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Abstract. We show that minimal shifts with zero topological entropy are topologically
conjugate to interval exchange transformations, which are generally infinite. When these
shifts have linear factor complexity (linear block growth), the conjugate interval exchanges
are proved to satisfy strong finiteness properties.

1. Introduction
Interval exchange transformations (IETs) are maps over I = [0, 1) which can be defined
as permutations of intervals partitioning I . In the finite case, these maps are just piecewise
isometries of I onto itself, or equivalently, injective measure-preserving maps having only
a finite number of discontinuities. They happen to be a fundamental notion in dynamical
systems and ergodic theory [CFS82, Mañ87, HK02]. Another important notion in the
same context is the shift σ on the set AN of infinite words (symbolic sequences) over
a finite alphabet A. This simple continuous map consists of erasing the first letter of its
argument. The pair (AN, σ ) forms a basic topological dynamical system, where AN is then
called the full shift over A. If L is a closed σ -invariant subset of AN, the pair (L , σ ) also
induces such a system, where L is then just called a shift [LM95, Kit98]. The topological
entropy of a shift L depends on the factor complexity (block growth) of L [MH38, Par66,
CN10], i.e. the map pL on N∗ giving for each n the number of distinct length-n factors
(subblocks) occurring in the words of L . Now, a known general relationship between all
the above concepts is the following: the support I of a finite IET can be embedded as a
subset into a measured compact space in such a way that the IET extends to a measure-
preserving continuous map, whose natural symbolic conjugate is a shift L with a factor
complexity bounded by an affine function (thus L has zero topological entropy) [Kea75].
The main idea of this paper is to study this relationship the other way around, that is,
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starting from shifts to build topologically conjugate IETs, generally with infinitely many
discontinuities, and using factor complexity to determine families of these IETs.

Thus, given a shift L , we first describe an ordered measured compact space X L

containing I and a continuous self-map fL on X L in such a way that (L , σ ) is topologically
conjugate to (X L , fL). Next, we show how fL can be seen as an extension over X L of
an IET TL over I . We shall mostly consider aperiodic minimal shifts, i.e. shifts with no
periodic word and containing no proper shift. With this respect, the first main result we
prove is the following.

THEOREM 1. Let L be a measured minimal aperiodic shift with zero topological entropy.
Then (L , σ ) is topologically conjugate to (X L , fL), where fL is the extension over X L of
an IET TL on I ⊂ X L .

This result is to be put into perspective with the fact that aperiodic measure-
preserving transformations of a Lebesgue space are known to be isomorphic to
infinite IETs [AOW85]. Besides the fact it defines a tight relationship between shifts
and transformations over [0, 1), Theorem 1 is about topological isomorphisms—
i.e. homeomorphisms— and not only about isomorphisms—i.e. measure-preserving maps.
Another comparison point is that the conjugate IETs given by Theorem 1 can have up to a
null measure infinite set of discontinuities, while being always piecewise increasing. Also,
the construction behind these conjugate maps has the following consistency property:
starting with a piecewise increasing IET T , and coding its dynamics after a finite
monotonicity partition of I , a shift is obtained to which Theorem 1 applies, yielding an
IET coinciding with T (see Proposition 3.3.3 further).

The paper focuses next on aperiodic minimal shifts L with linear complexity [Fog02,
CN10], i.e. pL(n)= O(n), forming a family of shifts with zero topological entropy, which
contains all the simplest non-trivial ones. In particular, these linear complexity shifts
include not only the conjugate shifts obtained from the natural coding of finite IETs,
but also the shifts associated with primitive substitutions [Qué10]. Now, the simplicity
behind linear complexity is reflected in the conjugate IETs. In this case, a conjugate IET
given by Theorem 1 has three properties: in addition to being piecewise increasing, its
discontinuities may accumulate only at a finite set, and all these discontinuities belong
to only finitely many distinct iterates (full orbits) of the IET. We call an IET satisfying
these properties almost finite. The second main result we prove is the following variation
of Theorem 1.

THEOREM 2. Let L be a measured minimal aperiodic shift with linear complexity. Then
(L , σ ) is topologically conjugate to (X L , fL), where fL is the extension over X L of an
almost finite IET TL on I ⊂ X L .

The above theorems can be constructive. In particular, we describe a technique to exhibit
σ -invariant measures on the shifts L for which the conjugate IETs can be explicitly built
(see Proposition 5.1.3, and the examples illustrating it).

2. Basic definitions
2.1. Interval exchange transformations.
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Definition 1. An orientation-preserving finite interval exchange transformation† (IET) is
a map T : I → I , where I = [0, 1), with:
• a finite set {xi }i=0,...,m−1 of discontinuities, denoted by D, with x0 = 0< x1 < · · ·<

xm−1 < xm = 1, which determines an ordered partition
⊔m−1

i=0 Ii of I formed by the
right-open intervals Ii = [xi , xi+1),
such that:
• T is injective, and T is a translation on each interval Ii , i.e. for each i = 0, . . . , m − 1,

there exists ki ∈ R such that for all x ∈ Ii , T (x)= x + ki .

Such a finite IET T is just a piecewise order-preserving isometry of I . It is right-
continuous, and measure-preserving, being injective and with derivative 1 on I \D. A
usual way of interpreting T —giving its name to the notion—is the following: the intervals
Ii , as ordered components of the partition

⊔m−1
i=0 Ii of I , are permuted in the image

of T so as to form another partition
⊔m−1

i=0 Iπ(i) of I , where π is the permutation over
{0, . . . , m − 1} induced by the ki determining T . Indeed an IET can also be defined by a
pair (λ, π), where λ is the vector of the lengths of the Ii , and π is a permutation of the Ii .
Note that, given an IET, the partition of I can be refined by using any finite set B ⊃D of
points, and such a refinement can also be used in Definition 1 by replacing D with B. The
points determining a specific partition of an IET T are then usually called the separation
points of T .

The above definition of an IET can be extended to include infinity as follows.

Definition 2. An orientation-preserving infinite interval exchange transformation is a map
T : I → I , where I = [0, 1), with:
• an infinite set Y of discontinuities such that the closure of Y in I , denoted by D, has

null measure and determines an ordered partition of I formed by:
(i) the right-open intervals [x, x ′) with x ∈D, x ′ ∈D ∪ {1}, [x, x ′) ∩D = {x};
(ii) the set Dacc,r of the accumulation points of D from the right,
such that:
• T is injective on I \Dacc,r , right-continuous on I , and T is a translation on each right-

open interval of the above partition‡.

An infinite IET T is also measure-preserving, being injective with derivative 1 on I \D,
and D being of null measure. Since T is right-continuous on I , its values on Dacc,r are
determined by its values on I \Dacc,r . Like in the finite case, D can be replaced in the
above definition by any null-measure set B of separation points such that B ⊃D, where
B ∪ {1} is compact. Note that we can use a null-measure infinite set B for finite IETs too.

2.2. Words. Let A be a finite alphabet, let A+ be the set of finite words over A,
let A∗ be A+ with the empty word ε, and let AN be the set of infinite words over A.
The alphabet A can be endowed with the discrete topology, and the resulting product
topology on AN is metrizable and compact. The usual associated metric is the Cantor

† In this paper, it is sufficient to consider the orientation-preserving case only, i.e. interval exchange
transformations with (+1) slopes and no (−1) slopes as in the general case [Mañ87].
‡ Infinite IETs are considered in different ways in the literature depending on the authors, e.g. in [AOW85], the
discontinuities accumulate only at 1, whereas in [Hoo15], the discontinuities are countable and the partitioned
interval may have infinite length.
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metric: if w = a0a1a2 . . . and w′ = a′0a′1a′2 . . . in AN, with ai , a′i ∈ A, their distance is 0
if they are equal and 2−k if not, where k is the smallest non-negative integer for which
ak 6= a′k . Let v = v0v1 . . . vn ∈ A∗, with vi ∈ A, then its cylinder set (for short, cylinder) is
Cyl(v)= {w = a0a1a2 . . . ∈ AN

| a0 = v0, a1 = v1, . . . , an = vn}. A cylinder is a clopen
set, and the collection of all the cylinders forms a basis for the topology on AN. For L ⊆ AN

and v ∈ A∗, the cylinder in the subspace topology is CylL(v)= Cyl(v) ∩ L . Let ≤ be an
order over A, propagated to all the words in A+ and AN as the lexicographic order. Then for
every w, w′ ∈ L with w ≤ w′, the word interval [w, w′] in L is {w′′ ∈ L | w ≤ w′′ ≤ w′}.
Note that the induced order topology is the same as the product topology.

A factor (or subblock) of a word w is a finite word v such that w = w′vw′′, where
w′, w′′ are possibly empty, and where w′vw′′ denotes the word concatenation of w′, v
and w′′. The length of v is denoted by |v|. The set of all distinct factors of a word w is
denoted by Factw, and for a set L ⊆ AN, by FactL =

⋃
w∈L Factw. For each n ∈ N∗, the set

of all the distinct factors v of w such that |v| = n is denoted by Factw(n), and for L ⊆ AN,
by FactL(n)=

⋃
w∈L Factw(n). The (factor) complexity (or block growth) [MH38, CN10]

of a word w is the function pw : N∗→ N∗, with pw(n)= |Factw(n)|, where | · | for a
set denotes its cardinality, and for L ⊆ AN, it is pL(n)= |FactL(n)|. When L is a shift,
its topological entropy [Par66] is defined as limn→∞ log(pL(n))/n (which exists, since
log(pL(n)) is subadditive).

