j)∣) .

By Proposition 3.1, we obtain

lim
β

hyβ(x) = ∑
j∈F∩I

ε( j)x( j) + ∑
j∈F∩(J∖I)

( ∣x( j) − z( j)∣ − ∣z( j)∣)

= ∑
j∈I
ε( j)x( j) + ∑

j∈J∖I
( ∣x( j) − z( j)∣ − ∣z( j)∣) .

herefore, the claim of the lemma follows readily from the fact that c00(J) is dense in
ℓ1(J) and {hyβ}β is a family of 1-Lipschitz functions on ℓ1(J). ∎

Example 3.4 For simplicity let us assume that J = N. Consider the following se-
quences in ℓ1(N):

yn = (1, 0, . . . , 0, n
nth
, 0, 0, . . . ),

ỹn = (n, 1, 1, . . . , 1
nth
, 0, 0, . . . ).

hen for every x ∈ ℓ1(N), we have

lim
n→∞

hyn(x) = ( ∣x(1) − 1∣ − 1) +
∞

∑
j=2

∣x( j)∣ = hz(x),(3.1)

lim
n→∞

h ỹn(x) = −x(1) +
∞

∑
j=2

(∣x( j) − 1∣ − 1) = h
{I ,ε ,z}(x),(3.2)

where z = (1, 0, 0, . . . ) ∈ ℓ1(N) in (3.1), whereas I = {1} ⊂ N, ε(1) = −1, z( j) = 1 for
all j ≥ 2 in (3.2). Notice that in both cases, we have ∥yn∥1 → ∞ and ∥ ỹn∥1 → ∞, as
n →∞. However, h{I ,ε ,z} in (3.2) is a metric functional at inûnity, while hz in (3.1) is
an internal metric functional.

he following result shows that bounded nets in ℓ1(J) produce only internalmetric
functionals.

Lemma 3.5 Let {yα}α be a bounded net in ℓ1(J). hen there exists a subnet {yβ}β
and a vector z ∈ ℓ1(J) such that the net {hyβ}β converges pointwise to the function hz .

Proof Recall that ℓ1(J) and c0(J)∗ are isometrically isomorphic under the surjec-
tive isometry L∶ ℓ1(J) → c0(J)

∗, y ↦ Ly deûned by Ly(x) = ∑ j∈J x( j)y( j), for all
x ∈ c0(J). herefore, we can consider the bounded net {yα}α in ℓ1(J) as a bounded
net of continuous linear functionals on c0(J). Hence, by Alaoglu’s theorem, there ex-

ists a subnet {yβ}β and a vector z ∈ ℓ1(J) such that yβ
w∗
Ð→
β
z. In particular, we have
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yβ( j) Ð→
β

z( j) for all j ∈ J. Now let x be any vector in c00(J). By Remark 3.2, there

exists a ûnite subset F of J such that x( j) ≠ 0 for all j ∈ F, and x( j) = 0 for all j ∈ J∖F.
Hence,

hyβ(x) = ∑
j∈F

∣x( j) − yβ( j)∣ −∑
j∈F

∣yβ( j)∣

Ð→
β
∑
j∈F

∣x( j) − z( j)∣ −∑
j∈F

∣z( j)∣.

herefore, since z ∈ ℓ1(J) and x( j) = 0 for all j ∈ J ∖ F, we obtain

lim
β

hyβ(x) = ∑
j∈J

∣x( j) − z( j)∣ −∑
j∈J

∣z( j)∣ = hz(x).

Finally, since c00(J) is dense in ℓ1(J) and {hyβ}β is a family of 1-Lipschitz functions
on ℓ1(J), the claim follows. ∎

heorem 3.6 he metric compactiûcation of ℓ1(J) is given by

(3.3) ℓ1(J)
h = {h

{I ,ε ,z} ∈ Rℓ1(J) ∣ ∅ ⊆ I ⊆ J , ε ∈ {−1,+1}I , z ∈ RJ∖I} ,

where for every x ∈ ℓ1(J),

h
{I ,ε ,z}(x) = ∑

j∈I
ε( j)x( j) + ∑

j∈J∖I
( ∣x( j) − z( j)∣ − ∣z( j)∣) .

