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107.24 How to cut cubes into dodecahedra and icosahedra

Introduction
There are only five regular polyhedra; tetrahedron, cube, octahedron,

dodecahedron and icosahedron. Johannes Kepler (1571 – 1630) was
interested in these five regular polyhedra together with a rhombic
dodecahedron, and explained them in detail in Epitome of Copernican
Astronomy, published in approximately 1620. (See pages 863 – 868 of [1].
See page 154, [2] for a proof of the existence of only five regular polyhedra.
Alsina and Nelsen use the same Kepler's explanations for these polyhedra on
page 68 of [3].) In Epitome, Kepler constructs two types of dodecahedra; a
rhombic dodecahedron (Figure 4b) and a pentagonal regular dodecahedron
(see Figures 2b and 4a below) by attaching a roof over each face of the
cubes. These descriptions are nice, but the actual construction of a regular
dodecahedron by this method is not obvious since there are infinitely many
non-regular pentagonal dodecahedra. An icosahedron is described as “dual”
to a dodecahedron in Epitome. 

Notation 1.1: Let  be the  cube bounded by the six planes
,  and .

Σ 2 × 2 × 2
x = ±1 y = ±1 z = ±1

It is not difficult to make paper regular polyhedral models. But
describing how to cut the cube  by planes to make them is not easy. A
regular tetrahedron can be inscribed in  by joining vertices ,

,  and . And a regular octahedron can also
be inscribed in the cube  by joining six vertices , ,

, ,  and . So, a regular
tetrahedron and octahedron can be obtained by cutting  by planes. This
leads us to the following two questions: 

Σ
Σ (1,1,1)

(−1, −1,1) (1, −1, −1) (−1,1, −1)
Σ (1, 1

2, 1) (1
2, 1, −1)

(−1, −1
2, −1) (−1

2, −1, 1) (−1, 1, 1
2) (1, −1, −1

2)
Σ

Question 1: Is there a nice way to cut the cube  by twelve planes to obtain
a regular dodecahedron? Similarly, is there a nice way to cut the cube  by
twenty planes to obtain a regular icosahedron?

Σ
Σ

We will answer yes to these questions in Theorems 1 and 2.

This Note may appear to be totally unrelated to the golden ratio
. However, as you will see, it is rather surprising that the

golden ratio appears frequently in this paper.
ϕ = 1

2 (1 + 5)

Notation 1.2: Let , the golden ratio, and .
Both are the roots of the polynomial equation ,
and .

ϕ = 1
2 (1 + 5) ϕ̄ = 1

2 (1 − 5)
x2 − x − 1 = 0 ϕ ≈ 1.618

ϕ̄ ≈ −0.618
Notation 1.3: The resulting regular dodecahedron by cutting the cube  by
twelve planes is denoted by  (see Theorem 1). The resulting regular
icosahedron by cutting the cube  by twenty planes is denoted by
(see Theorem 2).

Σ
K (ϕ)

Σ K̂ (ϕ2)

Optimising polyhedra inside of a cube has a history. Interested readers
may wish to web-search Prince Rupert's problem. Also, see Sections 4.2 and
6.9 in [3]. The largest regular tetrahedron and octahedron contained in the
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cube  are the ones described above. We think  is the largest regular
icosahedron inscribed in the cube . So, the following question seems
natural.

Σ K̂ (ϕ2)
Σ

Question 2: Can  and the rhombic dodecahedron  (see Notation
2.1) be contained in smaller cubes than ?

K (ϕ) K (1)
Σ

We will answer yes to this question in Theorems 3 and 4.