An infinite word w is said to be minimal when each factor in Factw occurs infinitely
often inw with bounded gaps, i.e. for each factor v ofw = a0a1, . . . , the ordered sequence
of distinct indexes {nj } j∈N such that anj . . . anj+|v|−1 = v is infinite, and n j+1 − nj is
bounded independently of j [MH38]. Such a word w is minimal aperiodic when it is
not periodic, i.e. when there is no factor v such that w = vω. A set of finite words is
prolongable if all its words can always be concatenated with letters to the right and to the
left so that the resulting words still belong to the set. When L ⊆ AN is made of minimal
words, FactL is prolongable.

2.3. Dynamical systems and shifts. Considering a self-map f : X→ X , where X is
a measured space and where f is measurable, the pair (X, f ) is called a measured
dynamical system. When X is a topological space and f is continuous, (X, f ) is called a
topological dynamical system. The shift map σ over AN sends a0a1 . . . to a′0a′1, . . . , where
a′i = ai+1 for every i ∈ N, and it is a continuous map over AN. A shift space (or simply a
shift) [LM95] is a closed σ -invariant set of words L in AN, and accordingly, (L , σ ) is an
instance of a topological dynamical system. For a dynamical system (X, f ), the (positive)
orbit of a point x ∈ X is { f n(x)}n∈N. When f is invertible, the full orbit is { f n(x)}n∈Z, and
when f is not invertible, it is the∼-class of points in X containing x , where x ′ ∼ x if there
are n1, n2 ≥ 0 such that f n1(x ′)= f n2(x) [KST01]. A continuous map f : X→ X is said
to be minimal if there is no non-empty closed proper subset X ′ ( X such that f (X ′)= X ′,
or equivalently if the orbit of each x ∈ X is dense in X . The map f is minimal aperiodic
if X does not consist of a single periodic orbit. Accordingly, a minimal shift is a shift
containing no proper shift, and a minimal aperiodic shift is a shift which is not made of the
orbit of one single periodic word. If a word w belongs to a minimal shift L , it is minimal
as a word, and Factw = FactL .
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For two measured dynamical systems (X, f ) and (Y, g), if there exists a measurable
isomorphism φ : X→ Y such that φ ◦ f = g ◦ φ, then (X, f ) and (Y, g) are said to be
conjugate by φ. When (X, f ) and (Y, g) are topological dynamical systems and φ is a
continuous onto map (respectively a homeomorphism), (X, f ) and (Y, g) are said to be
topologically semi-conjugate (respectively topologically conjugate) by φ.

3. From shifts to interval exchange transformations
3.1. The conjugacies. We start here by presenting basic results about how to embed
ordered measured spaces coming from shifts into [0, 1].

For any dynamical system (X, f ), where X is a compact space and f is a continuous
self-map on X , there exist Borel probability measures on X which are f -invariant [HK02].
If f is minimal aperiodic, any such measure is non-atomic and takes positive values on
open sets. Borel measures on compact sets behave well with respect to approximating
measurable sets by open and/or closed sets since they are regular, i.e. for any measurable
set E , µ(E)= sup{µ(E ′) | E ′ compact, E ′ ⊆ E} and µ(E)= inf{µ(E ′) | E ′ open, E ⊆
E ′}. For a regular measure, to be non-atomic is equivalent to every singleton having
measure 0.

From now on, L denotes a shift lexicographically ordered by ≤, and endowed with a
σ -invariant Borel probability measure µ which is non-atomic (so that the measure of any
single word in L is zero), positive on cylinders, and regular. If L is a minimal aperiodic
shift, as just said above, such measures exist.

Remark 3.1.1. There is no isolated word in L .

Proof. If there was an isolated word w in L , there would exist a prefix v of w such that
CylL(v) contains only w, but then {w} would have positive measure. �

Using µ and the order ≤ over L , and denoting the smallest word of L by wL ,min, we
define:

φµ: L → I = [0, 1]
w 7→ µ([wL ,min, w]).

LEMMA 3.1.2. φµ is a monotonic non-decreasing continuous map.

Proof. Since µ is a measure which takes its values in [0, 1], φµ is monotonic non-
decreasing. For continuity, the involved spaces being compact, we just check that the
image by φµ of every sequence in L converging to some w ∈ L is a sequence converging
to φµ(w). Let S be such a sequence, from which we extract two subsequences {w+i }
and {w−i }, formed by decreasing words greater than w and by increasing words smaller
than w, respectively. At least one of them is infinite, say {w+i }, and [wL ,min, w] =⋂

i [wL ,min, w
+

i ). Since µ is regular, µ([wL ,min, w])= φµ(w)= infi µ([wL ,min, w
+

i )),
and since µ is zero on single words for all i > 0, µ([wL ,min, w

+

i ])= φµ(w
+

i ), thus
infi φµ(w

+

i )= φµ(w). Hence since φµ is non-decreasing, {φµ(w+i )} converges to φµ(w),
whatever the choice of {w+i }. If {w−i } is also infinite, similar arguments as for {w+i } apply
using suprema instead of infima, whence the result. �
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LEMMA 3.1.3. φµ is a surjective map.

Proof. Since L is compact and φµ is continuous, I \ φµ(L) is open, and if not empty it
is a disjoint union of open intervals, since 0 and 1 belong to φµ(L). Let J = (x, x ′), with
x, x ′ ∈ φµ(L), be one of these intervals, and let wx,sup = sup{w ∈ L | φµ(w)= x} and
wx ′,inf = inf{w ∈ L | φµ(w)= x ′}. Since x < x ′ and since φµ is non-decreasing, wx,sup <

wx ′,inf. Also, there is no word w ∈ L with wx,sup <w <wx ′,inf, otherwise φµ(wx,sup)≤

φµ(w)≤ φµ(wx ′,inf), and by the definition of J we would have φµ(w)= x or φµ(w)=
x ′, contradicting the definitions of wx,sup or wx ′,inf. Now, φµ(wx ′,inf)− φµ(wx,sup)=

µ([wL ,min, wx ′,inf])− µ([wL ,min, wx,sup])= µ((wx,sup, wx ′,inf]), which is equal to the
non-zero length of J . But we just have checked that (wx,sup, wx ′,inf] = {wx ′,inf} and µ
is zero on single words. Hence there is no interval such as J , so φµ is onto. �

We now characterize the points where φµ is non-injective. For each n > 0, the length-n
factor set FactL(n) induces an ordered finite partition of L defined as

CYLL(n) : L =
⊔

v∈FactL (n)

CylL(v),

where the CylL(v) are ordered in L according to the lexicographic order of the v

in FactL(n). By compactness, each CylL(v) has two endpoints: its smallest and its
greatest words. We say that w, w′ ∈ L (respectively Cyl(u), Cyl(u′) ∈ CYLL(n), n > 0)
are consecutive if w <w′ (respectively Cyl(u) < Cyl(u′)) and if there is no word w′′ ∈ L
such that w <w′′ <w′ (respectively Cyl(u) < w′′ < Cyl(u′)).

LEMMA 3.1.4. Let w, w′ ∈ L. Then w, w′ are consecutive if and only if for some n > 0
they are endpoints, respectively the greatest and the smallest words, of two consecutive
cylinders of CYLL(n).

Proof. (⇐) Trivial. (⇒) Assume w <w′, with w, w′ consecutive. Let u ∈ A∗ be their
longest common prefix, so that w = ua1a2 . . . and w′ = ua′1a′2, . . . , with ai , a′i ∈ A.
Thus w, w′ ∈ CylL(u) and a1 < a′1. Since there is no word between w and w′, the
prefix ua1 . . . a j−1aj of w for each j > 1 is also the greatest prefix for all the words in
CylL(ua1). Otherwise, there would be a factor ua1v ∈ FactL(|u| + j), v ∈ A+, such that
ua1 . . . a j−1aj < ua1v as a prefix of a word w′′ = ua1v . . . ∈ L . But then w <w′′ <w′,
which is impossible. Thus w is the greatest word in CylL(ua1). By similar arguments,
w′ is the smallest word in CylL(ua′1). Finally, there is no other a ∈ A with a1 < a < a′1,
such that there is w′′′ = ua . . . ∈ L , otherwise again w <w′′′ <w′. Hence CylL(ua1) and
CylL(ua′1) are consecutive cylinders in CYLL(|u| + 1). �

LEMMA 3.1.5. Letw, w′ ∈ L. Then φµ is non-injective on {w, w′} if and only ifw, w′ are
consecutive.

Proof. (⇐) Assume w <w′, with w, w′ consecutive. Then we have φµ(w′)− φµ(w)=
µ([wL ,min, w

′
])− µ([wL ,min, w])= µ((w, w

′
])= µ({w′})= 0, since µ is zero on single

words. (⇒) Assume w <w′, with w, w′ non-consecutive. Thus there exists w′′ ∈ L
with w <w′′ <w′, so that there is a length-n prefix u of w′′, with n > 0, distinct from the
length-n prefixes of w and w′. But then, every w′′′ ∈ CylL(u) is such that w <w′′′ <w′,
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and we have φµ(w′)− φµ(w)= µ((w, w′])≥ µ(CylL(u)) > 0, since µ is positive on
cylinders. �

Thus φ−1
µ (x), x ∈ I , consists of either one or two words in L , and a consequence of

Lemma 3.1.4 is that the set of points with two-word preimages is countable.
Let us then transform φµ into an injective map by embedding I as a subset of a larger

compact space (using a similar construction to the classic one for transforming piecewise
continuous self-maps into homeomorphisms, as in e.g. [Kea75] for IETs). We first define
the following spaces and maps.
• Z0 ⊂ I denotes the image by φµ of the set of points where φµ is not injective.
• Z−0 denotes a copy of Z0.
• X L denotes I t Z−0 , ordered in such a way that each point in Z0 lies to the right of its

copy in Z−0 , with no other point in between. We endow X L with the order topology for
this order relation.
• ι : I → X L denotes the inclusion map. It is increasing and right-continuous on I .
• κ : X L → I denotes the canonical map associated with the equivalence relation in X L

which identifies each point in Z0 with its copy in Z−0 . It is a non-decreasing continuous
map, and it is onto. Accordingly, κ ◦ ι is the identity map on I .
Having in mind Lemma 3.1.5 we then define the following map from φµ:

φ : L → X L

w 7→


ι(φµ(w)) if φµ(w) /∈ Z0, or

if φµ(w) ∈ Z0, with φ−1
µ (φµ(w))= {w, w

′
}, w >w′,

ι(φµ(w))
− if φµ(w) ∈ Z0, with φ−1

µ (φµ(w))= {w, w
′
}, w <w′,

where ι(φµ(w))− is the copy of ι(φµ(w)) in Z−0 .