Proof Let h be any element of ℓ1(J)h . hen there exists a net {yα}α in ℓ1(J) such
that hyα Ð→α

h pointwise on ℓ1(J). By Lemma 3.3, there exists a subnet {hyβ}β of

{hyα}α , a subset I of J, a vector of signs ε ∈ {−1,+1}I , and a vector z ∈ RJ∖I such that
for every x ∈ ℓ1(J)

lim
β

hyβ(x) = h
{I ,ε ,z}(x) = ∑

j∈I
ε( j)x( j) + ∑

j∈J∖I
( ∣x( j) − z( j)∣ − ∣z( j)∣) .

hen h = h{I ,ε ,z}, and so h belongs to the set on the right-hand side of (3.3).
Suppose now that h ∈ Rℓ1(J) is deûned for every x ∈ ℓ1(J) by

h(x) = ∑
j∈I
ε( j)x( j) + ∑

j∈J∖I
( ∣x( j) − z( j)∣ − ∣z( j)∣)(3.4)

for some subset I of J, some ε ∈ {−1,+1}I , and some z ∈ RJ∖I . hen for each ûnite
subset F (with cardinality #F) of J deûne

yF( j) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−ε( j)#F if j ∈ F ∩ I,
z( j), if j ∈ F ∩ (J ∖ I),
0 if j ∈ J ∖ F .

With set inclusion ⊆ as a partial order on the set of all ûnite subsets F of J, the set
{yF}F deûnes a net in ℓ1(J) with norm

∥yF∥1 = ∑
j∈J

∣yF( j)∣ = ∑
j∈F∩I

#F + ∑
j∈F∩(J∖I)

∣z( j)∣.

497

https://doi.org/10.4153/S0008439518000681 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000681


A. W. Gutiérrez

We claim that for every x ∈ ℓ1(J) we have hyF (x) Ð→F
h(x), where h is given in (3.4).

If we prove this for all x ∈ c00(J), the claim follows readily from the fact that c00(J)
is dense in ℓ1(J) and the net {hyF}F is a family of 1-Lipschitz functions on ℓ1(J). Let
x be any element in c00(J). By Remark 3.2, there exists a ûnite set G of J such that

hyF (x) = ∑
j∈G

( ∣x( j) − yF( j)∣ − ∣yF( j)∣)

= ∑
j∈G∩F∩I

( ∣−ε( j)x( j) − #F∣ − #F)(3.5)

+ ∑
j∈G∩F∩(J∖I)

( ∣x( j) − z( j)∣ − ∣z( j)∣) + ∑
j∈G∩(J∖F)

∣x( j)∣.

As F gets larger, the third sum in (3.5) converges to 0, while the second sum con-
verges to∑ j∈G∩(J∖I)( ∣x( j) − z( j)∣ − ∣z( j)∣) . By Proposition 3.1, each term of the ûrst
sum in (3.5) converges to ε( j)x( j), as F gets larger. Moreover, larger subsets F of
J will eventually contain the ûnite set G. Hence, the ûrst sum of (3.5) converges to
∑ j∈G∩I ε( j)x( j), as F gets larger. We have therefore shown that for every x ∈ c00(J),

hyF (x) Ð→F
∑

j∈G∩I
ε( j)x( j) + ∑

j∈G∩(J∖I)
( ∣x( j) − z( j)∣ − ∣z( j)∣) = h(x),

where G is the ûnite set { j ∈ J ∣ x( j) ≠ 0}. his concludes the proof of the
theorem. ∎

By a simple inspection of all the elements of the set (3.3), we obtain the following
corollary.