Dodecahedron
The idea to answer Question 1 came from the intersection of three

square-cylinders ,  and . The intersection is
a dodecahedron with 12 identical rhombic faces as in Figure 4b.

|y| + |z| = 1 |z| + |x| = 1 |x| + |y| = 1

Notation 2.1: We call the intersection of three square-cylinders
,  and  the rhombic dodecahedron, and

denote it by  which is the same rhombic dodecahedron described in
Epitome and this explains how to cut  with twelve planes to make .

|y| + |z| = 1 |z| + |x| = 1 |x| + |y| = 1
K (1)

Σ K (1)

Notation 2.2: The intersection of three rhombic cylinders ,
 and , , is a dodecahedron with

pentagonal faces, and we denote it by .

|y| + 1
a |z| = 1

|z| + 1
a |x| = 1 |x| + 1

a |y| = 1 a > 1
K (a)

Visualising  is rather difficult. Figure 2a is a sketch of the three
rhombic cylinders ,  and . And
Figure 2b is the sketch of .

K (a)
|y| + 1

a |z| = 1 |z| + 1
a |x| = 1 |x| + 1

a |y| = 1
K (a)

Figure 2c is the part of  in the first octant. It is bounded by planes
, , , ,  and . The point

 is the intersection of the three planes ,
 and . The point  is the

intersection of the three planes ,  and . The
points  and  in Figure 2c can be obtained
similarly.

K (a)
x = 0 y = 0 z = 0 y + z

a = 1 z + x
a = 1 x + y

a = 1
A = ( a

a + 1, a
a + 1, a

a + 1) y + z
a = 1

z + x
a = 1 x + y

a = 1 B = (0, (1 − 1
a) ,1)

x = 0 y + z
a = 1 z + x

a = 1
C (1,0, (1 − 1

a)) D = ((1 − 1
a) ,1,0)

The part of  in the second octant, drawn in Figure 2d, is bounded
by planes , , , ,  and .
Here, ,  and .

K (a)
x = 0 y = 0 z = 0 y + z

a = 1 z − x
a = 1 −x + y

a = 1
A′ = (− a

a+ 1, a
a+ 1, a

a+ 1) C′ = (−1,0, (1 − 1
a)) D′ = (− (1 − 1

a) ,1,0)
Two solids in Figures 2c and 2d are mirror images of each other. Hence,

the solid bounded by the three rhombic cylinders is made up with four of the
solids in Figure 2c, and four of the solids in Figure 2d. This shows that
is a pentagonal dodecahedron having identical pentagonal faces (not
necessarily regular) in Figure 2b fitting tangentially inside the
cubic box . Eight of the 20 vertices of this dodecahedron are

. The remaining twelve vertices are ,
 and . This also shows that this pentagonal

dodecahedron is constructed by building a roof over each of the six faces of
the cube having vertices . Kepler's description (see page
866 of [1] or Section 4.3 of [3]) of a regular dodecahedron is misleading

K (a)

2 × 2 × 2
Σ

(± a
a+ 1, ± a

a+ 1, ± a
a+ 1) (±(1 − 1

a), ±1,0)
(±1,0, ±(1 − 1

a)) (0, ±(1 − 1
a), ±1)

(± a
a+ 1, ± a

a+ 1, ± a
a+ 1)
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since it seems to suggest that only a regular dodecahedron  and a
rhombic dodecahedron  can be constructed by raising roofs over faces
of a cube. However,  for any  can be constructed this way.
Because of the symmetry, all twelve pentagonal faces of  are identical
even though they are not regular pentagons in general.

K (ϕ)
K (1)

K (a) a > 1
K (a)

1

1

1

z

B′ C

A B

y
Dx

z
B′

C

B

y
x

A′

D′
D

A

FIGURE 2a: Three 
intersecting rhombic cylinders

FIGURE 2b: A dodecahedron 
from Figure 2a

z

C
A

y
D

x

B

11

1

z

y

x

B
A′

D′

(0,0,1)

O
(−1,0,0)

(0,1,0)

′C

FIGURE 2c: One eighth of 
Figure 2b dodecahedron

FIGURE 2d: Another one 
eighth of Figure 2b

Before we state the next theorem, it is useful to know some properties of
the golden ratio .ϕ

Lemma 1: 
(a) ,ϕ2 = 1

2 (3 + 5)
(b) ,ϕ4 + ϕ2 + 1 = 4ϕ2

(c) .−ϕ3 + ϕ2 − ϕ = −2ϕ
Proofs are elementary, and we leave them to the readers.

