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In the study of connected partially ordered spaces a problem of fundamental interest is to
determine sufficient conditions to ensure the existence of chains (i.e., simply ordered subsets)
which are connected. Recently [5] R. J. Koch proved that, if X is a compact Hausdorff space
with continuous partial order (i.e., the partial order has a closed graph), if L(x) = {y : y < x}
is connected for each x€ X, and if X has a zero (i.e., an element 0 such that 0 £ x for all xe X),
then each element of X lies in a connected chain containing zero. It is easy to find simple
examples which show that this result is false if X is assumed only to be locally compact. How-
ever, if it is assumed that the partial order is that of a topological lattice then the existence of
such chains can be shown by elementary methods. This solves a problem which was proposed
in [3].

Recall that a topological semilattice can be defined to be a partially ordered Hausdorff
space (S, <) such that the operation x A y = g.1.b.(x, ) is defined and continuous on § x S.
If, in addition, the operation x v y = Lu.b.(x, y) is defined and continuous, then (S, <) is a
topological lattice. 1t is known [1, 4] that the partial order is continuous in a topological
semilattice. Moreover, if .S is connected then so is x A S = L(x) for each x& S.

Let a and b be elements of a partially ordered space with @ < b. We say that a is chained to
b provided that the space contains a connected chain C such that a = inf C and b = sup C.
In addition, C is said to be a chain from a to b. 1t follows from [6] that if the space is locally
compact then such a chain is compact.

Finally, we recall that a subset C of a partially ordered set S is convex if, whenever
x < yand y < z with x and z elements of C and ye S, it follows that ye C. A partially ordered
space 1s locally convex provided that the topology possesses a base consisting of convex sets.
A subset K of a partially ordered set is order-dense if, whenever a and b are elements of K
and a < b, there exists an element ¢ of K such that a < ¢ and ¢ < b.

LemMA. Let S be a connected locally compact semilattice, let U be an open subset of S, and
let xe U. If x has arbitrarily small closed order-dense neighbourhoods, then there exists an open
set V, with xe V < U, such that if y and z are elements of V then y A z is chained to z.

Proof. Let W be an open set such that xe W < U and W is order-dense and compact.
Since A is continuous there exists an open set ¥ such that

xeVecVaVcW.

If y and z are elements of ¥ then y A ze W. Let C be a chain in W which is maximal with
respect to containing y A z and z. Since W is a compact order-dense partially ordered space,
each of its maximal chains is compact [6, Lemma 4] and order-dense, and hence C is connected

[6, Theorem 4]. The set Cn{p:y A z < p £z} is clearly a connected chain from y A z to
z.
A
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THEOREM 1. Let S be a connected locally compact semilattice with zero and suppose that

each element of S has arbitrarily small closed order-dense neighbourhoods. Then zero is chained
to each xe S.

Proof. Let P denote the set of all xeS such that O (zero) is chained to x. Obviously
0eP so that it is sufficient to prove that P is open and closed. Let xeP and let U and V be
chosen as in the lemma. If ye V, then there is a connected chain C(x A y, y) from x A y to y.

If C is a connected chain from 0 to x then (C A ) u C(x A y, y) is a connected chain from 0 to
y. Hence yeP and P is open.

To see that P is closed let xe P and again choose U and ¥ as in the lemma. Let ye VNP,
let C be a connected chain from 0 to y and C(x A y, x) a connected chain from x A y to x.
Then (C A x) U C(x A y, x) is a connected chain from 0 to x so that xeP, i.e., P is closed.

We do not know whether a connected and locally compact locally order-dense semilattice
necessarily satisfies the hypothesis of Theorem 1. However, for lattices the situation is simpler.

COROLLARY 1. If L is a connected and locally compact topological lattice with zero, then
zero is chained to each element of L.

Proof. 1t suffices, in view of Theorem 1, to show that each point of L has arbitrarily small
closed order-dense neighbourhoods. Let xe U, an open set in L. It is known [2] that L is
locally eonvex and hence xe ¥V = U, where V is some open convex set. Let W be open and
xe WeW < V; if C(W)denotes the smallest convex set containing W then C(W)< C(V)=V.
From [2] C(W) is closed; hence x has arbitrarily small closed convex neighbourhoods. To
see that C(W) is order-dense, let @ and b be elements of C(W) with a < b; thenb A (@ v L) is
a connected subset of C(W) and hence C(W) contains an element ¢ such that a < ¢ < b.

COROLLARY 2. If L is a connected and locally compact topological lattice and ifa £ b in L,
then a is chained to b in L.

Proof. Apply Corollary 1 to the lattice a v L.

There exists a connected and locally compact topological semilattice with zero such that
zero is not chained to each point. In the cartesian plane let

A, ={1,y):0=y=1},
A,= {(1_2—n’ J’)'Oé}’é 1} (n=0,1, '*")’
B={(x,00:0<x <1},

L =Bu U {4,).
n=-1
If L = L'—{(1, 0)} is partially ordered by (a, b) < (¢, d) if and only if a £ cand b £ d, then it is
easy to verify that L is a connected and locally compact topological semilattice with zero.
However, there is no connected chain from zero to (1, 1).

If the topological semi-lattice is also locally connected, then it is not known whether zero
is chained to each point. However, there exists a locally compact and locally connected par-
tially ordered space X satisfying these conditions: the partial order is continuous and there
exists a zero, L(x) = {y: y < x} is connected for each x€ X, and there is a point pe X such that
zero is not chained to p. To see this, let X be the product of the closed unit interval with itself,
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with the point (1, 0) deleted. Define (a, b) < (c, d) if and only if the following condition is
satisfied: if ¢ < 1 theneithera=cand b < dora = cand b =0; if c = 1 then eithera = 1 and
b=<d,ora<1andb=0,ora=(n—1)/nfor some positive integer nand b < d. Itisa tedious
but elementary exercise to verify that this relation is a continuous partial order, that L(x) is
connected for each xe X, and that (0, 0) is the zero of X. Moreover, there is no connected
chain from (0, 0) to (1, 1).

Let I denote the closed unit interval of real numbers. An arcwise connected space X is
said to be simply connected if, given a point ae X and a continuous function f: J— X with
f(0) =f(1), there is a homotopy g: Ix I— X such that g(,0)=f(¥), g(t, 1) =a, and
g(0,r)=g(l,r)=aforeachrel

THEOREM 2. If S is an arcwise connected topological semilattice with zero, then S is simply
connected.

Proof. Let f: I—- S be continuous with f(0) =f(1)=0. Define g: I'x =S by
g, =1 A f1=1r).

CoROLLARY 3. If S is a connected and locally compact metric topological semilattice with
zero and if each element of S has arbitrarily small closed order-dense neighbourhoods, then S is
simply connected.

Proof. By Theorem 1, zero is chained to each point of S. It is well-known that a compact
connected metric chain is an arc (see, for example, [7, p. 30]) and hence S is arcwise connected.

CoRrOLLARY 4. If L is a connected and locally compact metric topological lattice with zero,
then L is simply connected.
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