Canad. Math. Bull. Vol. 21 (1), 1978

THIN LENS SPACES

BY
P. HOFFMAN AND A. ZABRODSKY

In Theorem 1 below we study the existence of spaces whose cohomology rings are isomorphic (as ungraded rings) to those of lens spaces. The case $p=2$ is very simple and instructive, so let us consider it first.

Suppose X is a space such that $H^{*}(X) \cong Z[x] /\left\langle 2 x, x^{3}\right\rangle$ where $\operatorname{dim} x=2 d$ (for example $X=R P^{4}$ with $d=1$). Then the Atiyah-Hirzebruch spectral sequence collapses, so $\tilde{K}(X)$ has an element y such that either
(i) $\tilde{K}(X) \cong Z_{4}$ generated by y, and $y^{2}=2 y$, or
(ii) $\tilde{K}(X) \cong Z_{2} \oplus Z_{2}$ with generators y and y^{2}.

But, in case (ii),

$$
0=\lambda^{2}(0)=\lambda^{2}(2 y)=2 \lambda^{2}(y)+y^{2}=y^{2}, \quad \text { a contradiction. }
$$

Hence we must have case (i). In general

$$
\lambda^{2}(a b)=a^{2} \lambda^{2}(b)+b^{2} \lambda^{2}(a)-2 \lambda^{2}(a) \lambda^{2}(b)
$$

Thus, since $2 \tilde{K}(X) \cdot \tilde{K}(X)=0$,

$$
\begin{aligned}
2 y+2 \lambda^{2}(y) & =y^{2}+2 \lambda^{2}(y)=\lambda^{2}(2 y)=\lambda^{2}\left(y^{2}\right) \\
& =2 y^{2} \lambda^{2}(y)-2\left[\lambda^{2}(y)\right]^{2}=0 .
\end{aligned}
$$

Hence $\lambda^{2}(y) \equiv-y\left(\bmod y^{2}\right)$. But in general, if $y \in K_{2 d}$ the d th filtration subgroup, then $\lambda^{2}(y) \equiv-2^{d-1} y\left(\bmod K_{2 d+2}\right)$. Thus we must have $d=1$, so X looks much like $R P^{4}$.

The corresponding result for odd primes goes as follows.
Theorem 1. (a) If p is a prime and d is a positive integer, then there is a space X with $H^{*}(X) \cong Z[x] /\langle p x\rangle$ where $\operatorname{dim} x=2 d$ if and only if d is a divisor of $p-1$.
(b) More precisely, $Z[x] /\left\langle p x, x^{p+1}\right\rangle$ is not realizable as an integral cohomology ring unless $\operatorname{dim} x / 2$ divides $p-1$.

The proof determines the group extensions in the computation of the K-theory of skeletons of X for certain d. This includes $d=1$, where the lens spaces are examples. It gives a simple algebraic determination of their K theory, normally done by exhibiting bundles, or better, representations of cyclic groups. ${ }^{(1)}$

[^0]We both wish to thank the Oxford Mathematical Institute for its hospitality during the autumn of 1975 . We also thank the referee for several valuable suggestions, particularly the one described in the final paragraph.
A. Proof that \boldsymbol{d} divides $\boldsymbol{p}-1$. The symmetric polynomial $p^{-1}\left[\sum x_{i}^{p}-\left(\sum x_{i}\right)^{p}\right]$ can be expressed as $f_{p}\left(\sigma_{1}, \ldots, \sigma_{p}\right)$, where f_{p} is a polynomial with integer coefficients and σ_{i} is the i th elementary symmetric function. If R is a special λ-ring [4], define $\Theta^{p}: R \rightarrow R$ as in [3]:

$$
\Theta^{p}(x)=f_{p}\left[\lambda^{1}(x), \ldots, \lambda^{p}(x)\right] .
$$

Lemma 2. For $x \in R$ and positive integers n, we have
(a) $\Theta^{p}(n x)=n \Theta^{p}(x)+p^{-1}\left(n-n^{p}\right) x^{p}$.
(b) $\Theta^{p}\left(x^{n}\right)=\sum_{j=1}^{n} p^{j-1}\binom{n}{j} \Theta^{p}(x)^{j} x^{p(n-j)}$.

Proof. Since the free λ-ring on two generators is torsion free, these follow immediately from the properties of the Adams operations ψ^{p} and the equation $\Theta^{p}(x)=p^{-1}\left[\psi^{p}(x)-x^{p}\right]$. Alternatively, they follow from the Verification Principle [4; 3.2]. Two more proofs are by induction on n, first working out the formulae for $\Theta^{p}(x+y)$ and $\Theta^{p}(x y)$ by either method above.

Note. There are two reasons why Θ^{p} is easier to use than λ^{p} in this context: Theorem 3 below, and the fact that the formulae above involve sums, products and Θ^{p}, but no other operations.

Theorem 3. (Atiyah) Suppose Y is a finite complex with $H^{k}(Y)=0$ for all odd k. Then for $y \in K_{2 d}(Y)$, the image of $\Theta^{p}(y)$ in $K(Y) / K_{2 d+2 t+2}(Y)$ is divisible by $p^{d-[t / p-1]-1}$, where $[s]$ denotes the integer part of s.