Note that κ ◦ φ = φµ.

LEMMA 3.1.6. φ is an increasing homeomorphism.

Proof. By Lemma 3.1.2, φ is increasing where φµ is injective since φ = φµ on these
points. Where φµ is not injective, that is, for each x ∈ Z0 where φ−1

µ (x)= {w, w′} for
some w, w′ ∈ L with w <w′, then by definition of X L and φ we have φ(w) < φ(w′).
Therefore φ is everywhere increasing, thus into. Since X L = ι(I ) t Z−0 , φ is also onto.
Hence φ is a monotonic bijection between two totally ordered sets endowed with their
respective order topologies, so it is a homeomorphism. �

We define two more maps:

fL : X L → X L TL : I → I
x 7→ φ(σ(φ−1(x))) x 7→ κ( fL(ι(x))).

PROPOSITION 3.1.7. Consider the following diagram:
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(a) for every x ∈ I , ι(TL(x))= fL(ι(x));
(b) (L , σ ) is topologically conjugate to (X L , fL) by φ;
(c) ((ι(I )⊂ X L), fL) is topologically semi-conjugate to (I , TL) by κ;
(d) ((φ−1(ι(I ))⊂ L), σ ) is topologically semi-conjugate to (I , TL) by φµ.

Proof. (a) Note that 0, 1 /∈ Z0. Indeed, φµ being non-decreasing, if φ−1
µ (0)

(respectively φ−1
µ (1)) was made of two words, consecutive by Lemma 3.1.5, they would

be the two smallest (respectively greatest) in L , and by Lemma 3.1.4 the smaller one
(respectively greater one) would be isolated, contradicting Remark 3.1.1. Now, we put
I ′ = I \ (Z0 ∪ {0, 1}). By definition, κ is injective on ι(I ), hence on ι(I ′), thus since κ
is a left inverse of ι, it is also a right inverse of ι when restricted to this set. We compose
TL = κ ◦ fL ◦ ι on both sides to the left by ι, so that ι ◦ TL = fL ◦ ι is valid on I ′, provided
that fL(ι(I ′))⊂ ι(I ′), which is proved as follows: by definition of I ′, for every x ∈ I ′,
φ−1
µ (x)= φ−1(ι(x)), that is, φ−1

µ (I ′)= φ−1(ι(I ′)). Also, by Lemmas 3.1.4 and 3.1.5, a
word w is in φ−1

µ (I ′) if and only if it is not a cylinder endpoint. Thus, there are words in L
arbitrarily close to w from the right and the left, that is, words smaller and greater than w
with arbitrarily long prefixes common with those of w. By continuity of σ , the same holds
for σ(w), so σ(φ−1(ι(I ′)))⊂ φ−1(ι(I ′)). Composing on both sides to the left by φ yields
fL(ι(I ′))⊂ ι(I ′), as required. Now, Z0 being countable, I ′ is dense in I . Since both ι ◦ TL

and fL ◦ ι are compositions of right-continuous maps on I , they are right-continuous too,
so ι ◦ TL = fL ◦ ι extends to all of I .

(b) φ is a homeomorphism, thus by definition of fL , the result follows.
(c) By definition of TL , we have the conjugacy TL ◦ κ = κ ◦ fL on ι(I ′). Both members

of this identity are right-continuous maps, and by the same arguments as in (a), this
conjugacy holds on all of ι(I ). Next, again by definition of TL , we have TL(1)=
κ( fL(ι(1))), and 1 has only one preimage by κ which is ι(1), so the conjugacy holds
on ι(I ) too. Finally, κ is measure-preserving and onto.

(d) Using the fact that κ ◦ φ = φµ, and the commutativity properties given by (b) and (c)
on κ and φ, the result follows. �

3.2. Checking the infinite exchange transformation properties. We now focus on when
TL is an IET. Here are first three general lemmas.

LEMMA 3.2.1. The image of µ by φµ is the Lebesgue measure on I , which is preserved
by TL .

https://doi.org/10.1017/etds.2015.131 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.131


Infinite interval exchange transformations from shifts 1943

Proof. We denote by f∗µ the image of the measure µ by the map f . By Lemmas 3.1.2
and 3.1.3, φµ is continuous and surjective, thus the preimage of any interval [0, x],
with x ∈ I , is an interval [wL ,min, w] in L , where φµ(w)= x = µ([wL ,min, w]). Hence
(φµ)∗µ is the Lebesgue measure on I . Next, by Proposition 3.1.7(d), φµ ◦ σ = TL ◦ φµ

on φ−1(ι(I )), a set of full measure in L . Thus (φµ)∗σ∗µ= TL∗(φµ)∗µ, and since σ
preserves µ, (φµ)∗σ∗µ= (φµ)∗µ, that is, TL preserves the Lebesgue measure on I . �

From CYLL(1), that is, the partition of L defined as
⊔

a∈A CylL(a), we define the
induced partition of I as

PA : I =
⊔
a∈A

IL ,a, where IL ,a = {x ∈ I | φ−1(ι(x)) ∈ CylL(a)}. (1)

Note that each IL ,a is a right-open interval in I . Indeed, if x < x ′, with x, x ′ ∈ IL ,a , then
every x ′′ ∈ I , with x < x ′′ < x ′, is also in IL ,a since φ−1 and ι both preserve the order.
Moreover, if a < a′, where a, a′ ∈ A are consecutive, then if w is the greatest word in
CylL(a) and w′ the smallest in CylL(a

′), we have φµ(w)= φµ(w′)= y, where y ∈ Z0.
By definition of Z0 and φ and since w <w′, φ−1(ι(y))= w′, thus y ∈ IL ,a′ , which means
that IL ,a is right-open.

LEMMA 3.2.2. TL is right-continuous on I , and piecewise increasing on PA.

Proof. TL is right-continuous on I , being a composition of the right-continuous
maps κ, fL , and ι. Next, TL is non-decreasing on each IL ,a in PA. Indeed, by
Proposition 3.1.7(d), TL ◦ φµ = φµ ◦ σ on φ−1(ι(IL ,a))⊂ CylL(a), and φµ is non-
decreasing on I , while σ is increasing on CylL(a). Now, assume there exist x, x ′ ∈ IL ,a ,
with x < x ′, such that TL(x)= TL(x ′). Since TL is non-decreasing it must be constant on
(x, x ′), which is impossible since TL is measure-preserving by Lemma 3.2.1, hence TL is
increasing on each IL ,a . �

LEMMA 3.2.3. TL(I )⊂ I .

Proof. By Lemma 3.2.2, TL is piecewise increasing on the IL ,a . Let J be one of these
intervals, and assume TL(x)= 1 for some x ∈ J . But with TL being increasing on J , and
J being right-open, TL(y) would be > 1 for all y ∈ J with y > x . �

As a next step, let us exhibit conditions so that there exists a partition of I on which TL

is a translation on its components (PA is not such a partition in general). For that purpose,
we first study the effect of σ over the word intervals in L . A factor u ∈ FactL is said to be
left special (respectively right special) if u has at least two distinct left (respectively right)
letter prolongations in FactL , i.e. if u ∈ FactL(n), then u is the suffix (respectively prefix)
of at least two distinct factors in FactL(n + 1).

LEMMA 3.2.4. Let L be a shift such that FactL is prolongable. Let w, w′ ∈ CylL(au),
with a ∈ A, u ∈ FactL not left special, and w <w′. Then

σ([w, w′])= [σ(w), σ (w′)]. (2)
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Proof. (⊆) Let w = auv and w′ = auv′, with v, v′ ∈ AN. Let w′′ = auv′′ ∈ [w, w′], with
v′′ ∈ AN. By lexicographic order, we have uv ≤ uv′′ ≤ uv′. Hence σ(w′′)= uv′′ belongs
to [uv, uv′] = [σ(w), σ (w′)].

(⊇) Let again w = auv and w′ = auv′, with v, v′ ∈ AN. Let w′′ = uv′′ ∈
[σ(w), σ (w′)], with v′′ ∈ AN. Consider {uuj } j∈N the sequence of all the prefixes of w′′

with uj ∈ A∗ starting with u. By prolongability to the left, each uuj has at least one left
letter prolongation, but it can only be a since u is not left special. By prolongability to
the right, each auuj is the prefix of at least one word in L , which makes a sequence
converging to the word aw′′, belonging to L by compactness of L . Thus there is one left
letter prolongation forw′′ in L , unique since u is not left special, that is, aw′′ = σ−1(w′′)=

σ−1(uv′′). Since uv ≤ uv′′ ≤ uv′, we have auv ≤ aw′′ ≤ auv′, that is, aw′′ ∈ [w, w′].
Hence w′′ ∈ σ([w, w′]). �

Note that a specific case of the above is σ(CylL(au))= CylL(u), where a ∈ A and u is
not left special. Now, the idea is to build a partition of L essentially made of cylinders such
that equality (2) holds in all of these cylinders. An infinite left special word (or infinite left
special branch) with respect to FactL , where L ⊆ AN, is a one-way infinite word such that
all its prefixes are left special factors in FactL . We denote by SPL ⊆ AN the set of all the
infinite left special words with respect to FactL . When L is a shift, SPL is included in L .

