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Lipschitz 1-connectedness for
Some Solvable Lie Groups

David Bruce Cohen

Abstract. A space X is said to be Lipschitz 1-connected if every Lipschitz loop γ∶ S1 → X bounds
a O(Lip(γ))-Lipschitz disk f ∶D2 → X. A Lipschitz 1-connected space admits a quadratic isoperi-
metric inequality, but it is unknown whether the converse is true. Cornulier and Tessera showed
that certain solvable Lie groups have quadratic isoperimetric inequalities, andwe extend their result
to show that these groups are Lipschitz 1-connected.

1 Introduction

1.1 Lipschitz 1-connectedness

Consider a complete, simply connectedRiemannianmanifold X that is homogeneous
in the sense that some Lie group acts on X transitively by isometries. It is well known
that in such amanifold, every loop admits a Lipschitz ûlling (see Proposition 2.6; for
amuch stronger result see [9, Corollary 1.4]). A classical way to study the large scale
geometry of X is by asking how hard it is to ûll loops in X.

Deûnition 1.1 Let γ∶ S1→X be a loop. _e ûlling span of γ, denoted Span(γ), is
deûned to be inf{Lip( f )∣ f ∶D2→X ; f ∣S 1 = γ}.

We say that X is Lipschitz 1-connected if there exists a constant C such that
Span(γ) ≤ C Lip(γ)

for all Lipschitz loops γ∶ S1→X. (_e term ûlling span is derived from Gromov’s ûlling
span function [6, §5]).

For instance, Euclidean n-dimensional space En is Lipschitz 1-connected because
one may “cone oò " loops in En : given a loop γ∶ S1→X with γ(1) = 0, we may take
f (re iθ) = rγ(e iθ) to obtain a 1-Lipschitz ûlling. A similar argument shows that all
CAT(0) manifolds are Lipschitz 1-connected.

1.2 Solvable Groups

In this paper, we will be interested in the case where X is some solvable real Lie
group G equipped with a le� invariant metric. To motivate this, note that Lipschitz
1-connectedness is aQI-invariant (Proposition 2.7), and that every Lie group is quasi
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isometric to a solvable Lie group. We will further assume that G has the form U ⋊ A,
where the following conditions hold.
● A is an abelian Lie group.
● U is a closed subgroup of the group of real n × n upper triangular matrices with
diagonal entries equal to 1 (for some n).

● A and U are contractible.

We will now see some examples of groups that are not Lipschitz 1-connected.

1.3 Groups of SOL Type

Fix real numbers t2 > 1 > t1 > 0 and consider the group G ofmatrices of the form

⎡⎢⎢⎢⎢⎢⎣

ts1 0 x
0 ts2 y
0 0 1

⎤⎥⎥⎥⎥⎥⎦
,

where s, x , y ∈ R. Note that G decomposes as U ⋊ A as above if we take A to be the
diagonal matrices of G and U to be thematrices with diagonal entries equal to 1. It is
known [5,_eorem 8.1.3] that there exist loops γ in G such that theminimal area of
any ûlling of γ is on the order of exp(Lip(γ)). Hence, G is not Lipschitz 1-connected.
Groups of this form are called groups of SOL type.

More generally, Cornulier and Tessera have shown that if a group G = U ⋊ A as
above surjects onto a group of SOL type, then it has loops of exponentially large area,
and hence cannot be Lipschitz 1-connected [4, _eorem 12.C.1]. If G surjects onto a
group of SOL type, we say that G has the SOL obstruction.

1.4 Tame Groups

On the otherhand, if the conjugation action of some a ∈ AcontractsU , thenG = U⋊A
will be Lipschitz 1-connected (Proposition 4.5). For a to be a contraction means that
there is some compact subset Ω of U such that for any compact subset K of U , some
positive power of a conjugates K into Ω. If such a and Ω exist, G is said to be tame.

1.5 The Theorem of Cornulier and Tessera

It is clear that a space that is Lipschitz 1-connected admits a quadratic isoperimetric
inequality, i.e., any loop of length ℓ must bound a disk of area O(ℓ2). Cornulier and
Tessera have given a large class of solvable Lie groups admitting quadratic isoperimet-
ric inequalities, andwe shall extend their result to show that these groups are Lipschitz
1-connected.

Given an action of the abelian group A on a vector space V , let V0 ⊂ V be the
subspace consisting of vectors v such that log ∥anv∥

n →0 as n→∞ for all a ∈ A. _eir
theorem [4, _eorem F] states that G = U ⋊ A satisûes a quadratic isoperimetric
inequality if the following conditions hold.
● (U/[U ,U])0 = 0. (G is said to be standard solvable if this condition holds.)
● G does not surject onto a group of SOL type.
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● H2(u)0 = 0, where u is the Lie algebra of U and H2 denotes the second Lie algebra
homology, see Deûnition 4.2.

● Kill(u)0 = 0, where the Killing module Kill(u) is the quotient of the symmetric
square u ⊙ u of u by the A-subrepresentation spanned by elements of the form
[x , y]⊙ z − y ⊙ [x , z].

Our primary objective in this paper is to establish the following theorem, proved as
_eorem 5.1, improvingCornulier and Tessera’s result to show Lipschitz 1-connected-
ness.

_eorem 1.2 LetG be a group of the formU ⋊A, whereU and A are contractible real
Lie groups, A is abelian, and U is a real unipotent group, i.e., a closed group of strictly
upper triangular real matrices.

If (U/[U ,U])0, H2(u)0, and Kill(u)0 are all trivial and G does not surject onto a
group of SOL type, then G is Lipschitz 1-connected.

1.6 Quadratic Isoperimetric Inequality Versus Lipschitz 1-connectedness

As noted above, if X is Lipschitz 1-connected, then it has a quadratic isoperimet-
ric inequality. It is not known whether the converse is true, that is, there are no
known examples where X has a quadratic isoperimetric inequality, but is not Lips-
chitz 1-connected. Recently, Lytchak, Wenger, and Young [8] showed some results
about the existence ofHölder ûllings in spaces admitting quadratic isoperimetric in-
equalities.

1.7 Organization

_is paper is organized as follows. Section 2 recalls some known results about Lips-
chitz ûlling in homogeneous manifolds. Section 3 develops a combinatorial language
for describing ûllings in Lie groups. Section 4 specializes to solvable Lie groups and
reviews the theory of tame groups and Abels’s multiamalgam. Finally, we prove our
main theorem in Section 5.

2 Preliminaries

2.1 Filling

In this section, X will be a complete, simply connected Riemannian manifold admit-
ting a transitive Lie group action by isometries. We will collect several facts about
ûlling loops in X. Everything in this section is both trivial and well known, but it
seems easier to write the proofs than to ûnd them in the literature. _e key facts we
will prove are as follows. Proposition 2.4 shows that X is Lipschitz 1-connected on a
small scale. _at is, there is some constant D such that Span(γ) = O(Lip(γ)) when
Lip(γ) < D. Corollary 2.5 shows that all loops in X have Lipschitz ûllings. Proposi-
tion 2.6 proves the existence a ûlling span function, meaning that there is a function
C(X , R) such that Span(γ) < C(X , Lip(γ)) for all Lipschitz loops γ∶ S1→X. Proposi-
tion 2.7 shows that Lipschitz 1-connectedness is a QI-invariant in this setting.
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Figure 1: On the right, a decomposition of the unit disk into O(є−2
) triangles uniformly bilip-

schitz to D2
є as in Proposition 2.2. On the right, a decomposition of D2 into a central disk

together with O(є−1
) sectors uniformly bilipschitz to D2

є as in Proposition 2.3

2.2 Generalizing to the Cocompact Case

_ese results are still true if X is merely assumed to admit a cocompact group action
(by isometries) rather than a transitive Lie group action. Although we do not need
these generalizations, we will mention them and sketch their proofs for the sake of
future researchers.

2.3 Templates

Let D2 be the unit disk equipped with the Euclidean metric. Purely as a matter of
convenience, we will think of D2 and the unit circle S1 as subsets of C. We will need
some convenient cellular decompositions of D2.

Deûnition 2.1 Let D2
є be the Euclidean disk of radius є.

Proposition 2.2 _ere exists a constant C such that for any 0 < є < 1 there is a
triangulation of D2 into at most Cє−2 triangles that are C-bilipschitz to D2

є .

See the le� side of Figure 1 for a decomposition of this type. _e proof of Proposi-
tion 2.2 is le� to the reader.

2.4 Using Templates

Proposition 2.2 will help us ûll loops in the following way. Suppose that C is a class of
loops in X such that Span(γ) = O(Lip(γ)) for γ ∈ C; typically, C will consist of loops
having small Lipschitz constant. Now given some other loop γ∶ S1→X, we may wish
to ûnd a O(Lip(γ))-Lipschitz ûlling f ∶D2→X of γ. We can o�en use the following
abstract strategy to construct f .
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● For some suõciently small є, take a decomposition of D2 as in Proposition 2.2. For
a 2-cell ∆ of this decomposition, let ψ∆ ∶∆→D2

є be a C-bilipschitz map, where C is
the universal constant guaranteed by the proposition.

