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Abstract

Parasites can have strong effects on invertebrate host behaviour, fecundity and survival in
marine ecosystems. However, parasites are often poorly documented and still rarely integrated
into marine ecological modelling; comprehensive surveys of infection in marine invertebrates
are sporadic at best. For example, rock crabs are an important part of Californian coastal eco-
systems, both as regulators of mussel populations and non-native species, and as prey items
for predators like sea otters, but their parasite communities and potential effects on crab
population dynamics are seldom studied or understood. Here, we present the first report of
infection by the trematode Helicometrina nimia in the economically and ecologically import-
ant red rock crab (Cancer productus) and Pacific rock crab (Romaleon antennarium). As inter-
mediate hosts, they are a missing link for infection by H. nimia in Californian fish that was
unreported until now. Based on these findings, we advocate for further research into parasite
diversity and their potential effects on ecologically and commercially important species.

Introduction

Digenean trematodes comprise one of the most common parasite groups in marine inverte-
brates, often infecting multiple host species due to their complex lifecycle stages, and affecting
host survival, physiology or behaviour (Mouritsen & Poulin, 2002; Lefèvre et al., 2009; Leiva
et al., 2017; Dairain et al., 2019). In recent years, parasites have increasingly been recognized as
critical components of marine food webs; they can influence biodiversity and ecosystem func-
tioning (Mouritsen & Poulin, 2005; Lafferty et al., 2008; Frainer et al., 2018; Dairain et al.,
2019). The effects of parasitism may be particularly important in marine ecosystems for spe-
cies that alter the physical structure and flow of nutrients in benthic communities (bioturba-
tors) such as rock crabs (Fanjul et al., 2011; Dairain et al., 2019).

Rock crab commercial fishing has been rapidly expanding in California while research into
their population dynamics is limited. Proper management will require accurate ecological
information (Fitzgerald et al., 2018). Commercial fishing takes vary between 450 and 900 met-
ric tons of crab annually and is a growing market (CDFW, 2019; Fitzgerald et al., 2019). Recent
reports have raised concern about a decline in the population of red (Cancer productus), yellow
(Metacarcinus anthonyi) and brown rock crabs (Romaleon antennarium), although these
trends could not be attributed specifically to either environmental factors or overfishing
(Fitzgerald et al., 2019). Beyond their economic importance, rock crabs also fulfil key ecosys-
tem roles as controllers of non-native species like the European green crab (Carcinus maenas)
(Jensen et al., 2007) or tunicates (Epelbaum et al., 2009). Cancer productus and R. antennar-
ium may also be important controllers of mussel populations, which, left unchecked, can
become dominant in lower intertidal communities (Hull & Bourdeau, 2017). With the loss
of keystone predators due to sea star wasting disease, researchers have suggested that rock
crabs may be essential in compensating for sea star population decline (Hull & Bourdeau,
2017). They are also important prey items of the southern sea otter (Enhydra lutris nereis)
(Fujii et al., 2017), as well as benthic fishes, octopus and bottom-foraging sharks (Carroll &
Winn, 1989). Here, we outline the discovery of a digenean parasite in these ecologically and
environmentally important species, highlighting a significant gap in knowledge of our under-
standing of cancrid crab populations in the Eastern North Pacific.

Materials and methods

We surveyed various crab species in central California as part of a broader study investigating
the prey of sea otters to discover the intermediate host(s) of their intestinal parasites. Crabs
were collected via hand nets and traps in Santa Cruz, Monterey and San Luis Obispo counties
from municipal wharfs (Santa Cruz Warf, Monterey Bay Municipal Warf 2, Cayucas Pier and
Port San Luis Pier) during the summer of 2019. Specimens were frozen to euthanize, and then
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dissected at the California Department of Fish and Wildlife office
in Santa Cruz, California. Species investigated included
Metacarcinus gracilis (n = 149), Metacarcinus magister (n = 4), C.
productus (n = 64) and R. antennarium (n = 63). During these
investigations, dissections of C. productus and R. antennarium
from the Monterey Bay revealed infections by metacercarial
cysts of an unknown trematode. The cysts had a thin brown mel-
anized capsule, were spherical in shape and found within the
haemocoel ( just inside the carapace and body wall) and joints
of the crabs. Metacercariae were manually extracted from their
cysts and were examined morphologically and molecularly to
determine the species.