Corollary 3.7 he set of ûnite metric functionals on ℓ1(J) consists only of internal

ones. hat is, ℓ1(J)
h ,F = {hy ∣ y ∈ ℓ1(J)}.

We will see in the next sections that Corollary 3.7 does not hold for inûnite-
dimensional Hilbert spaces and ℓp(J) with 1 < p < ∞.

4 The Metric Compactification of Infinite-dimensional Hilbert
Spaces

hroughout this section we will assume thatH is an inûnite-dimensional real Hilbert
space with inner product ⟨ ⋅ , ⋅ ⟩ and norm ∥x∥ = ⟨x , x⟩1/2 for all x ∈ H. For each
y ∈H, we denote by hy the function on H deûned by

x z→ hy(x) ∶= ∥x − y∥ − ∥y∥.

Lemma 4.1 Let {yα}α be a bounded net in H. hen there exists a subnet {yβ}β , a
vector z ∈ H, and a real number c ≥ ∥z∥ such that the net {hyβ}β converges pointwise

on H to the function

x z→ h
{z ,c}(x) ∶= (∥x∥

2
− 2⟨x , z⟩ + c2)

1/2
− c.
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Proof Let {yα}α be a bounded net inH. SinceH is re�exive, by Alaoglu’s theorem
there exists a subnet {yβ}β and a vector z ∈H such that

(4.1) yβ
w
Ð→
β
z.

By letting c ∶= lim inf β ∥yβ∥, we have ∥z∥ ≤ c. Now, since {∥yβ∥}β is a bounded net
in R, by passing to a subnet, we can assume that

(4.2) lim
β

∥yβ∥ = c.

Let x be any element in H. hen, by (4.1) and (4.2), we obtain

hyβ(x) = ∥x − yβ∥ − ∥yβ∥

= (∥x∥
2
− 2⟨x , yβ⟩ + ∥yβ∥

2
)

1/2
− ∥yβ∥

Ð→
β

(∥x∥
2
− 2⟨x , z⟩ + c2)

1/2
− c = h

{z ,c}(x). ∎

Remark 4.2 (Radon–Riesz property) he weak limit (4.1) and the limit (4.2) of the
norms ∥yβ∥ in Lemma 4.1 imply

∥yβ − z∥
2
= ∥yβ∥

2
− 2⟨yβ , z⟩ + ∥z∥

2

Ð→
β
c
2 − 2⟨z, z⟩ + ∥z∥

2

= c2 − ∥z∥
2 .

Hence yβ converges strongly to z if and only if c = ∥z∥. It is clear that h{z ,∥z∥} = hz .

Lemma 4.3 Let {yα}α be a net in H such that ∥yα∥ Ð→
α

∞. hen there exists a

subnet {yβ}β and a vector z ∈ H with ∥z∥ ≤ 1 such that the net {hyβ}β converges
pointwise on H to the function

x z→ h
{z}(x) ∶= −⟨x , z⟩.

Proof Since ∥yα∥ Ð→
α

∞, by passing to a subnet, we can assume that ∥yα∥ > 0 for
all α. Deûne zα ∶= yα/∥yα∥ for all α. Since H is re�exive, it follows from Alaoglu’s
theorem that there exists a subnet {zβ}β and a vector z ∈ H with ∥z∥ ≤ 1 such that
zβ

w
Ð→
β
z. Let x be any vector in H. hen

(4.3)
∥x − yβ∥ = (∥x∥

2
− 2⟨x , yβ⟩ + ∥yβ∥

2
)

1/2

= ∥yβ∥(
∥x∥

2

∥yβ∥
2 −

2⟨x , zβ⟩
∥yβ∥

+ 1)
1/2

.