● Take f to be γ on ∂D2, and extend f over the 1-skeleton of the decomposition in
such a way that Lip( f ) = O(Lip(γ)) and the restriction of f to the boundary of
each 2-cell represents an element of C. _at is, we want f to be such that for every
2-cell ∆, themap γ∆ ∶ S1→X given by γ∆ ∶ e iθ ↦ f ∣∂∆ ○ ψ−1

∆ (єe iθ) satisûes γ∆ ∈ C.
● For each 2-cell ∆, observe that Lip(γ∆) = O(є Lip(γ)), so a O(є Lip(γ))-Lipschitz
ûlling f∆ ∶D2→X of γ∆ exists.

● Extend f over ∆ with Lipschitz constant O(Lip(γ)) by taking, for each 2-cell ∆,

f ∣∆(z) = f∆(
1
є
ψ∆(z)) .

_e nontrivial part of this type of argument comes when we try to extend f over the
1-skeleton with the desired properties, so we will typically suppress the other details.

Proposition 2.3 _ere exists a constant C such that, for each 0 < є < 1, the unit disk
D2 may be cellularly decomposed into an inner disk of radius 1 − є, surrounded by an
annular region divided into 2-cells (we call these sectors) with the following properties.
(i) Each sector is bounded by two radial line segments, an arc of ∂D2, and an arc of

the boundary of the inner disk.
(ii) Sectors are C-bilipschitz to D2

є .
(iii) _e number of sectors is between 1

Cє and
C
є .

See the right side of Figure 1 for a decomposition of this type. _e proof of Proposi-
tion 2.3 is le� to the reader. Typically, this proposition will be used to convert a ûlling
of a loop γ̃ to a ûlling f of a nearby loop γ, by taking f restricted to the inner disk to
be a slightly rescaled ûlling of γ̃.

2.5 Basic Results on Filling in Homogeneous Manifolds

Proposition 2.4 Let X be a simply connected, complete homogeneous Riemannian
manifold. _ere exist constants C(X) and D(X) such that the following hold.
(i) If x , y ∈ X and d(x , y) ≤ D(X), then there is a unique geodesic in X connecting

x to y.
(ii) Suppose γ∶ S1→X is such that 0 < Lip(γ) < D(X). _en Span(γ) < C(X)Lip(γ).

Proof It is clear that there is a uniform upper bound on sectional curvatures of X,
since X is homogeneous. _erefore, X is a CAT(κ) space for some κ ≥ 0 [3, _eo-
rem 1A.6]. _is implies [3, Proposition 1.4(1)] that there is some constant D(κ) de-
pending only on κ such that points of X separated by less than D(κ) are connected
by a unique geodesic, so taking D(X) < D(κ) ensures unique geodesics.
By the existence of normal coordinates in Riemannian manifolds [7, Proposition

8.2], there exists a bilipschitz map ψ∶U→V where U is a neighborhood in X and V
a neighborhood in Rdim(X). Take D > 0 small enough that there is some x ∈ U with
U ⊃ BD(x) and ψ(BD(X)) ⊂ V0 ⊂ V for some convex set V0. Now let γ∶ S1→X be
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D-Lipschitz with γ(1) = x. Without loss of generality, ψ(x) = 0, and wemay ûll ψ ○ γ
by coning oò, that is, we deûne a Lip(ψ)Lip(γ)-Lipschitz ûlling f0∶D2→V0 of ψ ○ γ
by letting f0(re iθ) = rψ(γ(e iθ)). If we let f = ψ−1 ○ f0, then f is a ûlling of γ and
Lip( f ) ≤ Lip(ψ−1)Lip(ψ)Lip(γ). Taking D(X) < D and C(X) > Lip(ψ−1)Lip(ψ),
the result follows.

2.6 Extending Proposition 2.4 to the Cocompact Case

Proposition 2.4 is still true if, instead of assuming that X admits a transitive Lie group
action, we only ask that X admits a cocompact action of some group by isometries.
We sketch the proof here. First, it is clear that X still has an upper bound on sectional
curvature, and hence suõciently close points are connected by a unique geodesic by
[3, Proposition 1.4] as before. Now, arguing as above, wemay cover the compact quo-
tient of X by a ûnite collection of open neighborhoods U i whose preimages in X are
bilipschitz to convex neighborhoods in Euclidean space. Taking D(X) suõciently
small, we see that any D(X) Lipschitz loop γ in X must be contained in a li� of a
single U i , and hence admit a O(Lip(γ)) ûlling by the same argument as above.

Corollary 2.5 For all Lipschitz maps γ∶ S1→X, we have Span(γ) <∞.

Proof Let f̃ ∶D2→X be a (continuous) ûlling of a Lipschitz γ∶ S1→X. We must ûnd
a Lipschitz ûlling f of γ. For є > 0, let τє be the triangulation of D2 given in Proposi-
tion 2.2, and for each 2-cell ∆ of τє , let ψ∆ ∶∆ → D2

є be the C-bilipschitz map guaran-
teed by the proposition. Let F(є) be the largest value of d( f̃ (x), f̃ (y)) such that x , y
are adjacent vertices of τє . Since f is a continuous function on a compact set, f must
be uniformly continuous and thus F(є)→0 as є→0.

Wewill now use Proposition 2.4 to produce a Lipschitz ûlling f of γ as follows. Set
f (x) = f̃ (x) for each vertex x of τє , where є is small enough that CF(є) < D(X),
where C is the constant given by Proposition 2.2 and D(X) is the constant given by
Proposition 2.4. Set f to be a constant-speed geodesic on each edge of τє , so that the
map S1→X given by e iθ ↦ f (ψ−1

∆ (єe iθ)) is D(X)-Lipschitz. By Proposition 2.4, f
now admits a Lipschitz extension over 2-cells.

2.7 Extending Corollary 2.5 to the Cocompact Case

If we relax the assumption that X is homogeneous, and instead assume that X admits
a compact quotient, Corollary 2.5 is still true, because, as noted above, Proposition
2.4 is still true for such X.

Proposition 2.6 Let X be a simply connected, complete homogeneous Riemannian
manifold. For any L > 0, there exists C(X , L) > 0 such that if γ∶ S1→X is L-Lipschitz,
then Span(γ) ≤ C(X , L).

Gromov [6, §5] referred to C(X , L) as the ûlling span function of X.

Proof Fix L (henceforth, all constants will be presumed to depend uncontrollably
on L). Let CL denote the L-Lipschitz loops in X with some ûxed basepoint x, and
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equip CL with the uniform metric. By Arzela–Ascoli, CL is compact. Certainly, Span
is not continuous on CL because there exists γ ∈ CL arbitrarily close to the constant
map with L = Lip(γ) ≤ Span(γ), but we will show that it is bounded. Because CL is
compact, for every є > 0, CL may be covered by a ûnite number of є balls. Hence, it
suõces to ûnd a constant C > 1 such that for γ0 , γ ∈ CL with d(γ, γ0) < 1

C we have

Span(γ) < Cmax{1, Span(γ0)}.

To do this, let D(X) be as in Proposition 2.4 (assumingwithout loss of generality that
D(X) < 1), and let γ0 , γ ∈ CL with d(γ0 , γ) < D(X). Let f0∶D2→X be a Lipschitz
ûlling of γ0. Let є = D(X)

L and decompose D2 into an inner disk and sectors as in
Proposition 2.3. We will produce a ûlling f ∶D2→X of γ that is Lip( f0)

1−є -Lipschitz on
the inner disk and O(1)-Lipschitz on the annular region as desired.
Deûne f ∣S 1 to be equal to γ. Let R = 1− є be the radius of the inner disk and deûne

f to be a rescaled copy of f0 on the inner disk, i.e., f (re iθ) = f0( r
R e

iθ) for r ≤ R. _is
implies that f is Lip( f0)

R -Lipschitz on the inner disk. If x and y are the images under
f of the endpoints of a radial segment separating two sectors, then d(x , y) < D(X),
because d(γ, γ0) < D(X). Deûne f to be a minimal speed geodesic on each of the
radial segments separating two sectors, so that f is O(1)-Lipschitz on the boundary
of each sector (considering L as ûxed). Since sectors are uniformly bilipschitz to D2

є ,
f admits a O(1)-Lipschitz extension over each sector by Proposition 2.4.

We see that f is O(1)-Lipschitz on the annular region and Lip( f0)
1−є -Lipschitz on the

inner disk, implying the desired bound for Span(γ), taking any suõciently large C.