For light microscopy, metacercariae were stained with acetic
acid carmine, cleared in clove oil and mounted permanently in
Canada balsam (fig. 1). Molecular characterization of the 28 s
ribosomal RNA (rRNA) large ribosomal subunit gene was con-
ducted with universal primers T16 (5′ GAG ACC GAT AGC
GAA ACA AGT AC 3′) and T30 (5′ TGT TAG ACT CCT
TGG TCC GTG 3′) (Harper & Saunders, 2001), sequenced via
the Sanger method at the University of Otago, New Zealand.
Characterization of the 18 s rRNA small ribosomal subunit gene
used primers SB3a (5′ GGA GGG CAA GTC TGG TGC 3′)
and A27a (CCA TAC AAA TGC CCC CGT CTG) and was
sequenced via the Sanger method at the University of Alberta,
Canada. Resulting sequences were identified with a nucleotide-
sequence BLASTn search via the National Center for
Biotechnology Information website (Altschu et al.,
1990; Madden, 2002). The 18 s sequences were edited with the
software Mega X, and fragments aligned by MUSCLE with the
program’s default parameters (Kumar et al., 2018). For the two
species infected (C. productus and R. antennarium), we investi-
gated the effect of host size (width of carapace), location of cap-
ture, sex and species on infection prevalence (binomial
distribution, ‘logit’ function) and intensity (quasi-Poisson distri-
bution, ‘log’ function) of the trematode, through Rstudio (n =
127) (Rstudio Team, 2015). Metacarcinus gracilis was not
included in the model as they were not observed to be infected
and would have led to zero inflation of the model.

Results and discussion

Morphological examination of the metacercariae identified the
specimens as members of the genus Helicometrina due to the

presence of nine testes and the genital pore located below the cae-
cal bifurcation (fig. 1) (Cribb, 2005). Metacercariae were, on aver-
age, 2190 μm long and 590 μm wide (see supplementary
material), and the cysts were, on average, 731 μm in diameter.
The 28S sequence from metacercariae retrieved from C. productus
returned a closest match to Helicometrina nimia (ex Haemulon
falvolineatum, French grunt, Mexico) with 97.97% identity
(MK648305; see Pérez-Ponce de León & Hernández-Mena,
2019). The 18S sequence from metacercariae retrieved from C.
productus returned a closest match with H. nimia, with 98.93%
(KJ995999, ex Acanthistius pictus, brick sea bass, Chile; see
Gonzalez, 2016). The 18 s sequence from R. antennarium also
returned a closest match with H. nimia, with 98.64%
(KY614306, ex Semicossyphus darwini, Galapagos sheephead
wrasse, Chile; see Ñacari et al., 2018). In three partial 18 s
sequences (two ex C. productus and one ex R. antennarium)
with coverage at 307 bp, there were four haplotypes shared by
the metacercarial sequences that were different from three exem-
plar sequences from South America (KJ995995, González et
al., 2013; KY614306, Ñacari et al., 2018; KF938641, Oliva et
al., 2015). Previous reporting of 18 specimens of H. nimia from
three different host species found nine variable sites in the 18 s
region from a partial sequence of 372 bp, with an average pairwise
difference of three (Oliva et al., 2015). We conclude our finding to
likely be H. nimia based upon comparison to available sequences
and morphological similarities. The sequences had some relation
to Helicometrina labrisomi, but the specimens did not correspond
to this species’ morphological description (Linton, 1910).