LEMMA 3.2.5. Let L be a shift having left special factors of arbitrary length, measured
by µ, with µ(SPL)= 0. Then, there is an infinite partition of L defined as

PARTL : L =
⊔
k>0

CylL(v
(k)) tWSPL , (3)

where:
• for each k > 0, v(k) ∈ FactL , such that for all w, w′ ∈ CylL(v

(k)) with w <w′,
σ([w, w′])= [σ(w), σ (w′)] (i.e. equality (2) holds).
• WSPL = σ

−1(SPL) is a null measure non-empty set in L, which is formed by the
accumulation of the endpoints of CylL(v

(k)) in L.

Proof. Let us describe the cylinders of PARTL by an iterative process. As a first step,
consider the partition CYLL(2) of L , i.e.

⊔
ai aj∈FactL (2) CylL(ai aj ), with ai , aj ∈ A. By

Lemma 3.2.4, for each non-left special aj , we have σ([w, w′])= [σ(w), σ (w′)] for all
w, w′ ∈ CylL(ai aj ), so that CylL(ai aj ) is put in PARTL , and ai aj is one of the v(k).
As a second step, each of the remaining CylL(ai aj ) not put in PARTL during the first
step, is partitioned with cylinders of the form CylL(ai aj ak) in CYLL(3). Again, for each
non-left special suffix aj ak , the word intervals in CylL(ai aj ak) satisfy equality (2), and
CylL(ai aj ak) is put in PARTL , while ai aj ak is also one of the v(k). This refinement process
is inductively applied as long as cylinders remain at step n by partitioning them with
cylinders in CYLL(n + 1), defining then all the cylinders of PARTL .

Since the left special factors of L can have arbitrary lengths, and since every prefix of a
left special word is left special, there is at least one left special factor in L for each length.
Thus, given any n > 0 and a left special factor u ∈ FactL(n), the cylinder CylL(au), a ∈ A,
must still be refined during the nth step of the above refinement process. Therefore, this
process is necessarily infinite. It determines infinite sequences of nested cylinders of the
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form {CylL(auj )} j∈N∗ , where uj ∈ FactL( j) is left special while being a prefix of u j+1,
for all j . Such a sequence {auj } j∈N∗ gives a limit infinite word, which belongs to WSPL

since {uj } j∈N∗ gives a limit infinite word in SPL . As a result, if a word w ∈ L does not
belong to some CylL(v

(k)), it belongs to WSPL . Conversely, if w ∈ SPL , there exist more
than one left letter prolongation to each of its prefixes. Consider any of these letters, say
a ∈ A, so that aw ∈ σ−1(SPL)=WSPL . According to the same above argument, each
prefix uj of w determines a cylinder CylL(auj ) which has to be refined further. We have⋂

uj prefix of w CylL(auj )= aw, where aw does not belong to any cylinder CylL(v
(k)),

and induces an infinite refinement. Thus PARTL is a partition since a word w in L belongs
either to one of the cylinders CylL(v

(k)) obtained through a finite number of steps in the
refinement process, or to WSPL if w induces an infinite number of steps.

The set WSPL is not empty since SPL is not empty when there are infinitely many left
special factors. Also, WSPL is of null measure since SPL has been assumed of null measure
and σ is measure-preserving. Finally, WSPL occurs as the set of the accumulation of the
CylL(v

(k)) endpoints, since again SPL is of null measure, thus there is no cylinder having
all its words in SPL . �

Note that if L is minimal aperiodic, it has left special factors of arbitrary length.
In order to exhibit examples of aperiodic minimal shifts, we use the following

classic technique. A substitution is a map θ : A→ A′∗, where A and A′ are
alphabets, which is extended to words by sending w = . . . ai ai+1ai+2 . . . to θ(w)=

. . . θ(ai )θ(ai+1)θ(ai+2) . . . , that is, on finite words, θ is just a monoid morphism from A∗

to A′∗. For instance, the Thue–Morse substitution θtm over A = A′ = {a, b} is defined
by θtm(a)= ab and θtm(b)= ba. When A = A′, a substitution can be iterated. The set
of factors of such a substitution is defined as Factθ = {v ∈ A∗ | v ∈ Factθn(a), a ∈ A, n ∈
N}, and its associated shift as Lθ = {w ∈ AN

| Factw ⊆ Factθ }. When θ is non-erasing,
i.e. there is no a ∈ A whose image is the empty word, and when a is a strict prefix of θ(a),
then for all n ≥ 0, θn(a) is a strict prefix of θ (n+1)(a). Thus {θn(a)}n∈N gives rise to a
limit word in AN, denoted by θω(a), which is a fixed point of θ . For instance, the Thue–
Morse substitution has two fixed points: θωtm(a)= w1 = abbabaabbaababba . . . and
θωtm(b)= w2 = baababbaabbabaab . . . . Considering a fixed point w of a substitution θ ,
its associated shift Lθ,w is then defined as the closure of {σ n(w) | n ∈ N}. A substitution θ
is said to be primitive if there exists n > 0 such that for every a, b ∈ A, the word θn(a)
contains b. For a primitive substitution θ , it is known that [Qué10]: (1) if w is any
of its fixed points, Lθ = Lθ,w; (2) for all n > 0, Lθn = Lθ , so that periodic points can
also be considered; (3) Lθ is minimal. Thus for instance the Thue–Morse substitution θtm

generates a minimal shift L tm , equal to Lθtm = Lθtm ,w1 = Lθtm ,w2 . A primitive substitution
is said to be aperiodic if its associated shift is minimal aperiodic, e.g. θtm is known to be
aperiodic [Thu12]†.

Example 3.2.6. (Step-by-step construction of a partition PARTL ) Considering the above
Thue–Morse shift L tm and its fixed points w1, w2, we build here the first components of

† More generally, aperiodicity for a substitution is decidable using [ER83].
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PARTL tm as in the proof of Lemma 3.2.5. The first factor sets are:

FactL tm (1) = {a, b}
FactL tm (2) = {aa, ab, ba, bb}
FactL tm (3) = {aab, aba, abb, baa, bab, bba}
FactL tm (4) = {aaba, aabb, abaa, abab, abba, baab, baba, babb, bbaa}
FactL tm (5) = {aabab, aabba, abaab, ababb, abbaa, abbab, baaba, baabb,

babaa, babba, bbaab, bbaba}.

Thus its first left special factors are: a, b, ab, ba, aba, abb, baa, bab, abba, baab.
Applying the refinement process, the first step, based on CYLL(2), gives no cylinders of
PARTL tm since a and b are both left special factors. The second step, based on CYLL(3),
gives CylL tm

(abb) and CylL tm
(baa), since aa and bb are not left special factors, thus

v(1) = abb and v(2) = baa. The third step gives no new cylinders since abba and baab are
the only factors whose right suffix is not left special, already contained in the cylinders of
the preceding step. The fourth step gives CylL tm

(aabab), CylL tm
(ababb), CylL tm

(babaa),
and CylL tm

(bbaba), thus v(3) = aabab, v(4) = ababb, v(5) = babaa, and v(6) = bbaba.
And so on. ♦

Now, given a shift L and PARTL as obtained from Lemma 3.2.5, we define the induced
partition of I as follows:

PARTL ,I : I =
⊔
k>0

I (k)L t BSPL , (4)

where I (k)L = {x ∈ I | φ−1(ι(x)) ∈ CylL(v
(k))} and BSPL = {x ∈ I | φ−1(ι(x)) ∈WSPL}.

Each I (k)L is a right-open interval by the same arguments as for the intervals of the partition
PA (see p. 1943).

Let BL be the closure in I of the left ends of the I (k)L , intersected with I (so that
1 /∈ BL ). Let BL ,acc (respectively BL ,acc,r ) be the set of accumulation points (respectively
accumulation points from the right) of BL in I . Note that BSPL ⊂ BL ,acc and even that
BSPL = BL ,acc,r since an accumulation point x only to the left is the left endpoint of
some I (k)L and does not belong to BSPL (in this case, φ−1(ι(x)) /∈WSPL because of the
differences between ι(I ) and X L—see also Definition 2).

LEMMA 3.2.7. BL t {1} is a null-measure infinite compact set of points in I .

Proof. The set BL t {1} is compact by definition. Since the set of the left endpoints of
the I (k)L is countable, the measure of BL is the same as that of BL ,acc, and also as that of
BL ,acc,r which is equal to BSPL . Now, recall from Lemma 3.2.1 that the Lebesgue measure
is the image of µ by φµ. Since φ−1

µ (BSPL )=WSPL and µ(WSPL )= 0, the measure of BL

is also zero in I . �

LEMMA 3.2.8. TL is a translation on each interval component I (k)L of PARTL ,I .

Proof. Let the interior of I (k)L be denoted by I (k)
o

L . By definition of TL , for all x ∈ I (k)
o

L ,

TL(x)− x = κ(φ(σ (φ−1(ι(x)))))− x . (5)
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We first put φ−1(ι(x))= w. Next, recalling that φµ = κ ◦ φ and that κ ◦ ι is the identity, we
compose φ−1(ι(x))= w on both sides to the left by κ ◦ φ and get x = κ(φ(w))= φµ(w),
so that (5) becomes for all x ∈ I (k)

o

L ,

TL(x)− x = κ(φ(σ (w)))− κ(φ(w))= φµ(σ (w))− φµ(w). (6)

By definition of PARTL ,I , the inverse image of I (k)
o

L by φµ is the interior C (k)o , where
C (k) denotes CylL(v

(k)) of PARTL . As a closed ordered set, C (k) has a smallest word
wC(k),min, and recall that wL ,min denotes the smallest word of L , so that for all w ∈ C (k)o ,
[wL ,min, w] = [wL ,min, wC(k),min] t (wC(k),min, w], then

φµ(w)= µ([wL ,min, wC(k),min])+ µ([wC(k),min, w]). (7)

Since wC(k),min and w belong to the same cylinder, and wC(k),min <w, we have
σ(wC(k),min) < σ(w), hence

φµ(σ (w))= µ([wL ,min, σ (wC(k),min)])+ µ([σ(wC(k),min), σ (w)]).