2.8 Generalizing Proposition 2.6 to the Cocompact Case

Because Proposition 2.4 and Corollary 2.5 remain true if X is assumed to be cocom-
pact rather than homogeneous, the proof of Proposition 2.6 remains valid in this case,
except that we must take CL to consist of all L-Lipschitz loops in X based in some
compact set K ⊂ X that projects surjectively onto the cocompact quotient of X.

Proposition 2.7 Let X and Y be simply connected, complete, homogeneous Riemann-
ian manifolds, and suppose that X is quasi-isometric to Y . If Y is Lipschitz 1-connected,
then so is X.

Proof Letψ∶X→Y be aquasi isometry andΨ∶Y→X aquasi inverse toψ. Let γ∶ S1→X
be an L-Lipschitz loop,where L > 1without loss of generality, and let є = 1

L . To obtain
a O(L)-Lipschitz ûlling for γ, we proceed as follows.

Using Proposition 2.2, subdivide D2 into O(L2) triangles bilipschitz to D2
є , so that

adjacent vertices on the boundary aremapped to within O(1) of each other by ψ ○ γ.
Let γ̃∶ S1→Y be aO(L)-Lipschitz loop in Y that agreeswithψ○γ on vertices of our tri-
angulation. By assumption, Y is Lipschitz 1-connected, so γ̃ admits a O(L)-Lipschitz
ûlling f̃ ∶D2→Y .

Wewish to convert Ψ○ f̃ into a ûlling f ∶D2→X of γ. Let f0∶D2→X be aO(L)-Lip-
schitz map that agrees with Ψ ○ f̃ on vertices of our triangulation: such amap exists
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because we can ûll edges with constant-speed geodesics and then ûll triangles in X
by Proposition 2.6, as Ψ ○ f̃ maps adjacent vertices to within O(1) of each other. _is
gives us a O(L)-Lipschitz ûlling of f0∣S 1 . Note that the distance from γ to f0∣S 1 in the
uniform metric is O(1) because f0∣S 1 agrees with Ψ ○ ψ ○ γ on vertices.

Now we take a new subdivision of D2, using Proposition 2.3 to subdivide D2 into
an inner disk surrounded by O(L) sectors that are uniformly bilipschitz to D2

є . We
build our ûlling f of γ as follows. On the inner disk, let f be given by a rescaled copy
f0. On radial segments, take f to be a constant speed geodesic, and ûll sectors using
Proposition 2.6.

2.9 Generalizing Proposition 2.7 to the Cocompact Case

_e above proof works even if we assume that X and Y have compact quotients in-
stead of being homogeneous. Indeed, it works for any X and Y admitting ûlling span
functions that go to 0 as L→0.

3 Lipschitz Moves

We now specialize to the case where X is equal to some simply connected Lie group
G equipped with a le�-invariant Riemannian metric. Our main goal in this section
is to reduce questions about ûlling loops in G to questions about manipulating words
in some compact generating set for G.

Notation. Any simply connected Lie groupG admits a compact generating set S. _e
set S∗ consists of all words s1s2 ⋅ ⋅ ⋅ sℓ where s1 , . . . , sℓ ∈ S and ℓ ∈ N, together with the
empty word ε. _e length of awordw ∈ S∗ will be denoted ℓ(w). Givenw = s1 ⋅ ⋅ ⋅ sℓ ∈
S∗, w−1 denotes the word s−1

ℓ ⋅ ⋅ ⋅ s−1
1 . If w ∈ S∗ represents the identity element 1G of

G, w is said to be a relation. If w ,w′ ∈ S∗ represent the same element of G, we write
w =G w′. _e word norm with respect to S will be denoted by ∣ ⋅ ∣S. _at is, for g ∈ G,
we deûne ∣g∣S to be inf{ℓ(w) ∶ g =G w ∈ S∗}.

Assumption Any time we take a compact generating set S for G, we assume without
loss of generality that S is symmetric (meaning that s ∈ S if and only if s−1 ∈ S) and that
1G ∈ S, unless otherwise indicated.

3.1 It Suffices to Fill Over the Unit Square

It will be convenient to consider loops as maps [0, 1]→X, rather than S1→X, and ûll-
ings as maps from the unit square [0, 1] × [0, 1]→X, rather than D2→X.

Deûnition 3.1 Given β∶ [0, 1]→X with β(0) = β(1), a ûlling of β over theunit square
is amap f ∶ [0, 1] × [0, 1]→X with the following properties:
(i) f agrees with β on the bottom edge of the unit square, meaning that f (t, 0) =

β(t) for all t ∈ [0, 1];
(ii) f is constant on the set on the other three edges of the unit square,meaning that

f (x , y) = β(0) for all (x , y) ∈ ([0, 1] × 1) ∪ (0 × [0, 1]) ∪ (1 × [0, 1]).
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We deûne Span(β) to be the inûmum of Lip( f ) as f ranges over Lipschitz ûllings of
β over the unit square.

Similarly, given β, γ∶ [0, 1]→X, a homotopy from β to γ is amap [0, 1] × [0, 1]→X
such that f (t, 1) = γ(t), f (t, 0) = β(t), and the restrictions f ∣0×[0,1] and f ∣1×[0,1] are
constant.

We will now see that it makes no diòerence whether we consider loops as maps
from [0, 1] or S1. _e key tool is the following lemma.

Lemma 3.2 _ere exists a constant C such that, given loops β∶ S1→X and γ∶ S1→X
such that γ is a reparameterization of β, and given a ûlling f ∶D2→X of γ, we have

Span(β) ≤ Cmax{Lip( f ), Lip(β)}.

Proof An equivalent statement was proved in [10, Lemma 8.13].

Corollary 3.3 _ere is a universal constant C > 0 with the following property. Sup-
pose that γ∶ S1→X is a Lipschitz loop and β∶ [0, 1]→X a Lipschitz path with β(t) =
γ(e2πi t), for all t ∈ [0, 1]. _en Span(β)

C < Span(γ) < C Span(β).

Proof Let β0∶ ∂([0, 1]2)→X be equal to β on the bottom edge and β(0) on the other
three edges, and ûx a bilipschitz map ψ∶D2→[0, 1] × [0, 1]. Observe that γ is a repa-
rameterization of β0 ○ψ∶ S1→X. If f ∶D2→X is a Lipschitz ûlling of γ, then by Lemma
3.2 there is some O(Lip( f ))-Lipschitz ûlling f̃ ∶D2→X of β0 ○ ψ, so f̃ ○ ψ−1 is an
O(Lip( f ))-Lipschitz ûlling of β. We see that Span(β) = O(Span(γ)). _e reverse
inequality is proved similarly.

3.2 Filling Relations

3.2.1 It Suffices to Fill Words

Let S be a compact generating set for G. For each s ∈ S, choose a Lipschitz curve
γs ∶ [0, 1]→G connecting 1 to s such that the following properties hold. _ere is some
uniform bound on Lip(γs) as s ranges over S, γ1G is constant, γs(1 − t) = γs−1(t), for
all s ∈ S and t ∈ [0, 1]. Given a word w = s1s2 ⋅ ⋅ ⋅ sℓ ∈ S∗, let γw ∶ [0, 1]→G denote the
concatenation of the paths γs1 , s1γs2 , . . . , s1 ⋅ ⋅ ⋅ sℓ−1γsℓ , reparameterized so that the i-th
of these paths is used on [ i−1

ℓ ,
i
ℓ ]. _at is, for 0 ≤ t ≤ 1 and i = 1, . . . ℓ, we have

γw(
i − 1 + t

ℓ
) = s1s2 ⋅ ⋅ ⋅ s i−1γs i (t).

Proposition 3.4 Suppose that there exists a constant C such that for every w ∈ S∗

with w =G 1G , there exists a Cℓ(w)-Lipschitz ûlling of γw over the unit square. _en G
is Lipschitz 1-connected.

Proof Note that G = ⋃∞k=1 Sk , and each Sk is compact. Hence, by the Baire category
theorem, some power Sk must contain an open neighborhood, so S2k contains some
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open neighborhood of the identity,which in turn contains the r-ball around the iden-
tity for some r > 0. Take K to be a natural number larger than 2k

r , so that SK contains
the 1-ball around the identity in G.

Given a loop γ∶ [0, 1]→G, we produce an O(Lip(γ))-Lipschitz ûlling f ∶ [0, 1]2→G
of γ as follows. Let n = ⌈Lip(γ)⌉. By Propositions 2.4 and 2.6 it suõces to consider
only γ such that n is at least 2. Cellularly decompose the unit square into the rectangle
[0, 1] × [ 1

n , 1] together with the collection of squares [ i
n ,

i+1
n ] × [0, 1

n ] as i runs from
0 to n − 1.
Deûne f to be constant on all the vertical edges. Note that for each i, the ele-

ment γ( i
n )

−1γ( i+1
n ) lies in the 1-ball in G, so it may be represented by some w i ∈ SK .