Infection prevalence was 14% in C. productus with an average
intensity of 11.7 ± 3.2 per infected crab, and 9.5% in R. antennar-
ium with an average intensity of 14.3 ± 4.9 parasites per infected
crab. Statistical analysis revealed a significant effect of carapace
width on prevalence (P < 0.01) and intensity (P < 0.01), and sex
(P = 0.01) on intensity, with females having greater intensity of
infections (fig. 2). Location of capture, crab species and their
interaction had no significant effect in the models and were
sequentially removed to create a minimum adequate model.
This is interesting as no crabs in San Luis Obispo were infected.
The lack of significant effect of location on prevalence may be
due to low prevalence and our limited sample size. Future
research should expand into broader sampling to determine if
infection does occur further south, and if there is a significant dif-
ference in infection prevalence.

Fig. 1. Metacercaria of Helicometrina sp. ex Cancer pro-
ductus stained: (a) whole worm, with the genital pore
highlighted (arrow); (b) posterior body showing imma-
ture testes (yellow) and ovary (grey). Scale bars: (a)
1 mm; (b) 500 μm.
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No metacercariae were discovered in any of the Dungeness
(M. magister) or graceful rock crabs (M. gracilis) collected. The
lack of infection in M. gracilis may be due to differences in habitat
and behaviour; M. gracilis are much smaller than C. productus
and R. antennarium, and while they co-occur in some habitat,
they are also found in shallower, open sandy habitats or eelgrass
beds and feed on different prey species (Orensanz & Gallucci,
1988; Orensanz et al., 1995). Since H. nimia is not host specific
in their decapod hosts in South America (Leiva et al., 2015,
2017), this lack of infection may be due to differences in habitat
selection. It should be noted that only four Dungeness crabs
were collected, possibly due to the time of year or the difficulty
of collection via hand net/trap. Therefore, we cannot comment
on whether this species is host for this parasite. Future sampling
should target M. magister as they are of great economic signifi-
cance (CDFW, 2019).

Species of Helicometrina have previously been reported to utilize
various decapod crustaceans as intermediate hosts. In South
America, host families include Epialtidae, Porcellanidae and
Xanthidae (Leiva et al., 2015, 2017). There exists one report of
Helicometrina cf. nimia infection in a species of Cancridae
(Romaleon polyodon) in Chile, although this report was from a single
crab (Leiva et al., 2015). The definitive hosts of Helicometrina spp.
are teleost fish. Studies have reported Helicometrina spp. in central
and South America from fish species in the families Merlucciidae,
Serranidae, Pingipedidae, Labrisomidae, Cheilodactylidae,
Ophidiinae and Gobiesocidae (Gonzalez et al., 2006; Muñoz &
Olmos, 2008; Morales-Serna et al., 2017). In North America, a
study found H. nimia tended to be a fish generalist (Holmes,
1990). Helicometrina nimia has been reported in shiner perch
(Cymatogaster aggregata) (Arai et al., 1988), and (as Helicometrina
elongata) in perch (Embiotocidae), Hubbs (Blenniidae) and scorpion-
fish (Scorpaenidae) in Southern California (Montgomery, 1957).
There is one report of H. nimia in Monterey California, where our
study was conducted, in various species of fish (Chapa, 1969).

This is the first report of a Helicometrina species in crabs of the
family Cancridae, from Pacific North America. The last report of
this parasite in Californian fish was over 30 years ago (Holmes,
1990). Nonetheless, H. nimia is a generalist in terms of its defini-
tive host use (Holmes, 1990; Gonzalez et al., 2006; Muñoz &
Olmos, 2008; Morales-Serna et al., 2017) so it is likely that the
parasite has remained unreported in the fish fauna until now.

For a first intermediate host, other species of Helicometrina use
gastropod molluscs (Leiva et al., 2015, 2017). In the
Mediterranean, species of Opecoelidae were identified in marine
snails and abalone, and the authors noted that the parasites,
unlike other trematodes, can infect multiple gastropod intermedi-
ate host species (Jousson et al., 1999; Leiva et al., 2017). Other tre-
matodes of the order Plagiorchiida have been seen to use mussels
of the family Mytilidae (Perumytilus purpuratus) (Muñoz et al.,
2012) and scallops (Argopecten purpuratus) (Oliva & Sanchez,
2005) as their first intermediate hosts in South America. If H.
nimia also utilizes mussels as their first intermediate host like
their relatives in South America this could be significant, consid-
ering the possible importance of crab predation on controlling
mussel populations (Hull & Bourdeau, 2017). However, the first
intermediate host remains unknown (Leiva et al., 2017). Future
research should seek this last missing link in order to complete
our knowledge of the life cycle of this parasite in California and
gain a better understanding of its potential role and effects in
the ecosystem, and on crab populations.