Next, using the properties over the components of PARTL ,

φµ(σ (w)) = µ([wL ,min, σ (wC(k),min)])+ µ(σ([wC(k),min, w])) (by equality (2))
= µ([wL ,min, σ (wC(k),min)])+ µ(σ

−1σ([wC(k),min, w])) (µ-preservation)
= µ([wL ,min, σ (wC(k),min)])+ µ([wC(k),min, w]) (σ injectivity on C (k)o ).

Therefore, from the above last equation and (7), we get for all w ∈ C (k)o ,

φµ(σ (w))− φµ(w)= µ([wL ,min, σ (wC(k),min)])− µ([wL ,min, wC(k),min])= KC(k) .

Thus KC(k) depends only on the C (k)o to which w belongs, that is, it depends only on
the open interval I (k)

o

L to which x belongs. Hence, for every I (k)L of PARTL ,I , and its
corresponding cylinder C (k)

= CylL(v
(k)) of PARTL , there is a constant KC(k) such that

for all x ∈ I (k)
o

L , TL(x)− x = KC(k) . By right-continuity of TL (see Lemma 3.2.2), this
equality extends to all of I (k)L . �

Following Definition 2, let DL be the closure of YL in I , where YL is the set of
discontinuities of TL , which by Lemma 3.2.8 is necessarily included into BL . Let DL ,acc,r

be the set of accumulation points of DL from the right.

LEMMA 3.2.9. TL is injective on I \DL ,acc,r .

Proof. By Lemma 3.2.8, TL is a translation on each of the right-open interval components
I (k)L of PARTL ,I . The set DL can be obtained by dropping all the points from BL having
a neighborhood where TL extends as a translation map, so that TL is still a translation
map on each right-open interval component of I \DL . By Lemma 3.2.1, the Lebesgue
measure is preserved by TL , and by Lemma 3.2.7, BL has null measure, thus DL ⊆ BL

has too. Now, if the open interval components of I \DL had overlaps in their translated
images by TL , the global image would be a set I ′ with µ(I ′) < 1, such that µ(T−1(I ′))=
µ(I \DL)= 1, contradicting measure preservation. Moreover, no image by TL of a left
endpoint of these open intervals can lie in the image of another interval, thus T is injective
on all the corresponding right-open intervals. Since DL \DL ,acc,r consists of all these left
endpoints, the result follows. �
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LEMMA 3.2.10. Let L be a shift measured by µ. If L has zero topological entropy, then
µ(SPL)= 0.

Proof. The topological entropy dominates the (measure-theoretic) entropies on L with
respect to all the invariant probability measures [HK02, Proposition 4.4.1]. Thus with
respect to µ, the shift L has necessarily zero entropy. But then, a dynamical system
with zero entropy with respect to an invariant measure is known to be invertible [HK02,
Section 3.7k], that is, it has an inverse on a subset of full measure. In the case of a
shift L , the set of words on which the shift map is not invertible is exactly SPL , so that
µ(SPL)= 0. �

We are now ready to prove Theorem 1 as stated in the introduction.

Proof. Since L is assumed aperiodic minimal, the results of §3.1 apply, so that (L , σ )
is a topological conjugate by φ of (X L , fL), where I is embedded as a subset of X L in
such a way that fL is an extension of TL . By Lemma 3.2.2, TL is right-continuous, and by
Lemma 3.2.10, µ(SPL)= 0 for any σ -invariant Borel probability measure µ chosen for L .
Minimal aperiodicity means L has left special factors of arbitrary length, thus Lemma 3.2.5
applies. Hence, by Lemmas 3.2.7–3.2.9, and since the set DL of TL is included into BL ,
TL is an IET. �

Note that Theorem 1 remains valid under the assumptions on L in Lemma 3.2.5, in
particular µ(SPL)= 0 can be used instead of zero topological entropy. Note also that the
above construction relies on BL , a set determined from PARTL ,I , determined in turn from
PARTL . This set of separation points for TL could have been different, as it is just a set with
the property of including DL (see §2.1). However, following the construction of PARTL in
the proof of Lemma 3.2.5, this set has some word-combinatorics properties, and we shall
use them henceforth.

As a complement, in view of Definition 2 of an infinite IET and of Lemma 3.2.9, we
give the following example.

Example 3.2.11. (TL can be non-injective on DL ,acc,r ) Let us reconsider the Thue–Morse
substitution θtm over A = {a, b} (see Example 3.2.6), its associated shift L tm , and its fixed
points w1 = θ

ω
tm(a) and w2 = θ

ω
tm(b). A bispecial factor is a factor which is both right

and left special. According to [Cas96], the bispecial factors in L tm are θn
tm(a), θ

n
tm(b),

θn
tm(aba), θn

tm(bab), with n ≥ 0. Thus we have {w1, w2} = SPL tm . In fact, in an aperiodic
minimal shift, every infinite special word has always infinitely many prefixes which are
bispecial factors.

Let the lexicographic order over L tm be determined by a < b. We claim that w1, w2

are consecutive in L tm , with w1 being the greatest word in CylL tm
(a), and w2 the smallest

word in CylL tm
(b). Assume on the contrary there is w′1 ∈ CylL tm

(a) with w1 <w
′

1. Let
u be the maximal common prefix so that w1 = uv1 and w′1 = uv′1. Then u is bispecial,
since at least three of the factors aua, aub, bua, bub are in FactL tm (both ua and ub
are prolongable to the left, and at least one of them is left special, being a prefix of w1).
By [Cas96], such a bispecial factor in L tm with at least three continuation factors and
starting by a must be of the form θn

tm(a) for some n ≥ 0. Now, since w1 <w
′

1, the word v1
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must also start with a, and v′1 with b. However, since there is n > 0 such that u = θn
tm(a)

and since θn+1
tm (a)= θn

tm(a)θ
n
tm(b) is also a prefix of w1, then u must be followed by b in

w1. Hence there is no such word as w′1 and w1 is the greatest word in CylL tm
(a). Similar

arguments apply tow2 showing it is the smallest word in CylL tm
(b). Thus by Lemma 3.1.4,

w1, w2 are consecutive.
As a result, {aw1, aw2} and {bw1, bw2} are two pairs of consecutive words in

L tm . Moreover, CylL tm
(abb) is a non-empty cylinder between aw2 and bw1, then

by Lemmas 3.1.2 and 3.1.5, φµ(aw1)= φµ(aw2) < φµ(bw1)= φµ(bw2). Now, since
L tm has linear complexity [Cas96], it has zero topological entropy, and Theorem 1
applies. We then obtain a conjugate IET TL tm with BL tm as set of separation points.
By Proposition 3.1.7(d) and since {aw2, bw2} ⊂ φ

−1(ι(I )) by definition of Z0, we have
TL tm (φµ(aw2))= φµ(σ (aw2))= φµ(w2)= φµ(σ (bw2))= TL tm (φµ(bw2)). Hence TL tm

is not injective.
Now, by Lemma 3.2.9, φµ(aw2) and φµ(bw2) must belong to the set of

discontinuities DL tm ,acc,r . Note that this is coherent with the fact that by Lemma 3.2.5
{aw1, bw1, aw2, bw2} =WSPLtm

, so that {φµ(aw2), φµ(bw2)} = BSPLtm
, and that by

definition, BSPLtm
= BL tm ,acc,r ⊇DL tm ,acc,r . ♦

Also, according to the construction behind Lemma 3.2.5, the set of separation points BL

is always infinite while including the set DL which can be in fact finite (see e.g.
Corollary 3.3.4 further).

Example 3.2.12. (The set DL of TL can be infinite) Let us consider again the Thue–
Morse associated shift L tm and its associated definitions. If there were only finitely many
discontinuities for TL tm , we could assume there is an open interval J ⊂ I , having φµ(aw2)

as the left endpoint, on which TL tm is continuous. We could also assume J avoids the finite
set φµ(WSPLtm

), hence J would be contained in a subset of I where TL tm is injective. But
TL tm (φµ(aw2))= TL tm (φµ(bw2)), so by right-continuity, TL tm cannot be injective on J
and there is no such interval. ♦

3.3. Codings and reconstructions. In this section, we describe some more relationships
between L and TL .

First, an IET T is said to be minimal if all its orbits are dense in I . Next, a monotonicity
partition P of I with respect to T is a finite partition made of right-open intervals
on each of which T is increasing, but not necessarily continuous. Recall then that by
Lemma 3.2.2, the conjugate IETs given by Theorem 1 are piecewise increasing, thus
admitting monotonicity partitions. The associated coding of the orbits of T with a partition
P is based on a map α assigning a distinct letter of an alphabet A to each interval of P , so
that

cod0,P : I → A
x 7→ α(J ) if x ∈ J , with J ∈ P ,

which is extended as

codP : I → AN

x 7→ cod0,P (x) cod0,P (T (x)) cod0,P (T 2(x)) . . .
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The word codP (x) is called the symbolic orbit of x by codP , and the closure codP (I ),
denoted by L P , is called the associated shift of codP . A lexicographic order on L P is
induced by the order over A determined by the order of the component intervals of P on I ,
that is, cod0,P (x) < cod0,P (x ′), if x ∈ J , x ′ ∈ J ′ with J < J ′, i.e. J occurs before J ′ on I .

The next two technical lemmas make it possible to apply Theorem 1 to L P .

LEMMA 3.3.1. Let T be a piecewise increasing IET, and let P be a monotonicity partition
of I . Then codP is non-decreasing, Borel measurable, and right-continuous. Moreover, if
T is minimal, codP is increasing.