On the horizontal edge connecting ( i
n ,

1
n ) to ( i+1

n ,
1
n ), let f be a copy of γw i trans-

lated by γ( i
n ). that is, for 0 ≤ t ≤ 1, take f ( i+t

n , 1
n ) = γ( i

n )γw i (t). Letting w =
w1 ⋅ ⋅ ⋅wn , observe that f agrees with γw , the bottom of the rectangle [0, 1] × [ 1

n , 1],
so f may be extended over this rectangle with Lip( f ) = O(Lip(γw)) = O(ℓ(w)) =
O(Lip(γ)), where the ûrst bound comes from our hypothesis. Finally, f admits a
O(Lip(γ))-Lipschitz extension over each square by Proposition 2.6.

Deûnition 3.5 Suppose C is a collection of pairs (v ,w), where v ,w ∈ S∗ are words
in S. We say that v ↝ w for (v ,w) ∈ C if there exists some constant C depending only
on C with the following property: given (v ,w) ∈ C, the map from ∂([0, 1] × [0, 1])
to X that is equal to γv on the bottom edge, γw on the top edge, and constant on the
sides admits a Cℓ(v)-Lipschitz ûlling.

We now give some basic rules for manipulating ûllings. O�en, the set C will be
inferred from context.

Lemma 3.6 _e following rules hold in any simply connected Lie group G.
(i) Suppose C ⊂ S∗ × S∗. _en v ↝ w for (v ,w) ∈ C if and only if vw ↝ ε for

(v ,w) ∈ C and Lip(w) = O(Lip(v)), for each pair (v ,w) ∈ C.
(ii) Fix n, and suppose given sets Ci ⊂ S∗ × S∗ for i = 1 to n. If, for each i = 1 to

n, we have v ↝ w, for (v ,w) ∈ Ci , then v1 ⋅ ⋅ ⋅ vn ↝ w1 ⋅ ⋅ ⋅wn , for all (v1 ,w1) ∈
C1 , . . . , (vn ,wn) ∈ Cn .

(iii) Given C,C′ ⊂ S∗ × S∗, if v1 ↝ v2 for (v1 , v2) ∈ C and v2 ↝ v3 for (v2 , v3) ∈ C′,
then v1 ↝ v3 for pairs (v1 , v3) such that there exists v2 ∈ S∗ with (v1 , v2) ∈ C and
(v2 , v3) ∈ C′.

(iv) ww−1 ↝ ε for w ∈ S∗.
(v) Let U ⊂ G be a bounded neighborhood of the identity in G. IfD is the collection

of relations w = s1 ⋅ ⋅ ⋅ sℓ ∈ S∗ such every preûx s1 ⋅ ⋅ ⋅ s i represents an element of U ,
then w ↝ ε for w ∈D.

(vi) G is Lipschitz 1-connected if and only if v ↝ ε for every relation v ∈ S∗.

Proof (i) follows immediately from Lemma 3.2.
To prove (ii), subdivide the unit square into rectangles of the form [ i−1

n ,
i
n ]× [0, 1]

for i = 1, . . . , n. Suppose (v1 ,w1) ∈ C1 , . . . , (vn ,wn) ∈ Cn are given. By hypothesis,
there exists a homotopy f i ∶ [0, 1]×[0, 1]→G from v i tow i with Lip( f i) = O(Lip(v i)).
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Deûne amap f ∶ [0, 1] × [0, 1] by putting a rescaled copy of f i in [ i−1
n ,

i
n ] × [0, 1], that

is, for 0 ≤ t ≤ 1 and i = 1, . . . , n, we take f ( i−1+t
n , y) = f i(t, y). _us Lip( f ) =

O(max{n Lip( f i) ∶ i = 1, . . . , n}) = O(Lip(v)) because n is ûxed. Since f restricted
to the top of the unit square is a reparameterization of v1 ⋅ ⋅ ⋅ vn , and f restricted to the
bottom of the unit square is a reparameterization of w1 ⋅ ⋅ ⋅wn , we are done.

_e proof of (iii) is similar: divide the unit square into two rectangles [0, 1]×[0, 1
2 ]

and [0, 1]×[ 1
2 , 1] andput a rescaled copy of thehomotopy from v1 to v2 into the bottom

rectangle and a rescaled copy of the homotopy from v2 to v3 into the top rectangle to
get the desired homotopy v1 to v3.

To prove (iv), let w ∈ S∗ and let f ∶ [0, 1] × [0, 1] be deûned by

f (t, s) = γw(2max{0,min{t − s, 1 − t − s}}).

_e reader may check that f is a Lip(γww−1)-Lipschitz ûlling of γww−1 .
To prove (v), let K be such that SK contains U . Given w ∈ D, let ℓ = ℓ(w), so that

we can write w = s1 ⋅ ⋅ ⋅ sℓ . We will ûnd an O(ℓ) ûlling f of γw as follows. Subdivide
[0, 1] × [0, 1] into the rectangle [0, 1] × [ 1

ℓ , 1] together with the squares of the form
[ i−1

ℓ ,
i
ℓ ]× [0, 1

ℓ ]. Deûne f to be constant on [0, 1]× [ 1
ℓ , 1]. For each i, choose w i ∈ SK

such that w i =G s1 ⋅ ⋅ ⋅ s i and take f to be γw i on the vertical edge i
ℓ × [0, 1

ℓ ], that is
f ( i

ℓ ,
1−t
ℓ ) = γw i (t), for 0 ≤ t ≤ 1 and i = 0, . . . , n. Wemay extend f over each square

with Lipschitz constant O(ℓ) by Proposition 2.6.
(vi) is a consequence of Proposition 3.4.

3.3 Normal Form Triangles

We now discuss normal forms ω and ω-triangles. Using a technique of Gromov, we
shall see that G is Lipschitz 1-connected if ω-triangles are Lipschitz 1-connected.

Deûnition 3.7 A normal form for a compactly generated group G equipped with
compact generating set S is amap ω∶G→S∗ such that ℓ(ω(g)) = O(∣g∣S) for g ∈ G. If
ω is a normal form, then an ω-triangle is aword in S∗ of the form ω(g1)ω(g2)ω(g3),
where g1g2g3 =G 1.

Lemma 3.8 Let ω∶G→S∗ be a normal form. If ∆ ↝ ε for ω-triangles ∆, then G is
Lipschitz 1-connected.

Proof _is was proved in [10, Proposition 8.14]. _e proof is sketched in Figure 2.

4 Tame Subgroups and the Multiamalgam

Assumption From here on, we specialize to the case where G = U ⋊ A, where U
and A are contractible Lie groups, with A abelian and U a closed group of strictly upper
triangular real matrices.
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γω(γ( 1
2 )) γω(γ( 1

2 )−1)

γω(γ( 1
4 ))

γω(γ( 1
4 )−1γ( 1

2 )) γω(γ( 1
2 )−1γ( 34 )) γω(γ( 34 )−1)

Figure 2: _is ûgure indicates how to ûll γ = γw for an arbitrary relationw ∈ S∗, given that one
knows how to ûll ω-triangles. _e top edge and all the vertical edges are taken to be constant,
and each horizontal edge is understood to be an appropriate translate of its label, so that each
rectangle represents an ω-triangle, except the bottom row. _e bottom edge is taken to be γw ,
and there is a row of squares along the bottom that can be ûlled by Proposition 2.6

4.1 Standard Solvable Groups

Observe that A acts on the abelianization U/[U ,U]. Fix a norm on the vector space
U/[U ,U]. If there is no vector X such that limn→∞

1
n log ∥an ⋅ X∥→0, for all a ∈ A,

we say that G is standard solvable.
In this section we will be interested in the structure and geometry of standard

solvable groups. Section 4.2 will describe the so-called standard tame subgroups of a
standard solvable group. Lemma 4.9will show how to ûnd Lipschitz ûllings forwords
that already represent the identity in the free product of the standard tame subgroups.
_eorem 4.12, quoted from [4], will give conditions under which G can be presented
as the free product of its standard tame subgroups modulo certain easily understood
amalgamation relations.

4.2 Weights

LetG = U⋊Abe standard solvable, and let u be the Lie algebra ofU , identiûed as usual
with the tangent space of U at 1U , and ûx any norm ∥ ⋅ ∥ on u. For a ∈ A, we denote
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the conjugation action of a on u by Ad(a), so that Ad(a)X = d
d t ∣t=0a

−1 exp(tX)a.
Observe that Hom(A,R) is a vector space.

Deûnition 4.1 ([4, §4.B]) For a homomorphism α∶A→R, deûne the α-weight space
uα ⊂ u to consist of 0 together with all X ∈ u such that for all a ∈ A,

lim
n→∞

1
n

log ∥Ad(a)nX∥ = α(a).