It is clear that ∥yβ∥ Ð→
β
∞ implies

(4.4)
∥x∥

2

∥yβ∥
2 −

2⟨x , zβ⟩
∥yβ∥

Ð→
β

0.
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Recall the Taylor expansion
√
a + 1 = 1+a/2+O(a2), when a is small enough. Hence

by (4.4), we can write (4.3) as follows:

∥x − yβ∥ = ∥yβ∥( 1 +
1
2
(

∥x∥
2

∥yβ∥
2 −

2⟨x , zβ⟩
∥yβ∥

) + O(
1

∥yβ∥
2 ))

= ∥yβ∥ +
1
2
(
∥x∥

2

∥yβ∥
− 2⟨x , zβ⟩) + O(

1
∥yβ∥

) ,

as ∥yβ∥ Ð→
β
∞. herefore, we obtain

lim
β

hyβ(x) = lim
β

[∥x − yβ∥ − ∥yβ∥]

= lim
β

[
1
2
(
∥x∥

2

∥yβ∥
− 2⟨x , zβ⟩) + O(

1
∥yβ∥

)]

= −⟨x , z⟩ = h
{z}(x). ∎

heorem 4.4 he metric compactiûcation Hh = Hh ,F ⊔ Hh ,∞ of an inûnite-

dimensional real Hilbert spaceH is given by

Hh ,F = {h
{z ,c} ∈ RH ∣ z ∈H, c ≥ ∥z∥} ∪ {0},

Hh ,∞ = {h
{z} ∈ RH ∣ z ∈H, 0 < ∥z∥ ≤ 1} ,

where for every x ∈H,

h
{z ,c}(x) = (∥x∥

2
− 2⟨x , z⟩ + c2)

1/2
− c,

h
{z}(x) = −⟨x , z⟩.

Proof Let h be any element of Hh . hen there exists a net {yα}α in H such that
hyα Ð→α

h pointwise on H. Suppose that the net {yα}α is bounded in H. hen it
follows from Lemma 4.1 that there exists a subnet {yβ}β , a vector z ∈ H, and a real
number c ≥ ∥z∥ such that

lim
β

hyβ(x) = (∥x∥
2
− 2⟨x , z⟩ + c2)

1/2
− c = h

{z ,c}(x),

for all x ∈H. herefore, we obtain h = h{z ,c}, and hence h ∈Hh ,F∖{0}. Suppose now
that the net {yα}α is unbounded in H. hen, by passing to a subnet we can assume
that ∥yα∥ Ð→

α
∞. It follows from Lemma 4.3 that there exists a subnet {yβ}β and a

vector z ∈H with ∥z∥ ≤ 1 such that

lim
β

hyβ(x) = −⟨x , z⟩ = h
{z}(x),

for all x ∈H. Hence, h = h{z} and so h ∈Hh ,∞ ∪ {0}. Consequently, we have proved
that the inclusion Hh ⊆Hh ,F ⊔Hh ,∞ holds.

On the other hand, since H is inûnite-dimensional and re�exive, there exists a
sequence {un}n∈N in H with ∥un∥ = 1 for all n ∈ N such that un

w
Ð→ 0, as n → ∞.
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Suppose that h{z ,c} ∈ Hh ,F ∖ {0} for some z ∈ H and some c ≥ ∥z∥. hen for each
n ∈ N deûne yn ∈H by

yn ∶= ( c2 − ∥z∥
2
)

1/2
un + z.

It follows that yn
w
Ð→ z, and also

∥yn∥
2
= c2 + 2( c2 − ∥z∥

2
)

1/2
⟨z, un⟩ Ð→ c

2 ,

as n →∞. herefore, for every x ∈H,

hyn(x) = ∥x − yn∥ − ∥yn∥ = (∥x∥
2
− 2⟨x , yn⟩ + ∥yn∥

2
)

1/2
− ∥yn∥

Ð→
n→∞

(∥x∥
2
− 2⟨x , z⟩ + c2)

1/2
− c = h

{z ,c}(x).