Proof. Let x, x ′ ∈ I , with x < x ′. If x ∈ J and x ′ ∈ J , where J, J ′ are intervals of P with
J < J ′, we have cod0,P (x) < cod0,P (x ′), hence codP (x) < codP (x ′). Otherwise, J = J ′,
so that cod0,P (x)= cod0,P (x ′). Since on the intervals of P , we have T (x) < T (x ′),
we can inductively apply the same argument until for some n > 0, cod0,P (T n(x)) <
cod0,P (T n(x ′)), in which case codP (x) < codP (x ′), and if there is no such n, then
codP (x)= codP (x ′). Hence, codP is non-decreasing. If T is minimal, the above n always
exists since T n(x) can be arbitrarily close to the left end of an interval in P , and as long as
both T n(x) and T n(x ′) are in the same interval of P , we have T n(x ′)− T n(x)≥ x ′ − x .
Hence, codP (x) < codP (x ′).

The map codP is the product of the maps cod0,P ◦ T i , i ≥ 0, each being continuous
on the interiors of the intervals of a finite partition of I , since T i is piecewise increasing.
Hence codP is Borel measurable. Likewise, each cod0,P ◦ T i is right-continuous since
codP and T i are right-continuous, hence codP is too. �

From the above lemma, the image by codP of the Lebesgue measure on I is a Borel
measure on L P that we denote by µP . Since codP conjugates σ and T , µP is invariant
by σ . Also, as codP is right-continuous, when T is minimal, L P is aperiodic minimal, and
µP is non-atomic and positive on the cylinder sets of L P .

LEMMA 3.3.2. Let T be a piecewise increasing and minimal IET. Let P be a monotonicity
partition of I , and let L P be the associated shift. Then µP (SPL P )= 0.

Proof. By definition of µP for all x ∈ I , µP ([wL P ,min, codP (x)]) is equal to the Lebesgue
measure of cod−1

P ([wL P ,min, codP (x))), that is, of [0, x), since by Lemma 3.3.1 codP is
increasing. Thus, using the map φµP on L P for all i ∈ I ,

φµP (codP (x))= x . (8)

By Lemma 3.1.5 and by definition of Z0, recall that if x /∈ Z0, φ−1
µP
(x) is well-defined,

and by equality (8) is equal to codP (x). If x ∈ Z0, φ−1
µP
(x) consists of two words, one of

them being codP (x). Accordingly, codP (I ) misses some words of L P , but L P \ codP (I )
is countable, since Z0 is countable.

Let us now estimate the measure of σ−1(SPL P ). We define the subset W =
σ−1(SPL P ) ∩ (L P \ codP (I )), which is countable too. Let w0 ∈ σ

−1(SPL P ). By
definition of SPL P , {w0}( σ−1(σ (w0)), and there are three cases.
• w0 ∈W : thus w0 ∈ σ

−1(σ (W )).
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• w0 /∈W and there is w1 ∈ σ
−1(σ (w0)) such that w1 ∈W . Thus w0 ∈ σ

−1(σ (W )) too,
since σ(w0)= σ(w1).
• w0 /∈W and there is no w1 ∈ σ

−1(σ (w0)) such that w1 ∈W . Thus there are x0, x1 ∈ I
such that {w0, w1} ⊂ σ

−1(σ (w0)) with w0 = codP (x0), w1 = codP (x1), and x0 6= x1

since w0 6= w1. By definition of codP , for all x ∈ I ,

codP (T (x))= σ(codP (x)). (9)

Since σ(codP (x0))= σ(codP (x1)), then codP (T (x0))= codP (T (x1)), that is, since
codP is injective, T (x0)= T (x1). Hence according to Definition 2, x0, x1 ∈Dacc,r , and
w0 ∈ σ

−1(codP (Dacc,r )).
Thus σ−1(SPL P )⊆ σ

−1(σ (W )) ∪ σ−1(codP (Dacc,r )). Then, µP (σ
−1(σ (W ))= 0,

since σ−1(σ (W )) is countable and µP is non-atomic. Next, µP (σ
−1(codP (Dacc,r )))=

µP (codP (Dacc,r )) sinceµP is preserved by σ . Now, sinceµP is the image of the Lebesgue
measure on I by codP and Dacc,r has measure 0, T being an IET, µP (codP (Dacc,r ))= 0,
so µP (σ

−1(codP (Dacc,r )))= 0 too. Hence µP (σ
−1(SPL P ))= 0, and again by measure

preservation, µP (SPL P )= 0. �

Then, given a monotonicity partition P , Lemma 3.2.5 applies to L P measured by µP ,
so that Theorem 1 applies to L P too, and we can get a conjugate IET TL P .

PROPOSITION 3.3.3. Let T be a piecewise increasing and minimal IET. Let P be a
monotonicity partition of I , and let L P be the associated shift with its conjugate IET
TL P . Then TL P = T , i.e.

for every monotonicity partition P : T
codP
−→ L P

Theorem 1
−→ TL P = T .

Proof. In equality (8), T (x) can replace x , and by using (9), for all x ∈ I , we get

T (x)= φµP (codP (T (x)))= φµP (σ (codP (x))).

Also, right-continuity of codP (see Lemma 3.3.1) means that for every x ∈ I , codP (x) is
the infimum of {codP (y) | y > x, y ∈ I }. Thus codP (x) cannot be the right endpoint of a
cylinder in L P , hence codP (x) ∈ φ−1(ι(I )). In fact, since φµP = κ ◦ φ, and since ι ◦ κ is
the identity on φ(codP (I )), we get codP (x)= φ−1(ι(x)) by composing equality (8) to the
left with φ−1

◦ ι. By Proposition 3.1.7(d), TL P (φµP (w))= φµP (σ (w)) on φ−1(ι(I )), thus
with w = φ−1(ι(x)), for all x ∈ I ,

TL P (x)= φµP (σ (codP (x))),

whence T and TL P coincide on I . �

Of course the above result applies to minimal finite IETs, as these are piecewise
increasing by definition. In this case, the partition P can be the one induced by the set D
of discontinuities, or by any finite B ⊇D. Then, codP becomes the usual natural coding
of the orbits of T with B as set of separation points [Kea75], that is, a coding based on the
assignment of a distinct letter to each component of a partition on which T is continuous
in the interior of these components.
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COROLLARY 3.3.4. Let T be a finite minimal IET. Let L be the associated shift given by
a natural coding of T , with its conjugate IET TL . Then T = TL .

Note that in this finite IET case, T is reobtained as TL from L , but according to the
construction behind Lemma 3.2.5, the set of separation points BL is infinite, whereas D ⊂
BL is finite (see Example 5.2.4 (iv) further).

A shift L can also be recovered from TL . Recall that PA is the monotonicity partition of
I for TL relying on the letters of A (see Lemma 3.2.2).

PROPOSITION 3.3.5. Let L be any shift with a conjugate IET TL (Theorem 1 applies to L).
Then for every x ∈ I , codPA (x)= φ

−1(ι(x)), so that L PA = L, i.e.

for the monotonicity partition PA : L
Theorem 1
−→ TL PA

codPA
−→ L PA = L .

Proof. For x ∈ I , by definition of cod0,PA and PA, codPA (x)= a when x ∈ IL ,a , since
α(IL ,a)= a. Next, by definition of IL ,a , φ−1(ι(x)) ∈ Cyl(a), that is, the first letter
of codPA (x) and of φ−1(ι(x)) are equal. To check equality on their second letters,
that is, the first letter of σ(codPA (x)) and of σ(φ−1(ι(x))), consider that since x
above can be arbitrary, the first letter of codPA (TL(x)) and of φ−1(ι(TL(x))) are equal
too. Then by equality (9) codPA (TL(x))= σ(codPA (x)), and by Proposition 3.1.7 (a,b)
φ−1(ι(TL(x)))= σ(φ−1(ι(x))). By inductively applying the same arguments, the equality
holds for the next letters. Hence codPA (I )= φ

−1(ι(I )). �

If an IET is given with an infinite set B ⊇D of separation points, its natural coding is
such that the coding alphabet must be then infinite too. However, in the case of TL with
BL as set of separation points, this coding is related to L , that is, to a language over a finite
alphabet. Indeed, let A∞ be an infinite alphabet and let α∞ be a map assigning a distinct
letter of A∞ to each component of the partition PARTL ,I (cf. p. 1946) so that its natural
coding is defined as

cod0,∞: I → A∞

x 7→

{
α∞(I

(k)
L ) if x ∈ I (k)L ,

α∞(x) if x ∈ BSPL .

cod∞: I → AN
∞

x 7→ cod0,∞(x) cod0,∞(TL(x)) cod0,∞(T 2
L (x)) . . .

Recall now that the partition PARTL of L (cf. p. 1944) is made of the cylinders determined
by the finite words v(k) in FactL and by the infinite words in WSPL . We consider then the
following injective recoding map of the letters of A∞:

ζ∞ : A∞ → FactL ∪WSPL

a 7→

{
v(k) if a = α∞(I

(k)
L ),

w if a = α∞(x), where x ∈ BSPL and φ−1(ι(x))= w.

Next, we define
δ0,∞ : L→ A∞,

where for each w ∈ L:
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• δ0,∞(w)= (ζ∞)
−1(au), if au occurs as a prefix of w, with a ∈ A, and u ∈ FactL is

non-left special, that is, by the construction of PARTL in Lemma 3.2.5, au is a factor
v(k) such that CylL(v

(k)) ∈ PARTL ;
• δ0,∞(w)= (ζ∞)

−1(w), if w is of the form w = aw′, with a ∈ A, and w′ is an infinite
left special word in SPL , that is, w ∈WSPL .
The map δ0,∞ is well-defined firstly because the two above cases cover L and are

independent, reflecting how PARTL is built, and secondly because, if au exists, it is unique
since the v(k) determining the cylinders of PARTL can never be prefixes to each other (these
cylinders do not overlap). Then, δ0,∞ is extended as follows:

δ∞ : L → AN
∞

w 7→ δ0,∞(w) δ0,∞(σ (w)) δ0,∞(σ
2(w)) . . .