Deûne the set ofweightsW to consist of all α ∈ Hom(A,R) forwhich dimuα > 0. By a
conic subset,wemean the intersection ofWwith an open, convex cone inHom(A,R)
that does not contain 0. Denote the set of all conic subsets by C. For C ∈ C, let UC
denote the closed connected subgroup of U whose Lie algebra is ⊕α∈C uα , and let
GC = UC ⋊ A. _ese groups GC are referred to as standard tame subgroups of G (see
remarks in §4.4).

As an exercise, the reader may wish to compute the weights and weight spaces for
a group of SOL type. We have that C is ûnite, that u = ⊕α∈W uα , and that [uα , uβ] ⊂
uα+β for α, β ∈W [4, §4.B]. We now deûne H2(u) and recall the deûnition of Kill(u)
so that we will be able to state_eorem 5.1, our main theorem.

Deûnition 4.2 Let d3∶⋀3 u→⋀2 u and d2∶⋀2 u→u be the maps of A-modules in-
duced by taking

d3(x ∧ y ∧ z) = [x , y] ∧ z + [y, z] ∧ x + [z, x] ∧ y d2(x ∧ y) = −[x , y].

DeûneH2(u) = ker(d2)/ image(d3).DeûneKill(u) to be the quotient of the symmet-
ric square u⊙u by the subspace spanned by elements of the form [x , y]⊙z− y⊙[x , z].

4.3 H2(u) and Kill(u) Are A-representations

Observe that the natural A-action on⋀3 u descends to an A-action onH2(u) because,
by the Jacobi-like identity

Ad(a)[X ,Y] = [Ad(a)X ,Y] + [X , Ad(a)Y],

the subspaces image(d3) and ker(d2) are preserved by the action of A. Similarly,
Kill(u) is also an A-representation. Recall that for an A-representation V we deûne
V0 to consist of 0 together with vectors X such that limn→∞

1
n log ∥an ⋅ X∥ = 0 for all

a ∈ A. We thus deûne the subspaces H2(u)0 and Kill(u)0.

4.4 Tame Subgroups

Deûnition 4.3 Given a ∈ A, a vacuum subset for a is a compact Ω ⊂ U such that
for every compact K ⊂ U , there is some n > 0 with Ad(a)nK ⊂ Ω. We say that G is
tame if there exists a ∈ Awith a vacuum subset.

We say thatG is tame if and only if there is some a ∈ Awith α(a) < 0 for all α ∈W,
soGC is tame for C ∈ C [4, Proposition 4.B.5]. We nowwish to show that ifG is tame,
then it is Lipschitz 1-connected. Our starting point is the following.
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Proposition 4.4 Suppose G is tame. _en there is some a ∈ A and a compact gener-
ating set S ⊂ U for U such that Ad(a)S2 ⊂ S.

Proof By hypothesis, there is some b ∈ A with a vacuum subset Ω. Let S0 be a
compact generating set for U . As in the proof of Proposition 3.4, we see that some
power of S0 contains an open ball around the identity. Hence, for someM > 0, the set
SM
0 contains Ω. As Ω is a vacuum set for b, there exists L such that Ad(b)LS2M

0 ⊂ Ω.
Taking a = bL and S = SM

0 , we have that S is a generating set because it contains S0
(because 1 ∈ S0 by our standing assumption that generating sets contain the identity),
and Ad(a)S2 = Ad(b)LS2M

0 ⊂ Ω ⊂ S as desired.

Proposition 4.5 If G = U ⋊ A is tame, then G is Lipschitz 1-connected.

Remark A tame group G is probably CAT(0) for some choice ofmetric, but we do
not know how to prove this, so we give a combinatorial proof using Lemma 3.8.

Proof As in Proposition 4.4, ûx a ∈ A and a compact generating set SU ⊂ U such
thatAd(a)S2

U ⊂ SU . Let SA be a generating set for Awith a ∈ SA, and let S = SU ∪SA,
so that S is a generating set for G. Note thatAd(a)(s) = s for s ∈ SA, and observe that
if ℓ > ⌈log2 j⌉ > 0, then

Ad(a)ℓ(S j
U) ⊂ Ad(a)ℓ−1(S⌈

j
2 ⌉

U ) ⊂ Ad(a)ℓ−2(S⌈ 1
2 ⌈

j
2 ⌉⌉

U ) ⊂ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⊂ Ad(a)ℓ−⌈log2 j⌉(SU) ⊂ SU ,

because the function f ∶ j ↦ ⌈ j
2 ⌉ satisûes f ⌈log2 j⌉ j = 1 for natural numbers j. In other

words, given u ∈ U , there exist k ≤ ⌈log2 ∣u∣SU ⌉ and s ∈ SU such that u =G ak sa−k .
It follows, letting ϕA∶G→A denote projection, that we may deûne a normal form
ω∶G→S∗ such that
● for any g ∈ G, the word ω(g) is given by ω(ϕA(g))ω(ϕA(g)−1g),
● for g ∈ A, the word ω(g) ∈ S∗A is aminimal length word representing g,
● and for g ∈ U ∖ {1}, ω(g) is of the form ak sa−k , where s ∈ SU and 0 ≤ k =

O(log ∣g∣SU ).
To check that this is a normal form, i.e., that ℓ(ω(g)) = O(∣g∣S), note that ∣ϕA(g)∣S ≤
∣g∣S and ∣ϕA(g)−1g∣SU = O(exp ∣g∣S), so that

∣ϕA(g)−1(g)∣S = O(log(O(exp ∣g∣S))) = O(∣g∣S),

because U is at most exponentially distorted in G [4, Proposition 6.B.2].
It will suõce to show that ∆ ↝ ε for ω-triangles ∆ ∈ S∗. An ω-triangle ∆ has the

form a1ω(u1)a2ω(u2)a3ω(u3), where for i = 1, 2, 3, we have u i ∈ U and a i ∈ S∗A with
the a i and u i satisfying (Ad(a3a2)u1)(Ad(a3)u2)u3 = 1. To show that ∆ ↝ ε, it thus
suõces to establish the following two facts:
● ω(u)b ↝ bω(b−1ub) for u ∈ U and b ∈ S∗A,
● ω(u1)ω(u2)ω(u3)↝ ε for u1 , u2 , u3 ∈ U such that u1u2u3 = 1.
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Lemma 3.6will be crucial for showing the ûrst fact, in particular,we use the lemma to
provide homotopies between words that stay inside a bounded neighborhood of the
identity.

4.5 Conjugation

To show that ω(u)b ↝ bω(b−1ub) for u ∈ U and b ∈ S∗A, note that ω(u) may be
written as ak sa−k for some s ∈ SU and k ≥ 0. Because Ad(a)S2 ⊂ S, there is some
C ≥ 1 such that, for all a′ ∈ SA, we have Ad(a)C Ad(a′)S ⊂ S. Let K = Cℓ(b) + k, so
that Ad(a)K−k Ad(b′)S ⊂ S for any word b′ ∈ S∗A with ℓ(b′) ≤ ℓ(b), and let s′ , s′′ ∈ S
be given by s′ = Ad(a)K−k s and s′′ = b−1s′b. We homotope as follows, liberally using
Lemma 3.6.

ω(u)b = ak sa−kb ↝ aKak−K saK−ka−Kb

↝ aK s′ba−K ↝ aKbb−1s′ba−K ↝ baK s′′a−K ↝ bω(b−1ub).

4.6 Filling ω-triangles in U

To show that ω(u1)ω(u2)ω(u3) ↝ ε for u1 , u2 , u3 ∈ U such that u1u2u3 = 1, write
ω(u i) as ak i s ia−k i for i = 1, 2, 3, with k i ≥ 0 and s i ∈ SU . Let K = k1 + k2 + k3 and let
s′i = Ad(ak i−K)s i ∈ SU . We homotope as follows.

ω(u1)ω(u2)ω(u3) = (ak1 s1a−k1)(ak2 s2a−k2)(ak3 s3a−k3)
↝ (aKak1−K s1aK−k1a−K)(aKak2−K s2aK−k2a−K)(aKak3−K s3aK−k3a−K)
↝ (aK s′1a−K)(aK s′2a−K)(aK s′3a−K)↝ aK s′1s′2s′3a−K ↝ aKa−K ↝ ε.

4.7 Filling Freely Trivial Words

We now return to the case where the standard solvable group G = U ⋊ A is not nec-
essarily tame. Recall that the collection of conic subsets C is ûnite. For C ∈ C, let GC
be the tame group UC ⋊A, and let SGC be a compact generating set for this group. Let
H = ∗C∈CGC , and let SH ⊂ H be the union of the SGC . _ere is a natural map from H
to G. Lemma 4.9 will show that if w ∈ S∗H represents the identity in H, then its image
in G admits an O(ℓ(w))-Lipschitz ûlling.