Hence, h{z ,c} is an element ofHh . Now suppose that h ∈Hh ,∞ ∪{0}. hen for every
x ∈ H, we have h(x) = −⟨x , z⟩ for some z ∈ H with ∥z∥ ≤ 1. For each n ∈ N, deûne
ỹn ∈H by

ỹn ∶= n( 1 − ∥z∥
2
)

1/2
un + nz.

hen

∥ ỹn∥
2
= n

2( 1 + 2( 1 − ∥z∥
2
)

1/2
⟨z, un⟩) Ð→∞, as n →∞.

Furthermore, we have ỹn/∥ ỹn∥
w
Ð→ z, as n →∞. hen, by proceeding as in (4.3) and

(4.4), we obtain
h ỹn(x) Ð→n→∞

−⟨x , z⟩ = h(x),

for all x ∈ H, and hence h is an element of Hh . We have therefore proved that the
inclusion Hh ,F ⊔Hh ,∞ ⊆Hh also holds. ∎

Remark 4.5 It readily follows from Remark 4.2 that h{z ,c} is an internal metric
functional if and only if c = ∥z∥. heorem 4.4 states that metric functionals on an
inûnite-dimensional real Hilbert spaceH are of three types:

(i) he set {hy ∣ y ∈ H} contains metric functionals that correspond to strongly
convergent nets in H.

(ii) he set {h{z ,c} ∈ RH ∣ z ∈ H, c > ∥z∥} contains exoticmetric functionals that
correspond to bounded nets converging weakly but not strongly in H.

(iii) he set Hh ,∞ ∪ {0} contains metric functionals that correspond to nets in H

with norm tending to inûnity.

Remark 4.6 For the inûnite-dimensional real Hilbert spaceH = ℓ2(J) with norm
∥ ⋅ ∥2, it follows readily from heorem 4.4 that the metric compactiûcation
ℓ2(J)

h = ℓ2
h ,F ⊔ ℓ2

h ,∞ is given by

ℓ2
h ,F = {h

{z ,c} ∈ Rℓ2(J) ∣ z ∈ ℓ2(J), c ≥ ∥z∥2} ∪ {0},

ℓ2
h ,∞ = {h

{z} ∈ Rℓ2(J) ∣ z ∈ ℓ2(J), 0 < ∥z∥2 ≤ 1} ,
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where for every x ∈ ℓ2(J),

h
{z ,c}(x) = (∥x − z∥

2
2 + c

2 − ∥z∥
2
2)

1/2
− c,

h
{z}(x) = −∑

j∈J
x( j)z( j).

his observation will be useful in Section 5 to identify all the metric functionals on
the remaining ℓp spaces.

5 The Metric Compactification of ℓp, with 1 < p < ∞

hroughout this section we assume 1 < p < ∞. For each y ∈ ℓp(J), we denote by hy
the function on ℓp(J) given by

x z→ hy(x) ∶= ∥x − y∥p − ∥y∥p .

Lemma 5.1 Let {yα}α be a bounded net in ℓp(J). hen there exists a subnet {yβ}β ,
a vector z ∈ ℓp(J), and a real number c ≥ ∥z∥p such that the net {hyβ}β converges

pointwise on ℓp(J) to the function

x z→ h
{z ,c}(x) ∶= (∥x − z∥

p
p + c

p − ∥z∥
p
p)

1/p
− c.

Proof Since {yα}α is a bounded net in ℓp(J) and ℓp(J) is re�exive, it follows from
Alaoglu’s theorem that there exists a subnet {yβ}β , and a vector z ∈ ℓp(J) such that
yβ

w
Ð→
β
z. In particular, we have

(5.1) yβ( j) Ð→
β

z( j), for all j ∈ J .

Letting c ∶= lim inf β ∥yβ∥p , we have ∥z∥p ≤ c. Moreover, since {∥yβ∥p}β is a bounded
net in R, by passing to a subnet, we can assume that

(5.2) lim
β

∥yβ∥p = c.