This follows immediately from [3, Theorem 5.3].
In the remainder of section A, we assume Y is a finite complex with $H^{*}(Y) \cong Z[x] /\left\langle p x, x^{p+1}\right\rangle$, where $\operatorname{dim} x=2 d$, and we prove d divides $p-1$.

Lemma 4. There exist $y \in \tilde{K}(Y)$ and integers h, with $2 \leq h \leq p+1$, and a, prime to p, such that
(i) $K(Y)=Z[y] /\left\langle p y-a y^{h}, y^{p+1}\right\rangle$;
(ii) $K_{2 t d}(X)$ is the group generated by $\left\{y^{i} \mid t \leq i \leq p\right\}$ for all t, and $K_{2 s}(Y)=K_{2 s+2}(Y)$ if $s+d$;
(iii) $p-1$ is a divisor of $d(h-1)$, if $h \neq p+1$.

Proof. Since $H^{2 i+1}(Y)=0$ for all i, the Atiyah-Hirzebruch spectral sequence collapses. Thus we can find y^{\prime} such that (ii) holds with y^{\prime} in place of y and such that

$$
K(Y)=Z\left[y^{\prime}\right] /\left\langle p y^{\prime}-\sum_{i=h}^{p} a_{i} y^{\prime i}, y^{\prime p+1}\right\rangle
$$

where $2 \leq h \leq p+1$ and a_{h} is prime to p. By [1, Cor. 8], $\tilde{K}(Y)$ splits as a direct sum $G^{(0)} \oplus G^{(1)} \oplus \cdots \oplus G^{(p-2)}$ of filtered groups, where for each index $\alpha \in$ Z_{p-1}, we have $G_{2 i}^{\alpha}=G_{2 i+2}^{\alpha}$ if $i \notin \alpha$. Since $y^{\prime} \in K_{2 d}(Y)$, by projecting into $G^{(d)}$, we may take $y^{\prime} \in G^{(d)}$ without affecting anything but the exact values of the coefficients a_{i}. To verify (iii), note that if $h \neq p+1$, we have

$$
p y^{\prime}=\sum_{i=h}^{p} a_{i} y^{\prime i} \in G_{2 d h}^{(d)}-G_{2 d h+2}^{(d)}
$$

Hence $d h \in(d)$ i.e. $d h \equiv d \bmod (p-1)$, proving (iii). Now, without affecting (ii), we can alter y^{\prime} to make $a_{h+1}=0$ by setting $y^{\prime \prime}=y^{\prime}+a_{h+1} \bar{a}_{h}(\overline{h-1}) y^{\prime 2}$, where $\bar{c} c \equiv 1(\bmod p)$. Continuing inductively we can eliminate a_{h+2}, \ldots, a_{p} arriving at an element y such that (i) holds.

Lemma 5. $d(h-1)^{2} \leq(p-1)^{2}$.
Proof. By (2a) and (b) we have

$$
\Theta^{p}(p y)=p \Theta^{p}(y)+y^{p}
$$

and

$$
\begin{aligned}
\Theta^{p}\left(a y^{h}\right) & =a \Theta^{p}\left(y^{h}\right)+\frac{a-a^{p}}{p} y^{p h}=a \Theta^{p}\left(y^{h}\right) \\
& =a \sum_{j=1}^{h} p^{j-1}\binom{h}{j}\left[\Theta^{p}(y)\right]^{j} y^{p(h-j)}=a p^{h-1}\left[\Theta^{p}(y)\right]^{h}
\end{aligned}
$$

since $y^{p(h-j)}=0$ unless $j=h$ or $h-1$, and since $\left[\Theta^{p}(y)\right]^{h-1} y^{p}=0$. Since $p y=$ $a y^{h}$, we obtain $p \Theta^{p}(y)+y^{p}=a p^{h-1}\left[\Theta^{p}(y)\right]^{h}$. Since $h \geq 2$, the filtration of $a p^{h-1}\left[\Theta^{p}(y)\right]^{h}$ is strictly larger than that of $p \Theta^{p}(y)$, a non-zero element since $y^{p} \neq 0$. But y^{p} is in the last non-zero filtration subgroup, so we must have $p \Theta^{p}(y)+y^{p}=0$. This implies $p \tilde{K}(Y) \neq 0$ i.e. $h \neq p+1$, and that $\Theta^{p}(y) \equiv$ $b y^{p-h+1} \bmod K_{2 d(p-h+1)+2}(Y)$ for some b prime to p. In $K(Y) / K_{2 d(p-h+1)+2}(Y)$, y^{p-h+1} is divisible by exactly $p^{[(p-1) /(h-1)]-1}$. By Theorem 3,

$$
d-\left[\frac{d(p-h)}{p-1}\right]-1 \leq\left[\frac{p-1}{h-1}\right]-1
$$

But

$$
\frac{d(p-h)}{p-1}=d-\frac{d(h-1)}{p-1}
$$

is an integer by 4(iii), so we obtain

$$
\frac{d(h-1)}{p-1} \leq\left[\frac{p-1}{h-1}\right] \quad \text { or } \quad d \leq\left[\frac{p-1}{h-1}\right]\left(\frac{p-1}{h-1}\right) \leq\left(\frac{p-1}{h-1}\right)^{2},
$$

as required.

