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In the study of connected partially ordered spaces a problem of fundamental interest is to
determine sufficient conditions to ensure the existence of chains (i.e., simply ordered subsets)
which are connected. Recently [5] R. J. Koch proved that, if X is a compact Hausdorff space
with continuous partial order (i.e., the partial order has a closed graph), if L{x) = {y : y ^ x]
is connected for each xeX, and if A1 has a zero (i.e., an element 0 such that 0 ^ x for all xe X),
then each element of X lies in a connected chain containing zero. It is easy to find simple
examples which show that this result is false if X is assumed only to be locally compact. How-
ever, if it is assumed that the partial order is that of a topological lattice then the existence of
such chains can be shown by elementary methods. This solves a problem which was proposed
in [3].

Recall that a topological semilattice can be defined to be a partially ordered Hausdorff
space (S, ^ ) such that the operation x A y = g.l.b.(x, y) is defined and continuous on S x S.
If, in addition, the operation x v y = l.u.b.(x, y) is defined and continuous, then (5, ^ ) is a
topological lattice. It is known [1, 4] that the partial order is continuous in a topological
semilattice. Moreover, if S is connected then so is x A S = L(x) for each xe S.

Let a and b be elements of a partially ordered space with a ^ b. We say that a is chained to
b provided that the space contains a connected chain C such that a = inf C and b = sup C.
In addition, C is said to be a chain from a to b. It follows from [6] that if the space is locally
compact then such a chain is compact.

Finally, we recall that a subset C of a partially ordered set S is convex if, whenever
x < y and y < z with x and z elements of C and y e S, it follows that y e C. A partially ordered
space is locally convex provided that the topology possesses a base consisting of convex sets.
A subset AT of a partially ordered set is order-dense if, whenever a and b are elements of K
and a < b, there exists an element c of K such that a < c and c < b.

LEMMA. Let S be a connected locally compact semilattice, let U be an open subset ofS, and
let xeU. Ifx has arbitrarily small closed order-dense neighbourhoods, then there exists an open
set V, with xsV <=. U, such that ify and z are elements of V then y A Z is chained to z.

Proof. Let W be an open set such that xeWa U and W is order-dense and compact.
Since A is continuous there exists an open set V such that

xeVc VA Vcz W.

If y and z are elements of V then y A zeW. Let C be a chain in W which is maximal with
respect to containing y A Z and z. Since W is a compact order-dense partially ordered space,
each of its maximal chains is compact [6, Lemma 4] and order-dense, and hence C is connected
[6, Theorem 4]. The set Cn {p : y A Z ^ p ^ z} is clearly a connected chain from y A Z to
z.
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THEOREM 1. Let S be a connected locally compact semilattice with zero and suppose that
each element ofS has arbitrarily small closed order-dense neighbourhoods. Then zero is chained
to each xeS.

Proof. Let P denote the set of all xeS such that 0 (zero) is chained to x. Obviously
OeP so that it is sufficient to prove that P is open and closed. Let xeP and let U and V be
chosen as in the lemma. If ye V, then there is a connected chain C(x A y, y) from x A y to y.
If C is a connected chain from 0 to x then (C A j>) u C(x A y, y) is a connected chain from 0 to
y. Hence yeP and P is open.

To see that P is closed let x e P and again choose U and V as in the lemma. Let yeVnP,
let C be a connected chain from 0 to y and C(x A y, x) a connected chain from x A y to x.
Then (C A X) U C(X A y, x) is a connected chain from 0 to x so that xeP, i.e., /* is closed.

We do not know whether a connected and locally compact locally order-dense semilattice
necessarily satisfies the hypothesis of Theorem 1. However, for lattices the situation is simpler.

COROLLARY 1. If L is a connected and locally compact topological lattice with zero, then
zero is chained to each element ofL.

Proof. It suffices, in view of Theorem 1, to show that each point of L has arbitrarily small
closed order-dense neighbourhoods. Let xeU, an open set in L. It is known [2] that L is
locally convex and hence xeV <= U, where V is some open convex set. Let W be open and
x e We W c V; if C( W) denotes the smallest convex set containing W then C(W) c C( V) = V.
From [2] C(W) is closed; hence x has arbitrarily small closed convex neighbourhoods. To
see that C{W) is order-dense, let a and b be elements of C(W) with a < b\ then b A (a v L) is
a connected subset of C(W) and hence C(W) contains an element c such that a < c < b.

COROLLARY 2. IfL is a connected and locally compact topological lattice and if a ̂  b in L,
then a is chained to b in L.

Proof. Apply Corollary 1 to the lattice ay L.
There exists a connected and locally compact topological semilattice with zero such that

zero is not chained to each point. In the cartesian plane let

An = {(l-2-",y):0^y^l} (n = 0, 1, ....),

B = {(x, 0): 0 ̂  x ̂  1},

L =BKJ U K } .
n = - l

IfL = I/-{(1,0)} is partially ordered by (a, b) ̂  (c, </)ifandonlyifa ^ c and b ̂  d, then it is
easy to verify that L is a connected and locally compact topological semilattice with zero.
However, there is no connected chain from zero to (1,1).

If the topological semi-lattice is also locally connected, then it is not known whether zero
is chained to each point. However, there exists a locally compact and locally connected par-
tially ordered space X satisfying these conditions: the partial order is continuous and there
exists a zero, L(x) = {y.y^x} is connected for each xeX, and there is a point/>e A'such that
zero is not chained to p. To see this, let X be the product of the closed unit interval with itself,
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with the point (1, 0) deleted. Define {a, b) ^ (c, d) if and only if the following condition is
satisfied: if c < 1 then either a = c and b ^ dor a ^ c and b = 0; if c = 1 then either a = 1 and
b^d, or a^l and 6 = 0, or a = (n — l)/n for some positive integer n and b < d. It is a tedious
but elementary exercise to verify that this relation is a continuous partial order, that L(x) is
connected for each xeX, and that (0, 0) is the zero of X. Moreover, there is no connected
chain from (0, 0) t o ( l , 1).

Let / denote the closed unit interval of real numbers. An arcwise connected space X is
said to be simply connected if, given a point aeX and a continuous function/: I-+X with
/(0) =/ ( ! ) , there is a homotopy g: IxI->X such that g(t, 0) =/(*), g(t, 1) = a, and
g(0, /•) = g(1, r) = a for each r e / .

THEOREM 2. If S is an arcwise connected topological semilattice with zero, then S is simply
connected.

Proof. L e t / : I-*S be continuous with /(0) = / ( l ) = 0. Define g : / xI-*S by

COROLLARY 3. //"S w a connected and locally compact metric topological semilattice with
zero and if each element of S has arbitrarily small closed order-dense neighbourhoods, then S is
simply connected.

Proof. By Theorem 1, zero is chained to each point of S. It is well-known that a compact
connected metric chain is an arc (see, for example, [7, p. 30]) and hence 5 is arcwise connected.

COROLLARY 4. IfL is a connected and locally compact metric topological lattice with zero,
then L is simply connected.
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