Wewill need the following auxiliary results ûrst. (_e reader should probably skip
directly to the proof of Lemma 4.9 to understand the point of these propositions).
Proposition 4.6 shows that a word w ∈ S∗H representing the identity in H may be re-
duced to the identity by repeated deletion of subwords r j ∈ S∗GC j

such that r j represents
the identity in GC j . Proposition 4.8 describes an appropriately Lipschitz rectangular
homotopy between words obtained by these deletions. Proposition 4.7 describes a
part of the homotopy given in Proposition 4.8.

Given v ,w ∈ S∗H , we will write w =S∗H v if v and w are the same word and write
w =H v if v and w represent the same element of H. Similar notation will be used for
equality in other groups when there is any ambiguity.
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Proposition 4.6 Given awordw ∈ S∗H such thatw =H 1, there exists a natural number
n ≤ ℓ(w) and, for j = 0, . . . , n, words a j , r j , b j ∈ S∗H with the following properties.
(i) w =S∗H a0r0b0.
(ii) an , rn , bn = ε.
(iii) For all j = 0, . . . , n, there is some C j ∈ C such that r j ∈ S∗GC j

and r j =GC j
1.

(iv) a jb j =S∗H a j+1r j+1b j+1 for j = 0, . . . , n − 1.

Proof Note that each element of SH lies in someGC . Ifw /= ε represents the identity,
then by the theory of free products,w has a (nonempty) subword that is comprised of
elements of some SGC and represents the identity in GC . _us, we may write w =S∗H
a0r0b0, where r0 ∈ S∗GC0

as desired. Applying this argument recursively, we obtain
a j , r j , b j as desired.

Proposition 4.7 Given a natural number k andw ∈ S∗H , there exists an O(k+ ℓ(w))
Lipschitz map f ∶ [0, 1] × [0, k

k+ℓ(w)
]→G with the following properties.

(i) Along the bottom, f is given by 1kw,meaning f (t, 0) = γ1kw(t), for 0 ≤ t ≤ 1.
(ii) Along the top, f is given by w 1k ,meaning f ( t, k

k+ℓ(w)
) = γw 1k(t), for 0 ≤ t ≤ 1.

(iii) f is constant on the sides, so f (0, s) and f (1, s) do not depend on s.

Proof Let γ∶R→G be given as follows: γ(t) = 1G , for t ≤ 0, γ(t) = γ1kw(t) ,for
0 < t ≤ 1, and γ(t) = γ1kw(1), for t > 1. Observe that Lip(γ) = O(k + ℓ(w)) _en we
may take f (t, s) = γ(t + s) as our desired ûlling.

Proposition 4.8 Given a, b ∈ S∗H , r ∈ S∗GC a relation in GC for some C ∈ C, and any
natural number k, let ℓ = ℓ(arb1k) and h = ℓ(r)

ℓ . _ere exists an O(ℓ)-Lipschitz map
f ∶ [0, 1] × [0, h]→G with the following properties.
(i) Along the bottom, f is given by arb1k ,meaning f (t, 0) = γarb 1k(t), for t ∈ [0, 1].
(ii) Along the top, f is given by ab1k+ℓ(r),meaning

f (t, h) = γab 1k+ℓ(r)(t), for t ∈ [0, 1].

(iii) f is constant on the sides, so f (0, s) and f (1, s) do not depend on s.

Proof (See the right-hand side of Figure 3.) Subdivide the rectangle into [0, 1] ×
[0, h/2] and [0, 1]×[h/2, 1]. Deûne f to be a1ℓ(r)b1k on [0, 1]×{h/2}, i.e., f (t, h/2) =
γa 1ℓ(r)b 1k(t).
First, we extend f over the top rectangle [0, 1] × [h/2, 1]. For

(t, s) ∈ [0, ℓ(a)
ℓ

] × [h/2, 1] ∪ [ 1 − k
ℓ
, 1] × [h/2, 1],

we have that γa 1rb 1k(t) = γab 1ℓ(r)+k(t), so we can just set f to be constant vertically,
i.e., we deûne f (t, s) = γab 1ℓ(r)+k(t) for these (t, s). To extend f to

(t, s) ∈ [ ℓ(a)
ℓ

, 1 − k
ℓ
] × [h/2, 1],
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a0 r0 b0

a1 r1 b1 1ℓ1

a2 r2 b2 1ℓ2

. . .

rn−1 1ℓn−1

1ℓn

a r b 1k

1r b

a b
1k+ℓ(r)

Prop. 4.5

Proposition 4.7

Figure 3: _e ûgure on the le� depicts our strategy for ûlling of the freely trivial word w =

a0r0b0 , where the a j , r j , b j are as in Proposition 4.6. _e ûgure on the right depicts the proof
of Proposition 4.8 that allows us to ûll in each rectangle in the le�-hand ûgure.

we simply apply Proposition 4.7. _us, we have given an O(ℓ)-Lipschitz extension of
f over the top rectangle.

Now we extend over the bottom rectangle [0, 1] × [0, h/2]. For

(t, s) ∈ [0, ℓ(a)
ℓ

] × [0, h/2] ∪ [ ℓ(ar)
ℓ

, 1] × [0, h/2],

deûne f (t, s) = γarb 1k(t). Finally, we apply Proposition 4.5 to extend f over

[ ℓ(a)
ℓ

, ℓ(ar)
ℓ

] × [0, h/2],

since this is equivalent to ûlling r.

Lemma 4.9 Recalling the notation introduced at the start of Section 4.7, we have
w ↝ ε (in G) for all w ∈ S∗H such that w =H 1.

Proof (See Figure 3.) Let w ∈ S∗H be a relation in H and take a sequence of words
a j , r j , b j , j = 0, . . . , n as in Proposition 4.6. We will deûne an O(ℓ(w))-Lipschitz
ûlling f ∶ [0, 1]×[0, 1]→G of γw as follows. Let ℓk = ∑ j<k ℓ(r j), so that ℓ0 = 0 and ℓn =
ℓ(w), and subdivide [0, 1]× [0, 1] into rectangles [0, 1]× [ℓ j , ℓ j+1] for j = 0, . . . , n− 1.
Set f (t, ℓ j) = γa j r jb j 1

ℓ j (t), noting that ℓ(a jr jb j 1ℓ j) = ℓ(w).
Proposition 4.8 now shows that f may be extended over each rectangle [0, 1] ×

[ℓ j , ℓ j+1] with Lipschitz constant O(ℓ(w)).

4.8 Generalizing Lemma 4.9.

A careful examination of the proof of Lemma 4.9 shows thatwe have not usedmost of
our hypotheses. In particular, the same proof shows that if G1 , . . . ,Gn are compactly
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presented groupswhose presentation complexes have Lipschitz 1-connected universal
covers, then the presentation complex of the free product G1 ∗ ⋅ ⋅ ⋅ ∗Gn has Lipschitz
1-connected universal cover as well.

4.9 Distortion

We now see that ifG is standard solvable, then elements ofU may be expressedmuch
more eõciently in the generators of G than in the generators of U .

Proposition 4.10 Suppose G = U ⋊ A is standard solvable, S is a compact generating
set for G, and SU is a compact generating set for U . _ere exists C > 1 such that if
u ∈ U ∖ {1U}, then 1

C log(1 + ∣u∣SU ) ≤ ∣u∣S ≤ C log(1 + ∣u∣SU ).

Proof _is follows, with some eòort, from [4, Proposition 6.B.2].

4.10 The Multiamalgam

In this subsection, we will deûne the multiamalgam Ĝ of a standard solvable group
G = U ⋊ A (ûrst introduced by Abels [1]), and quote a key theorem of Cornulier
and Tessera that states certain conditions under which G ≅ Ĝ. _is means that G is
put together from its standard tame subgroups in a nice way, which will eventually
let us build ûllings in G from ûllings in standard tame subgroups. In order to state
this theorem in the proper generality, wemust brie�y discuss the theory of unipotent
groups.

4.11 Unipotent Groups

For a commutative R-algebra P, and a real unipotent group U , i.e., a closed group of
upper triangular real matriceswith diagonal entries equal to 1, the theory of algebraic
groups allows us to deûne a group U(P) [2, §1.4]. In particular, if U ⊂ GL(n;R)
consists of all upper triangular matrices with diagonal entries equal to 1, then U(P)
consists of all upper triangular n × n matrices over P with diagonal entries equal to 1;
such matrices are certainly invertible, having determinant equal to 1. Suppose P =
RY , so that P consists of all functions f ∶Y→R. _en there is an obvious bijection
U(P)↔ UY , and for y ∈ Y and ũ ∈ U(P) wemay speak of ũ(y) ∈ U .