Proof that $\boldsymbol{d} \mid \boldsymbol{p}-1:$ If $\bar{x} \in H^{2 d}\left(Y ; Z_{p}\right)$ is the reduction of x, then $\mathscr{P}^{d}(\bar{x})=$ $\bar{x}^{p} \neq 0$. The usual argument using $\mathscr{P}^{1} \mathscr{P}^{d-1}=d \mathscr{P}^{d}$ then shows that either $d \mid p-1$ or $p \mid d$. But, if $d=s p$, Lemma 5 gives $s p(h-1)^{2} \leq(p-1)^{2}$. Lemma (4) (iii) gives $p-1 \mid s p(h-1)$, so

$$
p-1 \mid s(h-1) \leq(p-1)^{2} p^{-1}(h-1)^{-1}<p-1 .
$$

This contradiction eliminates the possibility that $p \mid d$, and so $d \mid p-1$, as required.
Note. It is immediate from 4 (iii) and 5 that $h=p$ if and only if $d=1$, giving the group extension for the K-theory of a lens space. W. M. Chan has made some calculations analogous to these for the case when p is not prime. He also noticed a gap in an earlier version of the proof above.
B. Construction of \mathbf{X}. In [5], a method is given for reaiizing in certain cases the image of an induced map as the cohomology of a space. A simple case is the following. Induced maps f^{*}, s^{*}, t^{*} and q^{*} always refer to Z_{p}-cohomology.

Theorem 2. Given $f: W \rightarrow Y$, assume
(a) $H^{k}(W)$ and $H^{k}(Y)$ are finite p-groups for all $k>0$, and Y is at least 2-connected;
(b) there exist maps s and t such that
(i)

(ii) s^{*} and t^{*} are diagonalizable,
(iii) the λ-eigenspace of s^{*} lies in the image of f^{*} for any product λ of eigenvalues of t^{*}.
Then f factors as $W \xrightarrow{8} X \xrightarrow{h} Y$ where
(1) $H^{k}(X)$ is a finite p-group for all $k>0$;
(2) g^{*} is injective;
(3) $\operatorname{Im} g^{*}=\operatorname{Im} f^{*}$.

To construct X, a lens space will do for $d=1$, so we may take $d>1$ with $d \mid p-1$. Let $W=K\left(Z_{p}, 1\right)$ and $Y=K\left(Z_{p}, 2 d-1\right)$ and specify f in Theorem 2 by $f^{*}\left(\iota_{2 d-1}\right)=\iota_{1}\left(\beta \iota_{1}\right)^{d-1}$. Here ι is the fundamental class for the EilenbergMaclane space and β is the Bockstein operator. That X has the required cohomology ring is elementary.

We are grateful to the referee for pointing out that such spaces X occur "in nature" as well (see [2] for analogues): The field Z_{p} has a multiplicative
subgroup S of order d. Let G be the split extension of Z_{p} by S, the action being multiplication. Let $\sigma: S \rightarrow G$ be a splitting and take $X=B_{G} v_{B \sigma} C B_{S}$. It follows that $H^{*}(X) \simeq \operatorname{ker} B_{\sigma}^{*}$. The action of S on $H^{*}\left(B_{Z_{p}}\right)$ as ring automorphisms may, on $H^{2}\left(B_{Z_{p}}\right) \cong Z_{p^{\prime}}$ be identified with the multiplication action. From the splitting

$$
H^{*}\left(B_{G}\right) \cong H^{*}\left(B_{Z_{p}}\right)^{s} \oplus H^{*}\left(B_{S}\right)
$$

it follows that $H^{*}(X) \cong H^{*}\left(B_{Z_{p}}\right)^{s}$, the fixed subring. This is what we want, since S acts trivially exactly in the dimensions $2 k d$ for $k \geq 0$.

References

1. J. F. Adams: Lecture 4, Splitting Generalized Cohomology Theories with coefficients, in Category Theory, Homology Theory and their Applications III, Springer Lecture Notes in Mathematics, Vol. 99.
2. J. F. Adams: The Kahn-Priddy Theorem, Proc. Comb. Phil. Soc. 73 (1973), 45-55.
3. M. F. Atiyah: Power Operations in K-theory, Quart. J. Math. Oxford (2), 17 (1966), 165-93.
4. M. F. Atiyah and D. O. Tall: Group Representations, λ-Rings and the J-Homomorphism, Topology 8 (1969), 253-97.
5. A. Zabrodsky: On the category of endomorphisms of finite complexes (to appear).

University of Waterloo
Waterloo, Ontario, Canada
The Hebrew University
Jerusalem

[^0]: Received by the editors May 18, 1977.
 ${ }^{(1)}$ R. Kane has pointed out another proof of half of the theorem using cohomology operations.