Let x be any vector in c00(J). hen there exists a ûnite subset F of J such that
x( j) ≠ 0 for all j ∈ F, and x( j) = 0 otherwise. By applying (5.1) and (5.2), we obtain

∥x − yβ∥
p
p = ∑

j∈J
∣x( j) − yβ( j)∣

p

= ∑
j∈F

∣x( j) − yβ( j)∣
p
+ ∑

j∈J∖F
∣yβ( j)∣

p

= ∑
j∈F

∣x( j) − yβ( j)∣
p
+∑

j∈J
∣yβ( j)∣

p
−∑

j∈F
∣yβ( j)∣

p

Ð→
β
∑
j∈F

∣x( j) − z( j)∣
p
+ cp −∑

j∈F
∣z( j)∣

p

= ∑
j∈J

∣x( j) − z( j)∣
p
+ cp −∑

j∈J
∣z( j)∣

p

= ∥x − z∥
p
p + c

p − ∥z∥
p
p .
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herefore, for every x ∈ c00(J), we have

hyβ(x) = ∥x − yβ∥p − ∥yβ∥p = (∥x − yβ∥
p
p)

1/p
− ∥yβ∥p

Ð→
β

(∥x − z∥
p
p + c

p − ∥z∥
p
p)

1/p
− c = h

{z ,c}(x).

Since c00(J) is dense in ℓp(J), and the set {hyβ}β is a family of 1-Lipschitz functions
on ℓp(J), it follows that hyβÐ→β

h{z ,c} pointwise on ℓp(J). ∎

Lemma 5.1 describes metric functionals on ℓp(J) that correspond to bounded nets
in ℓp(J). Wenow characterize possiblemetric functionals on ℓp(J) that correspond to
nets with p-norm tending to inûnity. In fact, we go further and give a characterization
of metric functionals that are obtained from nets with norm tending to inûnity in any
Banach space with uniformly convex dual. A�erwards, we turn to the speciûc case of
ℓp(J), where we give a full characterization of its metric compactiûcation.
A Banach space (V , ∥ ⋅ ∥) is called uniformly convex if for every 0 < є ≤ 2 there

exists δ(є) > 0 such that ∥u + v∥ ≤ 2(1 − δ) whenever u, v ∈ V with ∥u∥ = ∥v∥ = 1
and ∥u − v∥ ≥ є. A well-known result due to Clarkson [4] is that Lp and ℓp spaces are
uniformly convex for all 1 < p < ∞.

Remark 5.2 If {uβ}β and {vβ}β are nets in the unit sphere of a uniformly convex
Banach space (V , ∥ ⋅ ∥) such that ∥uβ + vβ∥ Ð→

β
2, then we have ∥uβ − vβ∥ Ð→

β
0.

Indeed, if we suppose that ∥uβ − vβ∥ ↛
β
0, then by passing to a subnet, we can assume

that ∥uβ − vβ∥ ≥ є for some є > 0 and all β. By uniform convexity, there exists δ(є) > 0
such that ∥uβ + vβ∥ ≤ 2(1 − δ), for all β. herefore,

2 = lim
β

∥uβ + vβ∥ ≤ 2 − 2δ,

which is a contradiction.

Lemma 5.3 Let (X , ∥ ⋅ ∥) be an inûnite-dimensional Banach space such that its dual

space (X∗ , ∥ ⋅ ∥∗) is uniformly convex. Let {yα}α be a net in X with ∥yα∥ Ð→
α
∞. hen

there exists a subnet {yβ}β and a continuous linear functional µ ∈ X∗ with ∥µ∥
∗
≤ 1

such that hyβ Ð→β
−µ pointwise on X.