Theorem 1: The dodecahedron  is a regular dodecahedron with twenty
vertices , ,  and . The
edge-length of  is .

K (ϕ)
(±ϕ̄, ±ϕ̄, ±ϕ̄) (±ϕ̄2, ±1,  0) (±1,  0, ±ϕ̄2) (0, ±ϕ̄2, ±1)

K (ϕ) 2ϕ̄2 = 3 − 5
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Proof: Let . Note that  and
, etc. So, in order for  to be a regular

dodecahedron, we must have . But

B′ = (0, − (1 − 1
a) ,1) �BB′

⎯⎯→
� = �DD′

⎯⎯→
�

�AB
→

� = �AC
→

� = �AD
→

� K (a)
�AB

→
� = �BB′

⎯⎯→
�

AB
→

= 〈− a
a + 1

, −
1

a (a + 1)
,

1
a + 1〉 =

1
a (a + 1)

〈−a2, −1, a〉

so that  and  so that

.  Hence,  gives us the equation 
�AB

→
� = 1

a(a + 1) a4 + a2 + 1 BB′
⎯⎯→

= −2
a 〈0, a − 1,0〉

�BB′
⎯⎯→

� = 2
a (a − 1) �AB

→
� = �BB′

⎯⎯→
�

1
a (a + 1)

a4 + a2 + 1 =
2
a

(a − 1) .

This simplifies to . By noting that  and by the
quadratic formula, the solution to this polynomial is

, by Lemma 1.

a4 − 3a2 + 1 = 0 a > 0

a =
3 + 5

2
=

1 + 5
2

= ϕ

By assuming , we will show that each face is a regular pentagon.
Let  and . Then the vectors  and  are parallel
to  and , respectively. Hence, 

a = ϕ
α = ∠BAC β = ∠ABB′ AB

→
AC
→

〈−ϕ2, −1, ϕ〉 〈ϕ, −ϕ2, −1〉

cos α =
−ϕ3 + ϕ2 − ϕ
ϕ4 + ϕ2 + 1

=
−2ϕ
4ϕ2

=
−1
2ϕ

=
1
2

ϕ̄

by the dot product and Lemma 1. The vectors  and  are parallel to
 and , respectively. Hence,

BB′
⎯⎯→

BA
→

〈0, −1,  0〉 〈ϕ2,  1, −ϕ〉

cos β =
−1

ϕ4 + ϕ2 + 1
=

−1
4ϕ2

=
−1
2ϕ

=
1
2

ϕ̄.

This shows that . By the symmetry, we know that the face containing
vertices ,  and  is a pentagon with equal edge-lengths and equal angles so
that it is a regular pentagon. Since each face is congruent, this shows that the

solid is a regular dodecahedron. Noting that  and ,

we have proved the theorem.

α = β
A B C

ϕ
ϕ + 1

=
1
ϕ

= −ϕ̄ 1 −
1
ϕ

= ϕ̄2

Remark 2.1: The rhombic dodecahedron  can be thought of as the
limiting case of  as . And  approaches  as . Note
that, for any ,  is contained in the  cube , and can be
thought of as a dodecahedron obtained by raising a roof over each face of
the cube having vertices .