We can now map the words in L to symbolic orbits of TL obtained by cod∞.

PROPOSITION 3.3.6. Let L be any shift with a conjugate IET TL (Theorem 1 applies to L).
Then for every x ∈ I , cod∞(x)= δ∞(φ−1(ι(x))), i.e.

L
Theorem 1
−→ TL

cod∞
−→ cod∞(I )= δ∞(codPA (I )).

Proof. For x ∈ I , the first letter of cod∞(x) and of δ∞(w), where w = φ−1(ι(x)),
are equal. Indeed, since w belongs to some Cyl(v(k)) or to WSPL , δ0,∞(w) recovers
the letter assigned by α∞ to the component of PARTL ,I containing x , i.e. cod∞(x).
Next, σ(cod∞(x))= cod∞(TL(x)) and σ(δ∞(φ

−1(ι(x)))) = δ∞(σ (φ−1(ι(x))))=
δ∞(φ

−1(ι(TL(x)))) so that the second letters are also equal. By inductively applying
the same arguments, we obtain cod∞(x)= δ∞(φ−1(ι(x))). Hence cod∞(I )=
δ∞(φ

−1(ι(I ))), and by Proposition 3.3.5, δ∞(φ−1(ι(I )))= δ∞(codPA (I )). �

This mapping of L to the natural coding of TL will be in use in the next section.

4. The linear complexity shift case
We now focus on shifts L with linear complexity, i.e. those such that pL(n)= O(n),
and prove Theorem 2. For instance, aperiodic minimal shifts associated with primitive
substitutions have linear complexity [Pan84, Qué10], e.g. the shift associated with the
Thue–Morse substitution. Since these shifts form a specific family of shifts with zero
topological entropy, the idea behind Theorem 2 is to investigate the properties of their
conjugate IETs as given by Theorem 1.

4.1. Almost finite interval exchange transformations. We begin by defining a specific
kind of IETs.

Definition 3. An IET T with a set D of discontinuities is almost finite if:
(1) T is piecewise increasing on I ;
(2) the set Dacc of accumulation points of D is finite;
(3) the points in D belong to a finite number of full orbits of T †.

† A sufficient condition for minimality of a finite IET is that the full orbits of the discontinuity points are infinite
and distinct [Kea75] (cf. the infinite distinct orbit condition (IDOC)). An almost finite IET with an infinite number
of discontinuities is thus far from satisfying the IDOC.
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In the above definition—like in Definitions 1 and 2—D can be replaced by a null-
measure set of separation points B such that B ⊃D. Note also that a finite IET is almost
finite. Now, the first property of almost finiteness is always satisfied by a conjugate IET TL

(see Lemma 3.2.2). About the second property, when L has linear complexity, we first
show the following technical result.

LEMMA 4.1.1. Let L be a minimal shift with linear complexity. Then SPL is finite.

Proof. For each finite r ≤ |SPL |, there is n0 > 0 such that for all n ≥ n0, the number
of distinct length-n prefixes of the words in SPL is at least r . If spL ,l(n) denotes
the number of left special factors in FactL(n), then spL ,l(n)≥ r . Since L is minimal,
FactL is prolongable, and thus for all n ≥ 1, pL(n + 1)− pL(n)≥ spL ,l(n). Therefore,
if SPL was infinite, for every r ∈ N, there would exist n0 > 0 such that for all n ≥ n0,
pL(n + 1)− pL(n)≥ r , whence pL(n) 6= O(n). �

Then we have the following.

LEMMA 4.1.2. Let L be an aperiodic minimal shift with linear complexity, and let TL

be its conjugate IET. Then the set DL ,acc of the accumulation points of the set DL of the
discontinuities of TL is finite.

Proof. By definition, DL ⊆ BL . Next, BL ,acc is determined by WSPL since φµ(WSPL)=

BL ,acc, and we also have WSPL = σ
−1(SPL). The alphabet A is finite, and by Lemma 4.1.1

SPL is too, whence the result. �

In order to prove the third property of almost finiteness for TL , the idea is to study
similar relationships to known ones for finite IETs, between natural codings, complexity
of the associated shifts, and distinctiveness of the orbits of the separation points [Kea75].
However, as seen in §3.3, a natural coding cod∞ of an infinite IET T uses an infinite
alphabet A∞. To deal with this situation, we shall code the orbits of T using finer and
finer finite partitions of I , together with finite alphabets with more and more letters, as is
developed in the next section.

4.2. A finite number of full orbits. For an IET T with B ⊃D as set of separation points,
let Bacc denote the set of accumulation points of B in I , and let Bacc = B1

acc t B2
acc, where

B1
acc denotes the one-sided accumulation points, and B2

acc the two-sided ones. An ordered
finite subset Bm = {0= b0, b1, . . . , bm−1}, m > 0, of B is said to be admissible if for
Bm ∪ {bm = 1}, each induced interval Im,i = [bi , bi+1) has one of the following types.
(1) Im,i is an interval of T with respect to B (bi is the only point of B in Im,i ).
(2) Im,i covers infinitely many consecutive intervals of T , and either:

(a) [bi , bi+1] has exactly one point of Bacc, belonging to B1
acc, either bi or bi+1;

(b) (bi , bi+1) has exactly one point of Bacc, belonging to B2
acc, with bi , bi+1 /∈ Bacc.

Thus, an admissible Bm induces a finite partition
⊔

i Im,i of I , where for each point
x ∈ BL ,acc, there is exactly one Im,ix such that almost every point of any sequence of
points of B converging to x lies in Im,ix . For instance, here is a possible subset B4 of a set
B with two accumulation points x1 ∈ B1

acc and x2 ∈ B2
acc, such that the induced intervals

I4,0, I4,2 are of type 1, I4,1 is of type 2a, and I4,3 is of type 2b.
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LEMMA 4.2.1. Let B be a set of separation points. Then Bacc is finite if and only if for
some m > 0, there is an admissible Bm ⊂ B.

Proof. (⇐) Trivial. (⇒) First, for each point x ∈ B2
acc there is an interval of type 2b

containing it, because such an x is the intersection of a sequence of closed nested intervals
with endpoints in B, and if every interval in the sequence contained a point in Bacc, then
Bacc would be infinite. Next, by the same argument, each x ∈ B1

acc, which is the intersection
of a sequence of nested closed intervals to its right, is the left endpoint of an interval of
type 2a, while in its other side, x is the right endpoint of an interval of type 1, or else x = 0.
The same occurs the other way around when the accumulation is on the left. Then there
are finitely many points of B in the complement of the union of the above intervals and
together with the endpoints of those intervals, they form an admissible Bm . �

Given an admissible set Bm , let Am be an alphabet with m letters, and let αm be a map
assigning a distinct letter in Am to each Im,i induced by Bm , so that

cod0,m : I → Am

x 7→ αm(Im,i ), if x ∈ Im,i .

codm : I → AN
m

x 7→ cod0,m(x) cod0,m(T (x)) cod0,m(T 2(x)) . . .

The associated shift Lm of codm is then defined as codm(I ), as usual.
Now, let L be a shift over A, with a conjugate IET TL having BL as set of separation

points, and BL ,acc = B1
L ,acc t B2

L ,acc as accumulation point sets. Let BL,m be an admissible
subset of BL , inducing a finite partition

⊔
i IL ,m,i of I . Then, we define a recoding map

similar to and based on ζ∞ (see p. 1952), sending each letter of Am to words over A,
which are either v(k) or common prefixes of sets of v(k) (the v(k) determining the cylinder
components of PARTL ):

ζm : Am→ FactL ∪ (FactL × FactL),

where for each a ∈ Am :
(1) ζm(a)= ζ∞(α∞(IL ,m,i )), if a = αm(IL ,m,i )where IL ,m,i is of type 1, that is, ζm yields

the same v(k) as ζ∞ if a is assigned to a type 1 interval;
(2) (a) ζm(a)= vpref, if a = αm(IL ,m,i ) where IL ,m,i is of type 2a, and vpref is the longest

common prefix of {ζ∞(α∞(J ))|J ∈ PARTL ,I , J ⊂ IL ,m,i }, that is, ζm yields the
longest common prefix of the v(k) given by ζ∞ applied to all the intervals covered
by IL ,m,i ;

(b) ζm(a)= (vpref,l , vpref,r ), if a = αm(IL ,m,i ) where IL ,m,i of type 2b, and
vpref,l , vpref,r are defined as follows: let IL ,m,i = [bi , bi+1) be divided into Jl =

[bi , x) and Jr = [x, bi+1), where x ∈ B2
L ,acc is the accumulation point in IL ,m,i ;

then vpref,l (respectively vpref,r ) is the longest common prefix of {ζ∞(α∞(J )) |
J ∈ PARTL ,I , J ∈ Jl} (respectively J ∈ Jr ).
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The case 2(b) above deals with the possible existence of points x ∈ B2
L ,acc such that

φ−1
µ (x) is made of two consecutive distinct words in WSPL .

We show then that if m is sufficiently large, the map ζm can be used like ζ∞ to define a
map δm similar to δ∞. First of all, we say a sequence {Bm}m≥m0 , with m0 > 0, is admissible
if for all m ≥ m0: (i) Bm is an admissible subset of B; (ii) |Bm+1| = |Bm | + 1; (iii) B =⋃

m≥m0
Bm ∪ (Bacc \ {1}).

LEMMA 4.2.2. Let B be a set of separation points. Then Bacc is finite if and only if for
some m0 > 0, there is an admissible sequence {Bm}m≥m0 .