Deûnition 4.11 ([4, §10.B]) LetG = U⋊Abe real standard solvable. _emultiamal-
gam Ĝ of the standard tame subgroups GC is deûned by Ĝ = ∗C∈CGC/⟨⟨RG⟩⟩, where
RG = {iC(u)−1 iC′(u) ∶ u ∈ GC ∩GC′} and iC denotes the inclusion ofGC in the direct
product.

Similarly, the multiamalgam Û is deûned by Û = ∗C∈CUC/⟨⟨RU⟩⟩, where RU =
{iC(u)−1 iC′(u) ∶ u ∈ UC ∩ UC′} and iC denotes the inclusion of UC in the direct
product.
For any commutative R-algebra P, we deûne Û(P) and Ĝ(P) similarly, where

GC(P) is understood to be UC(P) ⋊ A.
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Of course, Û ⋊ A ≅ Ĝ. Recall that G admits the SOL obstruction if it surjects
onto a group of SOL type. Cornulier and Tessera give conditions under which Û is
isomorphic to U .

_eorem 4.12 Let G = U ⋊ A be a standard solvable real Lie group. If H2(u)0 = 0,
Kill2(u)0 = 0, and G does not admit the SOL obstruction, then Û(P) ≅ U(P) for all
commutative R-algebras P.

Proof _is follows from [4, Corollary 9.D.4]. _e 2-tameness hypotheses of the
corollary is satisûed from [4, Proposition 4.C.3].

5 Proof of the Main Theorem

_e rest of this paper is devoted to the proof of the following theorem.

_eorem 5.1 Let G = U ⋊ A, where U and A are contractible real Lie groups, A is
abelian, and U is a real unipotent group, i.e., a closed group of strictly upper triangular
real matrices. If G is standard solvable and does not surject onto a group of SOL type,
and H2(u)0 and Kill(u)0 are trivial, then G is Lipschitz 1-connected.

Proof Lemma 5.2 will show that there exists a generating set S for G and normal
form ω∶G→S∗ with certain properties. Lemma 5.6will show that if ω has these prop-
erties, then ∆ ↝ ε for ω-triangles ∆. By Lemma 3.8, this will suõce to prove the
theorem.

5.1 Defining ω

Assumption _roughout the rest of this paper,we assume thatG satisûes the hypothe-
ses of the theorem. _at is,G = U⋊A is a standard solvable group such thatH2(u)0 = 0,
Kill2(u)0 = 0, and G does not surject onto a group of SOL type.

Notation. Let H = ∗C∈CGC and HU[P] = ∗C∈CUC(P) for any commutative R alge-
braP, and let iC ∶UC(P)→HU[P] denote inclusion. WewillwriteHU for HU[R]. Let
SA be a compact generating set for A. For C ∈ C, let SC be a compact generating set
forUC . Let SU = ⋃C∈C SC ; by_eorem4.12 this is a compact generating set forU . Let
S = SA ∪ SU ; this is a compact generating set for G. Let SH be a generating set for H,
which is equal to the union of compact generating sets for GC as C ranges over C, and
let SHU ⊂ HU be the union of the SC ; this is a generating set for HU . Given C ∈ C and
x ∈ UC , let x ∈ (SA ∪SC)∗ be aminimal length word representing x. Let ϕA∶G→A be
projection. Let the set theoreticmap ϕU ∶G→U be deûned by ϕU(g) = ϕA(g)−1g, so
that g = ϕA(g)ϕU(g).

Lemma 5.2 Under our standing assumptions, there exists a ûnite sequence C1 ⋅ ⋅ ⋅Ck
of conic subsets and a normal form ω∶G→S∗ such that ω has the following properties.
(i) For any g ∈ G, ω(g) = ω(ϕA(g))ω(ϕU(g)).
(ii) For a ∈ A, ω(a) ∈ S∗A is aminimal length word representing a.
(iii) For u ∈ U , ω(u) has the form x1 ⋅ ⋅ ⋅ xk , where x i ∈ UC i .
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Proof _is follows from [4, Proposition 6.B.2], butwewill now give a diòerent proof
in order to introduce a trick that will be used later.

5.2 The Cornulier–Tessera Trick

For a set Y , deûne the commutative R-algebra PY as the collection of all functions
f ∶Y×[1,∞)→R such that there is some β ∈ Nwith ∣ f (y, t)∣ < (1+t)β . Note that an el-
ement ofU(PY) can be identiûedwith a function from Y×[1,∞) toU . Alternatively,
one can think of an element ofU(PY) as a family of functions [1,∞)→U , indexed by
Y with matrix coeõcients uniformly bounded by some polynomial (1 + t)β .
Choose Y to have at least continuum cardinality, and let g̃ ∈ U(PY) be such that

for every g ∈ U , there is some y ∈ Y and t = O(∣g∣SU ) such that g̃(y, t) = g. It is
certainly possible to do this; for instance, onemight take Y = U and set g̃(y, t) to be
1U for t < ∣y∣SU and y for t ≥ ∣y∣SU . In claiming that g̃ ∈ U(PY), we have used the fact
that thematrix coeõcients of g ∈ U are at most polynomial in ∣g∣SU .

Since, by _eorem 4.12, U(PY) is generated by the union of the UC(PY), we can
write g̃ = x̃1 ⋅ ⋅ ⋅ x̃k , where each x̃ i is an element of some UC i (PY). Observe that there
exist some α ∈ N such that ∣x̃ i(y, t)∣SC i

≤ (1+ t)α , for all i = 1, . . . , k, y ∈ Y , and t ≥ 1.
Now let g be an element ofU . By deûnition of g̃, there exist y ∈ Y and t = O(∣g∣SU )

such that g̃(y, t) = g. For i = 1, . . . , k, let x i = x̃ i(y, t). We have that
g = g̃(y, t) = x̃1(y, t) ⋅ ⋅ ⋅ x̃k(y, t) = x1 ⋅ ⋅ ⋅ xk ,

and x i ∈ UC i (PY) with ∣x i ∣SC i
= O(tα) = O(∣g∣αSU

). Take ω(g) to be x1 ⋅ ⋅ ⋅ xk , and
note that ∣ω(g)∣S = O(log ∣g∣SU ) because ∣x i ∣SA∪SC i

= O(log ∣x i ∣SC i
) = O(log ∣g∣SU )

by Proposition 4.10.
We have thus deûned ω on elements of U , with the desired properties. Deûne ω

on A by taking ω(a) to be the shortestword in S∗A representing a ∈ A. Extend ω to all
of g by setting ω(g) = ω(ϕA(g))ω(ϕU(g)). Wemust show that ω is a normal form,
i.e., that, for g ∈ G, ℓ(ω(g)) = O(∣g∣S).

We have ℓ(ω(ϕA(g))) = ∣ϕA(g)∣S = O(∣g∣S), so it suõces to show that
ℓ(ω(ϕU(g))) = O(∣g∣S).

If w ∈ S∗ is aminimal length word representing some g ∈ G, note that ω(ϕA(g))−1w
represents ϕU(g). By Proposition 4.10, there is some constant C > 1 not depend-
ing on g such that ∣ω(ϕA(g))−1w∣S ≥ 1

C log ∣ϕU(g)∣SU . _us, since ∣ω(ϕU(g))∣S =
O(log ∣ϕU(g)∣SU ), we have that ω(ϕU(g)) = O(∣ϕA(g)∣S + ∣w∣S) = O(∣g∣S) as de-
sired.

5.3 Filling ω-triangles

We wish to show that we can ûll ω triangles, where ω is a normal form produced
by Lemma 5.2. Proposition 5.5 will allow us to homotope ω-triangles into relations
of the form x i ⋅ ⋅ ⋅ xK , where each x i is a word in SA ∪ SC i , eõciently representing
an element x i of UC i , where C1 , . . . ,CK is some ûxed sequence of conic subsets. In
order to ûll such relations, recall from_eorem4.12 that, under our standing assump-
tions, U(P) ≅ Û(P) for any commutative R-algebra P. Consequently, the kernel of
HU[P]→U(P) is normally generated by elements of the form iC(u)−1 iC′(u), where
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u ∈ UC(P) ∩UC′(P). In order to ûll x1 ⋅ ⋅ ⋅ xK in Corollary 5.4, we will need to factor
x1 ⋅ ⋅ ⋅ xK in the free product HU as a product of a bounded number of elements of the
form g−1 iC(u)−1 iC′(u)g, where each g ∈ HU is a product of a bounded number of el-
ements living in some factorsUC ,with ∣g∣SU and ∣u∣SU controlled by some polynomial
of∑K

j=1 ∣x j ∣SC j
.