K (1)
K (a) a → 1 K (a) Σ a → ∞

a ≥ 1 K (a) 2 × 2 × 2 Σ

(± a
a + 1, ± a

a + 1, ± a
a + 1)

Remark 2.2: (A construction of , , from a cube.) On the faces of
a cube, draw three lines as in Figure 2e. Draw three additional lines on the
opposite faces so the lines are parallel to the opposite ones. Draw slanted
lines at the angle  from the floor to the mid-line. (If the angle is

, we obtain a regular dodecahedron. If the angle is ,
we obtain a rhombic dodecahedron.) Repeat this on each face and connect

K (a) a ≥ 1

tan−1 (a)
tan−1 (ϕ) tan−1 (1) = π

4
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the bottom of the slanted lines as in Figure 2f. Then cut along the angled
lines in Figure 2f. As an intermediary step, you may get a solid as in
Figure 2g. When you finish cutting all with twelve planes, you will obtain a
dodecahedron as in Figure 2b.

FIGURE 2e: A box
with mid-line

FIGURE 2f: Lines with
the angle  tan−1 a

FIGURE 2g: After four 
cuts were made

Icosahedron 
We will construct an icosahedron from . By the second Section, the

vertices of  are , ,
and . Let , , , ,  and ,  be all the same as in the
second Section. Notice that the vertices , ,  form an equilateral triangle

. So, we remove the tetrahedron  from  by cutting along the
triangle  (see Figure 3b). By repeating this eight times in each octant,
we remove eight tetrahedra from , each having one of 

K (a)
K (a) (± a

a + 1, ± a
a + 1, ± a

a + 1) (±(1 − 1
a), ±1,0) (±1,0, ±(1 − 1

a))
(0, ± (1 − 1

a) , ±1) A B B′ C C′ D D′
B C D

BCD ABCD K (a)
BCD

K (a)

(± a
a + 1

, ±
a

a + 1
, ±

a
a + 1)

as a vertex. The figure in Figure 3a is the dodecahedron  with lines of
cuts drawn on its faces. The result is an icosahedron, denoted by , in
Figure 3c.  It has twelve isosceles triangular faces inherited from the twelve
faces of  congruent to the triangle , and eight equilateral
triangular faces congruent to the triangle . Hence,  is an
icosahedron. Also, note that  has twelve vertices since eight vertices

 were eliminated from twenty vertices of . Figure
3c shows the icosahedron  with twelve vertices ,

 and . 

K (a)
K̂ (a)

K (a) BCB′
BCD K̂ (a)

K̂ (a)
(± a

a + 1, ± a
a + 1, ± a

a + 1) K (a)
K̂ (a) (± (1 − 1

a) , ±1,0)
(±1,0, ± (1 − 1

a)) (0, ± (1 − 1
a) , ±1)

z
B′

C

B

yDx

z
B′

C

y
D

x

B

D′

FIGURE 3a:
With lines of cut

FIGURE 3b: 
With one cut

FIGURE 3c: After all 
eight cuts were made
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Remark 3.1: If we let , then  becomes the regular octahedron
bounded by . Since  as ,
becomes  as .

a → 1 K̂ (a)
|x| + |y| + |z| = 1 K (a) → Σ a → ∞ K̂ (a)

Σ a → ∞
Theorem 2: The icosahedron  is regular. The twelve vertices of
are ,  and . The regular icosahedron
has edge-length .

K̂ (ϕ2) K̂ (ϕ2)
(±ϕ̄, ±1,0) (±1,0, ±ϕ̄) (0, ±ϕ̄, ±1) K̂ (ϕ2)

2 |ϕ̄| = 5 − 1

Proof: In order for  to be a regular icosahedron, all we have to do is to
make all 12 isosceles triangular faces to be equilateral since two identical
edges of an isosceles triangle are the edges of equilateral triangular faces. In
particular, we want the isosceles triangle  to be equilateral. Since

K̂ (a)

BCB′

�BC
→

� = �〈1, 0, 1 −
1
a〉 − 〈0, 1 −

1
a

,1〉� = �〈1, −1 +
1
a

, −
1
a〉�

= 1
a 2 − 2a + 2a2

and  must be the same, we have
or . Solving it for , we have 

�BB′
⎯⎯→

� = 2(1 − 1
a) 1

a 2 − 2a + 2a2 = 2(1 − 1
a)

a2 − 3a + 1 = 0 a > 1

a =
3 + 5

2
= (1 + 5

2 )2

= ϕ2

by Lemma 1. Since  and , we have proved the theorem.2 − 1
ϕ2 = ϕ 1 − 1

ϕ2 = −ϕ̄

Remark 3.2: By joining each vertex to the origin, the regular icosahedron
 can be thought of as a union of 20 identical tetrahedra. The distance

from its vertex  to the origin is . The edge-length of
is . Since , these 20 tetrahedra are not regular even
though they are very close to being regular.