Proof Without loss of generality, we can assume that ∥yα∥ ≠ 0 for all α. Consider the
net of unit vectors {zα}α in X given by zα = yα/∥yα∥, for all α. By the Hahn–Banach
theorem, for each α there exists µα ∈ X

∗ with ∥µα∥∗ = 1 such that µα(zα) = 1. Hence,
by Alaoglu’s theorem, there exists a subnet {µβ}β and a continuous linear functional

µ ∈ X∗ with ∥µ∥
∗
≤ 1 such that µβ

w∗
Ð→
β

µ. Now let x be any vector in X. By extracting

a further subnet if necessary, we can assume that x − yβ ≠ 0 for all β. Deûne the net
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of unit vectors {zxβ}β in X by

z
x
β ∶=

yβ − x

∥x − yβ∥
.

By the Hahn–Banach theorem, it follows that for each β there exists µx
β ∈ X∗ with

∥µx
β∥∗ = 1 such that

(5.3) 1 = µ
x
β(z

x
β) =

µx
β(yβ) − µx

β(x)

∥x − yβ∥
=

µx
β(zβ) − µx

β(
x
∥yβ∥

)

∥ x
∥yβ∥

− zβ∥
.

On the other hand, for every β we have

(5.4) −
∥x∥

∥yβ∥
+ 1 ≤ ∥

x

∥yβ∥
− zβ∥ ≤

∥x∥

∥yβ∥
+ 1,

and also

(5.5) ∣ µx
β(

x

∥yβ∥
) ∣ ≤

∥x∥

∥yβ∥
.

Hence, by applying the assumption ∥yβ∥ Ð→
β
∞ in (5.4) and (5.5), we obtain

∥
x

∥yβ∥
− zβ∥ Ð→

β
1,(5.6)

µ
x
β(

x

∥yβ∥
) Ð→

β
0.(5.7)

herefore, by applying (5.6) and (5.7) in (5.3), it follows that

(5.8) µ
x
β(zβ) Ð→β

1,

and hence,

2 ≥ ∥µx
β + µβ∥

∗
≥ ∣(µx

β + µβ)(zβ)∣ = ∣µx
β(zβ) + µβ(zβ)∣Ð→

β
2.

Since X∗ is uniformly convex, it follows from Remark 5.2 that

∥µx
β − µβ∥

∗
Ð→
β

0.

hen we obtain

(5.9) µ
x
β

w∗
Ð→
β

µ.

Finally, it follows from (5.3) that

∥x − yβ∥ = −µ
x
β(x) + µ

x
β(zβ)∥yβ∥,

and therefore, by applying (5.8) and (5.9), we obtain

hyβ(x) = ∥x − yβ∥ − ∥yβ∥

= −µ
x
β(x) + µ

x
β(zβ)∥yβ∥ − ∥yβ∥

Ð→
β
−µ(x). ∎
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We are now ready to give a full characterization of the metric compactiûcation of
ℓp(J) for all 1 < p < ∞.

heorem 5.4 Let 1 < p < ∞. he metric compactiûcation ℓp(J)
h = ℓp(J)

h ,F ⊔

ℓp(J)
h ,∞ of the inûnite-dimensional ℓp(J) space is given by

ℓp(J)
h ,F = {h

{z ,c} ∈ Rℓp(J) ∣ z ∈ ℓp(J), c ≥ ∥z∥p} ∪ {0},

ℓp(J)
h ,∞ = {h

{µ} ∈ Rℓp(J) ∣ µ ∈ ℓp/(p−1)(J), 0 < ∥µ∥p/(p−1) ≤ 1} ,

where for every x ∈ ℓp(J),

h
{z ,c}(x) = (∥x − z∥

p
p + c

p − ∥z∥
p
p)

1/p
− c,

h
{µ}(x) = −∑

j∈J
µ( j)x( j).

Proof Let h ∈ ℓp(J)
h . hen there exists a net {yα}α in ℓp(J) such that hyα Ð→α

h

pointwise on ℓp(J). Suppose that the net {yα}α is bounded in ℓp(J). hen it follows
fromLemma 5.1 that there exists a subnet {yβ}β , a vector z ∈ ℓp(J), and a real number
c ≥ ∥z∥p such that

lim
β

hyβ(x) = (∥x − z∥
p
p + c

p − ∥z∥
p
p)

1/p
− c = h

{z ,c}(x), for all x ∈ ℓp(J).