Lemma 5.3 ([4, Lemma 7.B.1]) Suppose that our standing assumptions are satisûed.
Given a sequence of conical subsetsC1 , . . . ,CK , there exist natural numbers N , µ, β such
that, for any sequence x i ∈ UC i with x1x2 ⋅ ⋅ ⋅ xK =U 1U , there is an equality of the form
x1 ⋅ ⋅ ⋅ xK =HU (g1r1g−1

1 ) ⋅ ⋅ ⋅ (gN rN g−1
N ) satisfying

(i) g j =HU g j1 ⋅ ⋅ ⋅ g jµ , where g jk ∈ UC jk for some C jk ∈ C;
(ii) each r j is of the form iC′j(u j)iC′′j (u j)−1 for some conical subsets C′j ,C′′j and some

u j ∈ UC′j ∩UC′′j ;
(iii) ∣g jk ∣SC jk

= O(ℓβ), ∣u j ∣SC′j = O(ℓβ), and ∣u j ∣SC′′j = O(ℓβ), where ℓ = 1+∑K
i=1 ∣x i ∣.

Proof _is is a special case of [4, Lemma 7.B.1], butwewill reprisemost of the details
here. We will use the same Cornulier and Tessera trick we used to prove Lemma 5.2.
Take PY as in the proof of Lemma 5.2. Recall that x̃ ∈ UC(PY) may be thought of as
a function from Y × [0,∞) to UC . Let Y be a set with at least continuum cardinality,
so that there exists (x̃1 , . . . , x̃K) ∈ UC1(PY) × ⋅ ⋅ ⋅ × UCK (PY) that has the following
strong surjectivity property: for any (x1 ⋅ ⋅ ⋅ xK) ∈ UC1(PY) × ⋅ ⋅ ⋅ × UCK (PY) with
x1 ⋅ ⋅ ⋅ xK =U 1, there exists y ∈ Y and t = O(∣x1∣SC1

+ ⋅ ⋅ ⋅ + ∣xK ∣SCK
) with x̃ i(y, t) = x i .

By _eorem 4.12, we know that there is some equality of the form

x̃1 ⋅ ⋅ ⋅ x̃K =HU [PY ] (g̃ −1
1 r̃1 g̃1) ⋅ ⋅ ⋅ (g̃ −1

N r̃N g̃N),

where g̃ ∈ ∗UC(PY) and each r̃ j has the form iC′j(ũ j)−1 iC′′j (ũ j), for some conical
subsets C′j ,C′′j and ũ j ∈ UC′j(PY) ∩UC′′j (PY). Since the UC(PY) generate HU[PY],
there must be some µ such that for all j = 1, . . . ,N , g̃ j = g̃ j1 ⋅ ⋅ ⋅ g̃ jµ , where each g̃ jk
lives in UC jk for some C jk ∈ C. Note that by deûnition of PY , there is some β such
that all ∣g̃ jk(y, t)∣SU and ∣ũ j(y, t)∣SC′j are O(tβ).

Given, x1 , . . . , xK ∈ UC1 × ⋅ ⋅ ⋅ × UCK , let ℓ = ∑K
i=1 ∣x i ∣SC i

and choose y ∈ Y and
t = O(ℓ) such that x̃ i(y, t) = x i , for i = 1, . . . ,K. For j = 1, . . . ,N and k = 1, . . . , µ, let
g j = g̃ j(y, t), g jk = g̃ jk(y, t), u j = ũ j(y, t), and r j = iC′(u j)−1 iC′′(u j). It follows that
x1 ⋅ ⋅ ⋅ xK =HU (g1r1g−1

1 ) ⋅ ⋅ ⋅ (gN rN g−1
N ), and the g j and r j satisfy the desired conditions.

Corollary 5.4 Suppose that our standing assumptions are satisûed. Given a sequence
of conical subsets C1 , . . . ,CK ,we have in G that x1 ⋅ ⋅ ⋅ xK ↝ ε. for any sequence x i ∈ UC i

with x1x2 ⋅ ⋅ ⋅ xK =U 1U .

Proof By Lemma 5.3, we have (for β,N , µ independent of the x j),

x1 ⋅ ⋅ ⋅ xK =HU (g1r1g−1
1 ) ⋅ ⋅ ⋅ (gN rN g−1

N ),
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where g j =HU g j1 ⋅ ⋅ ⋅ g jµ for g jk ∈ UC jk , each r j is of the form i′C(u j)−1 iC′′(u j) for
some conical subsets C′j ,C′′j , and some u j ∈ UC′j ∩UC′′j , and ∣g jk ∣SC jk

, ∣u j ∣SC′j = O(ℓβ),
where ℓ = 1 +∑K

i=1 ∣x i ∣.
For each j = 1, . . . ,N , let g j ∈ S∗ be g j1 ⋅ ⋅ ⋅ g jµ . Let r j ∈ S∗ be equal to (u′j)−1u′′j ,

where u′j ∈ SA∪SC′j is aminimal lengthword representing u j inGC′j and u′′j ∈ SA∪SC′′j
is a minimal length word representing u j in GC′′j . _is implies that r j represents r j
in H.
First we show that r j ↝ ε. Note that C′j ∩ C′′j is itself a conic subset, so there is

some u j ∈ (SA ∪SC′j∩C′′j )
∗ that represents u j in GC′j∩C′′j with ℓ(u j) = O(ℓ(r j)). _us,

by Proposition 4.5, we have r j = (u′j)−1u′′j ↝ u j
−1u j ↝ ε.

Next, observe that

ℓ(g j) =
µ
∑
k=1

ℓ(g jk) =
µ
∑
k=1

O(log ∣g jk ∣SC jk
) = O(β log( 1 +

K
∑
i=1

∣x i ∣)) = O(ℓ(x1 ⋅ ⋅ ⋅ xK)),

by Proposition 4.10, and ℓ(r i) = O(ℓ(x1 ⋅ ⋅ ⋅ xK)) similarly.
Because

x1 ⋅ ⋅ ⋅ xK =H (g1r1g1
−1) ⋅ ⋅ ⋅ (gN rN gN

−1),
ℓ((g1r1g1

−1) ⋅ ⋅ ⋅ (gN rN gN
−1)) = O(ℓ(x1 ⋅ ⋅ ⋅ xK)),

we have by Lemma 3.6 and Lemma 4.9 that

x1 ⋅ ⋅ ⋅ xK ↝ (g1r1g1
−1) ⋅ ⋅ ⋅ (gN rN gN

−1)↝ (g1 g1
−1) ⋅ ⋅ ⋅ (gN gN

−1)↝ ε

because r j ↝ ε as noted above.

We need one more proposition before we can ûll ω-triangles. Given a, x ∈ G, let
ax denote axa−1.

Proposition 5.5 Fix a sequence of conical subsets C1 , . . . ,CK ∈ C. We have that
ω(a)x1 ⋅ ⋅ ⋅ xK ↝ ax1 ⋅ ⋅ ⋅ ax2ω(a) for all a ∈ A and x i ∈ UC i .

Proof By Proposition 4.5,

ω(a)x1 ⋅ ⋅ ⋅ xK ↝ (ω(a)x1ω(a)−1)(ω(a)x2ω(a)−1) ⋅ ⋅ ⋅ (ω(a)xKω(a)−1)ω(a)
↝ ax1 . . . axKω(a),

We now conclude the proof of our main theorem by showing that we can ûll ω-
triangles.

Lemma 5.6 Under our standing assumptions, if g1 , g2 , g3 ∈ G with g1g2g3 =G 1G , we
have ω(g1)ω(g2)ω(g3)↝ ε.

Proof Recall that ω(g) has the form ω(a)x1 ⋅ ⋅ ⋅ xk , where u i ∈ SA ∪ SC i for some
ûxed sequence C1 , . . . ,Ck of conical subsets. Let g1 , g2 , g3 ∈ G with g1g2g3 = 1G , and
let a i = ϕA(g i), for i = 1, 2, 3. Let ω(ϕU(g1)) = x1 ⋅ ⋅ ⋅ xk , ω(ϕU(g2)) = x′1 ⋅ ⋅ ⋅ x′k and
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ω(ϕU(g3)) = x′′1 ⋅ ⋅ ⋅ x′′k . Expanding and applying Proposition 5.5 repeatedly, we slide
the a-words to the right to see that

ω(g1)ω(g2)ω(g3) = ω(a1)x1 ⋅ ⋅ ⋅ xkω(a2)x′1 ⋅ ⋅ ⋅ x′kω(a3)x′′1 ⋅ ⋅ ⋅ x′′k
↝ a1x1 ⋅ ⋅ ⋅ a1xk a2a1x′1 ⋅ ⋅ ⋅ a2a1x′k a3a2a1x′′1 ⋅ ⋅ ⋅ a3a2a1x′′k ω(a1)ω(a2)ω(a3)

↝ a1x1 ⋅ ⋅ ⋅ a1xk a2a1x′1 ⋅ ⋅ ⋅ a2a1x′k a3a2a1x′′1 ⋅ ⋅ ⋅ a3a2a1x′′k .
_is resulting word admits a Lipschitz ûlling by Corollary 5.4.
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