K̂ (ϕ2)
(1,0, −φ̄) 1 + ϕ̄2 K̂ (ϕ2)

2 |ϕ̄| 1 + ϕ̄2 < 2 |ϕ̄|

Remark 3.3: The description of , , at the beginning of this section
shows how to cut the dodecahedron  by removing eight tetrahedra to
obtain the regular icosahedron . The angle of cuts to obtain  in
Figure 2f is . It is interesting to note that the angles between two
adjacent faces of a regular dodecahedron and icosahedron are given by

 and , respectively. 

K̂ (a) a > 1
K (ϕ2)

K̂ (ϕ2) K (ϕ2)
tan−1 (ϕ2)

2 tan−1 (ϕ) 2 tan−1 (ϕ2)

Cubes smaller than  that contain  and Σ K (ϕ) K (1)
We will show that the regular dodecahedron  and the rhombic

dodecahedron  can be contained in cubes slightly smaller than . The proofs
of Theorems 3 and 4 are rather technical.

K (1)
Σ

Notation 4a: .α = 2 − 1

Theorem 3: The cubic box  contains the regular
dodecahedron . Note that .

2ϕ
1 + αϕ × 2ϕ

1 + αϕ × 2ϕ
1 + αϕ

K (ϕ) 2ϕ
1 + αϕ ≈ 1.9375
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Proof: Let , ; and let the symmetric points
with respect to the origin be , .

A = (0, ϕ̄2,1) B = (0, −ϕ̄2,  1)
A′ = (0, −ϕ̄2, −1) B′ = (0, ϕ̄2, −1)

Let , ; ,
and , ; , .
These are vertices of  by Theorem 1. (See Figure 4a. This figure is the
same as the one in Figure 2b. But vertices are labelled differently.) 

C = (−ϕ̄, −ϕ̄, −ϕ̄) D = (ϕ̄2,  1,0) C = (ϕ̄, ϕ̄, ϕ̄) D = (−ϕ̄2, −1,0)
E = (−ϕ̄, ϕ̄, −ϕ̄) F = (ϕ̄2, −1,0) E′ = (ϕ̄, −ϕ̄, ϕ̄) F′ = (−ϕ̄2,1,0)

K (ϕ)

The segments (  and ),  and  and  and  are
pairwise parallel. Moreover, ,  and ,
where ,  and .
Let ,  and .

AB A′B′ (CD C′D′) (EF E′F′)
AB
→

= −2ϕ̄2·u# CD
⎯⎯→

= ϕ̄·v# EF
→

= ϕ̄·w#
u# = 〈0,1,0〉 v# = 〈ϕ̄ + 1, 1 + ϕ̄

ϕ̄ ,1〉 = 〈ϕ̄2, ϕ̄,1〉 w# = 〈ϕ̄2, −ϕ̄,1〉
α = 2 − 1 p# = 〈α, 0, −ϕ〉, q# = 〈ϕ,1 + αϕ, α〉 r# = 〈ϕ, −(1 + αϕ), α〉

(*) Note that  and .ϕϕ̄ = −1 α2 + ϕ2 = 1
2 (9 + 5 − 4 2) = (1 + αϕ)2

Using (*), we can verify the following dot products: 

u# ·p# = v# ·q# = w# ·r# = p# ·q# = q# ·r¯ = r# ·p# = 0.
The part  shows that u# ·p# = v# ·q# = w# ·r# = 0
(1) the segment  is contained in the plane  that
passes through  with the normal vector ,