Decapod crabs tend to be prey items to teleost fish early in their
development and before they attain a size large enough to avoid
predation (except during moulting) (Carroll & Winn, 1989).
We would expect that infection then increases in prevalence
and intensity with size and age (e.g. over time), due to continued
exposure to parasite larvae as well as reduced predation. Our ana-
lysis showed a significantly positive relationship between carapace
width and both infection prevalence and intensity (fig. 2).
Interestingly, infection was not seen in any crab with a carapace
width smaller than 85 mm. There are a few possible explanations
for this (it may be due to higher rates of predation on smaller
crabs as a direct result of infection). Digenean trematodes com-
monly alter the behaviour of their gastropod intermediate hosts
(Mouritsen & Poulin, 2002), and their crustacean intermediate
hosts (McCurdy et al., 1999; Hansen & Poulin, 2005; Lagrue
et al., 2007; Lefèvre et al., 2009). Paragonimus cf. westermani
alters the behaviour of its decapod host (Eriocheir japonica)
(Kotsyuba, 2018), Microphallus turgidus alters the swimming
behaviour of Grass shrimp (Palaemonetes pugio) (Gonzalez,
2016) and co-infection by the trematode Maritrema sp. and
acanthocephalans in the body cavity of shore crabs has been cor-
related with altered serotonin levels (Poulin et al., 2003). The lack
of infection in crabs with a carapace smaller than around 85 mm

Fig. 2. Effect of carapace width in Cancer productus and Romaleonantennarium on infection. The two species are pooled as the model showed no significant dif-
ference between them. (a) Boxplot of the effect of carapace width on prevalence (presence/absence) of Helicometrina sp., median and quartiles. (b) Scatterplot of
the interaction of carapace width on intensity of infection (total parasites) by sex of the crab host (male, blue; female, red).
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may, thus, be indicative of high predation rates in small indivi-
duals that are infected. Alternatively, gill physiology and respir-
ation behaviours can affect exposure to trematodes in crabs,
which may explain the lack of observed infection in smaller
crabs (Smith et al., 2007). Though not all trematodes enter their
crab host via the gills, some entering through percutaneous pene-
tration at the leg (Gyoten, 2000). As some of the metacercariae
were found in the leg joints of some crabs, percutaneous penetra-
tion may be more likely. Differences in habitat selection by juven-
ile and adults of C. productus may also explain the lack of
infection in smaller crabs, as adults are more likely to be found
in open areas and migrate at night to shallower waters
(Orensanz & Gallucci, 1988). The full life cycle of H. nimia and
how it is transmitted to crabs is unknown. Future investigations
of the life cycle and effects of H. nimia are essential for our further
understanding of the importance of this parasite in marine
ecosystems.

Cancer crabs are an important part of marine benthic commu-
nities from intertidal to deep water through consumptive and non-
consumptive effects (Fanjul et al., 2011; Boudreau & Worm, 2012;
Dairain et al., 2019), as prey items for sea otters and fish species
(Carroll & Winn, 1989; Fujii et al., 2017), as secondary controllers
of mussel populations (Hull & Bourdeau, 2017) and as non-native
species control agents (Jensen et al., 2007; Epelbaum et al., 2009).
Due to their increasing socio-economic importance, it is essential
that research be conducted to investigate not only their little-
known population dynamics but also their parasite communities
as well (Fitzgerald et al., 2018, 2019). We suggest specific research
investigating the possible behavioural effects of infection, and how
this might be affecting the role of cancrid species in Californian
marine food webs.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0022149X20000218
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