Hence, h = h{z ,c} and so h ∈ ℓp(J)
h ,F

∖ {0}. Now suppose that the net {yα}α is
unbounded in ℓp(J). hen, by passing to a subnet, we can assume that ∥yα∥p Ð→α

∞.
Let q = p/(p − 1). Since the dual space of ℓp(J) is the uniformly convex space ℓq(J),
it follows from Lemma 5.3 and ℓp/ℓq duality that there exists µ ∈ ℓq(J) with ∥µ∥q ≤ 1
such that

lim
β

hyβ(x) = −∑
j∈J

µ( j)x( j),

for all x ∈ ℓp(J). herefore h belongs to ℓp(J)
h ,∞ ∪ {0}. We have proved that the

inclusion

ℓp(J)
h ⊆ ℓp(J)

h ,F ⊔ ℓp(J)
h ,∞

holds.
On the other hand, suppose that h{z ,c} ∈ ℓp(J)

h ,F ∖ {0}, for some z ∈ ℓp(J) and
some c ≥ ∥z∥p . Let az ,c = (cp − ∥z∥

p
p)

1/p . Pick any countably inûnite subset K =

{ jm}∞m=1 of J, and for each m ∈ N, deûne

(5.10) ym( j) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

az ,c + z( j) if j = jm ,
z( j) if j ≠ jm .
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It is clear that ym ∈ ℓp(J) for all m ∈ N. Moreover, we have ym
w
Ð→ z and ∥ym∥

p
p Ð→

cp , as m →∞. hen, for every x ∈ ℓp(J), we have

∥x − ym∥
p
p = ∑

j≠ jm
∣x( j) − z( j)∣

p
+ ∣x( jm) − az ,c − z( jm)∣

p

= ∥x − z∥
p
p − ∣x( jm) − z( jm)∣

p
+ ∣x( jm) − az ,c − z( jm)∣

p

Ð→
m→∞

∥x − z∥
p
p + c

p − ∥z∥
p
p .

herefore, (5.10) deûnes a bounded sequence in ℓp(J) such that

lim
m→∞

hym(x) = lim
m→∞

[∥x − ym∥p − ∥ym∥p]

= (∥x − z∥
p
p + c

p − ∥z∥
p
p)

1/p
− c

= h
{z ,c}(x), for all x ∈ ℓp(J).

Hence, h{z ,c} ∈ ℓp(J)
h . Now suppose that h ∈ ℓp(J)

h ,∞ ∪ {0}. hen for every x ∈
ℓp(J), we have

h(x) = −∑
j∈J

µ( j)x( j)

for some µ ∈ ℓq(J)with ∥µ∥q ≤ 1 and q = p/(p− 1). Pick any countably inûnite subset
K = { jm}∞m=1 of J, and deûne the sequence {µm}m∈N in ℓq(J) by

µm( j) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

( 1 − ∥µ∥
q
q + ∣µ( j)∣

q
)

1/q
if j = jm ,

µ( j) if j ≠ jm .

hen ∥µm∥q = 1 for all m ∈ N, and also µm
w
Ð→ µ. By ℓp/ℓq duality, it follows that for

each m ∈ N there exists zm ∈ ℓp(J) with ∥zm∥p = 1 such that ∑ j∈J µm( j)zm( j) = 1.
herefore, by letting ym = mzm and by proceeding as in the proof of Lemma 5.3, we
obtain hym(x) → h(x) for all x ∈ ℓp(J), as m → ∞. Hence, h belongs to ℓp(J)

h .
Consequently, the inclusion

ℓp(J)
h ,F ⊔ ℓp(J)

h ,∞ ⊆ ℓp(J)
h

also holds. ∎
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