AB Γ : αx − ϕ (z − 1) = 0
A p#

(2) segment  is contained in the plane  that
passes through  with the normal vector ,

A′B′ Γ̂ : αx − ϕ (z + 1) = 0
A′ p#

(3) the segment  is contained in the plane  CD
Λ : ϕ (x + ϕ̄) + (1 + αϕ) (y + ϕ̄) + α (z + ϕ̄) = 0

through  with the normal vector ,C q#
(4) segment  is contained in the plane C′D′

Λ̂ : ϕ (x − ϕ̄) + (1 + αϕ) (y − ϕ̄) + α (z − ϕ̄) = 0
through  with the normal vector ,C′ q#
(5) the segment  is contained in the plane EF

Ω : ϕ (x + ϕ̄) − (1 + αϕ) (y − ϕ̄) + α (z + ϕ̄) = 0
through  with the normal vector , andE r#
(6) the segment  is contained in the plane through  with the normal
vector ; we denote this plane by .

E′F′ E′
r# Ω̂

So, the planes (  and ), (  and ) and (  and ) are pairwise parallel.
Since , the planes  are mutually perpendicular.
Hence, the six planes , , , , ,  bound a rectangular box. Again, by
(*), we have the following: 

Γ Γ̂ Λ Λ̂ Ω Ω̂
p# ·q# = q# ·r# = r# ·p# = 0 Γ, Λ, Ω

Γ Γ̂ Λ Λ̂ Ω Ω̂

d (Γ, Γ̂) = d (Γ, A′) =
2ϕ

α2 + ϕ2
=

2ϕ
1 + αϕ

,

d (Λ, Λ̂) = d (Λ, D′) =
|ϕ·2ϕ̄ + 2ϕ̄(1 + αϕ) + 2αϕ̄|

α2 + (1 + αϕ)2 + ϕ2
=

2ϕ 2
2(1 + αϕ) =

2ϕ
(1 + αϕ)

and

 d (Ω, Ω̂) = d (Ω, F′) =
|ϕ·2ϕ̄ + 2ϕ̄(1 + αϕ) + 2αϕ̄|

α2 + (1 + αϕ)2 + ϕ2
=

2ϕ
(1 + αϕ).
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This shows that the rectangular box bounded by six planes , , , , ,
forms a  cubic box. From the construction, all points of

 are contained in the inside or on the surface of the
cubic box. This proves the theorem.

Γ Γ̂ Λ Λ̂ Ω Ω̂
2ϕ

1 + αϕ × 2ϕ
1 + αϕ × 2ϕ

1 + αϕ
K (ϕ) 2ϕ

1 + αϕ × 2ϕ
1 + αϕ × 2ϕ

1 + αϕ

z

B′

C

AB

yD
x

A′

E

E′

F F′

z

C

A

y

x

B

A′

D′

E

F

C′

FIGURE 4a: 
Labelling for Theorem 4.1

FIGURE 4b: 
Labelling for Theorem 4.2

Since  is contained in , we can see the rhombic dodecahedron
can be inscribed in a cube smaller than a  cube. But we can do better. 

K (1) K (ϕ)
2 × 2 × 2

Theorem 4: A  cube can contain the rhombic dodecahedron . ϕ × ϕ × ϕ K (1)

Proof: The idea of this proof is similar to the proof of Theorem 3.
Let , ; , .A = (0,0,1) B = (1

2, 1
2, 1

2) A′ = (0,  0, −1) B = (−1
2, −1

2, −1
2)

Let , ; , ,C = (0,1,0) D = (−1
2, 1

2, −1
2) C′ = (0, −1,  0) D′ = (1

2, −1
2, 1

2)
and , ; , .E = (1,0,0) F = (1

2, 1
2, −1

2) E′ = (−1,0,0) F′ = (−1
2, −1

2, 1
2)

These are vertices of . See Figure 4b.K (1)

The segments (  and ), (  and ) and (  and ) are
pairwise parallel, and symmetric with respect to the origin. We have

,  and , where ,
and . Let ,  and

. Then we can verify the following dot products:

AB A′B′ CD C′D′ EF E′F′

AB
→

= 1
2u# CD

⎯⎯→
= −1

2v# EF
→

= 1
2w# u# = 〈1,1, −1〉 v# = 〈1,1,1〉

w# = 〈−1,1, −1〉 p# = 〈1, ϕ, ϕ2〉 q# = 〈1, −ϕ, −ϕ̄〉
r# = 〈1, ϕ̄2, ϕ̄〉

u# ·p# = v# ·q# = w# ·r# = p# ·q# = q# ·r# = r# ·p# = 0.
The first part of three dot products:  shows the following:u# ·p# = v# ·q# = w# ·r# = 0
(1) the segment  is contained in the plane  that
passes through  with the normal vector ,

AB Γ : x + ϕy + ϕ2(z − 1) = 0
A p#

(2) the segment  is contained in the plane, call it , through  with the
normal vector ,

A′B′ Γ̂ A′
p#

(3) the segment  is contained in the plane
through  with the normal vector ,

CD Λ : x − ϕ(y − 1) − ϕ̄z = 0
C q#

(4) the segment  is contained in the plane, call it , through  with the
normal vector ,

C′D′ Λ̂ C′
q#

(5) the segment  is contained in the plane
through  with the normal vector , and 

EF Ω : (x − 1) + ϕ̄2y + ϕ̄z = 0
E r#
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(6) the segment  is contained in the plane  through  with the normal
vector .

E′F′ Ω̂ E′
r#

So the six planes , ,  are pairwise parallel.(Γ, Γ̂) (Λ, Λ̂) (Ω, Ω̂)
Since , three planes  are mutually

perpendicular. Hence, planes  bound a rectangular box.
Moreover, we have 

p# ·q# = q# ·r# = r# ·p# = 0 Γ, Λ, Ω
Γ, Γ̂, Λ, Λ̂, Ω, Ω̂

d (Γ, Γ̂) = d (Γ, A′) =
|ϕ2 (−1 − 1)|
1 + ϕ2 + ϕ4

=
2ϕ2

4ϕ2
= ϕ,

 andd (Λ, Λ̂) = d (Λ, C′) =
|2ϕ|

1 + ϕ2 + ϕ̄2
=

2ϕ
4

= ϕ,

d (Ω, Ω̂) = d (Ω, E′) =
|−2|

1 + ϕ̄2 + ϕ̄4
=

|−2|
(2ϕ̄)2

= |−2
2

(−ϕ)| = |ϕ| = ϕ.

So, these six planes  bound a  cube. From the
construction, all vertices of  lie on or inside of the  cubic
box. Therefore, the theorem follows. 

Γ, Γ̂, Λ, Λ̂, Ω, Ω̂ ϕ × ϕ × ϕ
K (1) ϕ × ϕ × ϕ
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107.25 A refinement of Griffiths' formula for the sums of
the powers of an arithmetic progression

Consider the sum of -th powers of the terms of an arithmetic
progression with first term  and common difference 

k
a d

Sa,d
k (n) = ak + (a + d)k + (a + 2d)k +  …  + (a + (n − 1) d)k ,

where , ,  and  are assumed to be integer variables with  and
. In [1], Griffiths derived the following polynomial formula:

k a d n k, a ≥ 0
d, n ≥ 1

Sa,d
k (n) = ∑

k + 1

m = 1
∑
k + 1

r = m

1
r

 dk − m ⎧
⎩
⎨

⎫
⎭
⎬

⎡
⎢
⎣

⎤
⎥
⎦

⎯⎯⎯

((a + nd)m − am) , (1)k
r − 1

r
m
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