Proof. (⇐) A consequence of Lemma 4.2.1. (⇒) By Lemma 4.2.1 also, for some m0 > 0
there is an admissible Bm0 of B. If the first point x of Bacc in I lies in an interval Im0,i of
type 2b, we add to Bm0 the smallest point of B in the interior of Im0,i to obtain Bm0+1, then
the greatest one to obtain Bm0+2. If x lies in Im0,i of type 2a we do the same, but using the
smallest or the greatest point of B in the interior of Im0,i , according to whether the point is
an accumulation point on the left or the right. Then we proceed to the next point of Bacc,
and so on, going back to the first one after having processed the last one. �

We denote by Fm,1 (respectively Fm,2) the set of the v(k) (respectively the prefixes of
the v(k)) given by ζm(αm(IL ,m,i )) when IL ,m,i is of type 1 (respectively type 2, including
vpref,l and vpref,r as distinct words when IL ,m,i is of type 2b). The technicalities in the
proof of the following lemma come from the topological differences between L and I .

LEMMA 4.2.3. Let L be a shift with a conjugate TL and an admissible sequence
{BL,m}m≥m0 , m0 > 0. Then there is m1 ≥ m0, such that for all m ≥ m1, the map ζm is
injective, such that for i = 1, 2, Fm,i does not include the empty word, nor words prefix to
each other, and no word in Fm,1 is a prefix of a word in Fm,2.

Proof. By the construction of PARTL in Lemma 3.2.5, the set Fm,1, being made of v(k),
has the first two required properties. Next, a word v in Fm,1 cannot be a prefix of any word
in Fm,2, since v would be then a common prefix of words of type v(k), and again the v(k)

are not prefixes to each other.
Now, from the point-of-view of L , each wordw ∈WSPL is an accumulation of endpoints

of cylinder components of PARTL , and can be seen as the intersection of a sequence of
nested cylinders of L (see again the proof of Lemma 3.2.5). Also, by Lemma 4.2.2, the
set BL ,acc must be finite, so that WSPL is too. Therefore, there exists n > 0 such that at the
nth step of the construction of PARTL , the nested cylinders to be refined at each further
step are such that they contain only one word in WSPL , and such that they are all disjoint.
Thus for each w ∈WSPL , there is a sequence of nested cylinders {Cw, j } j∈N∗ such that⋂

j∈N∗ Cw, j = {w}, disjoint from the other sequences, and having one of these two forms:
(aL ) {Cw, j } j∈N∗ is such that w is the smallest or the greatest element of every Cw, j , so

that w is a one-sided accumulation word in L;
(bL ) {Cw, j } j∈N∗ is such that w belongs to the interior of every cylinder Cw, j , so that w is

a two-sided accumulation word in L .
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From the point-of-view of I , the corresponding sequences {φµ(Cw, j )} j∈N∗ are
sequences of nested closed intervals with pairwise disjoint interiors, such that⋂

j∈N∗ φµ(Cw, j ) = {φµ(w)}, with φµ(w) ∈ BL ,acc, taking one of these two forms:
(aI ) {φµ(Cw, j )} j∈N∗ is such that φµ(w) is equal to the right or the left endpoint of every

interval φµ(Cw, j ) so that φµ(w) ∈ B1
L ,acc or B2

L ,acc;
(bI ) {φµ(Cw, j )} j∈N∗ is such that φµ(w) belongs to the interior of φµ(Cw, j ), so that

φµ(w) ∈ B2
L ,acc.

From the point-of-view of {BL,m}m≥m0 , for each m ≥ m0, every x ∈ BL ,acc is such that
there is a IL ,m,i of type 2 containing almost every point of any sequence in BL converging
to x , so that putting Jx,m = IL ,m,i , we get a sequence of nested intervals {Jx,m}m≥m0 , with⋂

m≥m0
Jx,m = {x}, taking one of these three forms:

(aB) {Jx,m}m≥m0 is made of type 2a intervals, i.e. x ∈ B1
L ,acc, where φ−1

µ (x)= w,
w ∈WSPL . There is then a corresponding sequence {Cw, j } j∈N∗ of form aL with
intersection {w}, and {φµ(Cw, j )} j∈N∗ of form aI with intersection {x};

(bB) {Jx,m}m≥m0 is made of type 2b intervals, i.e. x ∈ B2
L ,acc, where either:

(i) φ−1
µ (x)= w, with w ∈WSPL . There is then a corresponding sequence
{Cw, j } j∈N∗ of form bL with intersection {w}, and {φµ(Cw, j )} j∈N∗ of form bI

with intersection {x};
(ii) φ−1

µ (x)= {w, w′}, with w, w′ ∈WSPL . There are then corresponding sequences
{Cw, j } j∈N∗ , {Cw′, j } j∈N∗ of form aL , respectively with intersection {w} and {w′},
and {φµ(Cw, j )} j∈N∗ , {φµ(Cw′, j )} j∈N∗ of form aI , both with intersection {x}.

Now, since the sequences {φµ(Cw, j )} j∈N∗ and {Jx,m}m≥m0 have the same intersection
point in BL ,acc, and because of the properties of the Cw,1, there exists m1 > 0, such that
one of the following cases occur.
• {Jx,m}m≥m0 is of form aB or bB i, and for all m > m1, Jx,m ⊂ φµ(Cw,1), that is, the word

determining the cylinder Cw,1 is a common prefix of the words in {ζ∞(α∞(Jx,m)) | m >

m1}, i.e. a prefix of the corresponding vpref ∈ Fm,2.
• {Jx,m}m≥m0 is of form bB ii, and for all m > m1, Jx,m ⊂ φµ(Cw,1) ∪ φµ(Cw′,1), that

is, the two words determining Cw,1 and Cw′,1 are respective common prefixes of the
factors in {ζ∞(α∞(Jl)) | m > m1} and ζ∞(α∞(Jr )) | m > m1}, where Jl and Jr are the
two components of Jx,m \ x , i.e. prefixes of the corresponding (vpref,l , vpref,r ), with
vpref,l , vpref,r ∈ Fm,2.
Thus, for all m ≥ m1, since all the Cw,1 are disjoint, the set Fm,2 does not contain the

empty word, nor words which are prefix to each other. �

Similarly to δ0,∞, we can now define δ0,m for each m > m1, using the properties of ζm ,
so as to obtain letters of Am out of the prefixes of the words in L:

δ0,m : L→ Am,

where for each w ∈ L:
(1) δ0,m(w)= (ζm)

−1(au), if au occurs as a prefix of w in Fm,1, that is, au is a factor v(k)

which belongs to ζm(Am), and such that CylL(v
(k)) ∈ PARTL ;

(2) or, one of the two following cases occurs:
• δ0,m(w)= (ζm)

−1(vpref), if vpref occurs as a prefix of w in Fm,2, which belongs as
a single word to ζm(Am);
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• δ0,m(w)= (ζm)
−1(vpref,l , vpref,r ), if vpref,l or vpref,r occurs as a prefix of w in Fm,2,

which belongs to a pair (vpref,l , vpref,r ) in ζm(Am).
This map is well-defined because, firstly, all the above cases cover L by definition of

Fm,1 and Fm,2, and secondly, the properties of Fm,1 and Fm,2 proved by Lemma 4.2.3
imply that taken in order, only one case applies for each w ∈ L . Accordingly, δ0,m is
extended as follows to obtain words in AN

m from words in L:

δm : L → AN
m

w 7→ δ0,m(w) δ0,m(σ (w)) δ0,m(σ
2(w)) . . .

We then have a similar result to Proposition 3.3.6 (m1 comes from Lemma 4.2.3).

LEMMA 4.2.4. Let L be any shift with a conjugate TL and an admissible sequence
{BL,m}m≥m1 . Then, for all m ≥ m1 and for all x ∈ I , codm(x)= δm(φ

−1(ι(x))), i.e.

L
Theorem 1
−→ TL

codm
−→ Lm = δm(L).

Proof. For x ∈ I , the first letter of codm(x) and of δm(w), wherew = φ−1(ι(x)), are equal.
Indeed, w belongs to some cylinder determined by a word in Fm,1 ∪ Fm,2. Then, Case (1)
of the δ0,m(w) definition applies if and only if x belongs to a type 1 interval and δ0,m(w)

recovers the letter assigned by αm to this interval, i.e. codm(x). Otherwise, x belongs to a
type 2 interval, and Case (2) of the δ0,m(w) definition necessarily applies, with the same
effect. This is well-defined since by Lemma 4.2.3 only words in Fm,2 can be prefixes
of words in Fm,1. Next, similarly to Proposition 3.3.6, using the conjugacies given by
Proposition 3.1.7, the same is true for the other letters of codm(x) and δm(w). Hence
codm(I )= δm(φ

−1(ι(I ))). �

LEMMA 4.2.5. Let L be any shift with a conjugate TL and an admissible sequence
{BL,m}m≥m1 . Then, for all m ≥ m1, there exists hm > 0 such that for all n > 0, pLm (n)≤
pL(n + hm),

Proof. Fix some m ≥ m1, and let w ∈ L and w′ = δm(w) ∈ Lm . Let hm be the maximum
length of the factors in Fm,1 ∪ Fm,2. According to the definition of δ0,m and to
Lemma 4.2.4, for each n > 0, the length-(n + hm) prefix of w determines by δm at least
one length-n prefix of w′, hence, pw′(n)≤ pw(n + hm). Now, L being minimal, Lm is
too, and w, w′ are minimal words. Thus each of the factors in Factw, i.e. FactL , occurs as
a prefix in the words in {σ i (w)}i∈N, and these factors determine Factw′ , i.e. FactLm . Hence
for all n > 0, pLm (n)≤ pL(n + hm). �

LEMMA 4.2.6. Let L be an aperiodic minimal shift with linear complexity. Let TL be its
conjugate IET. Then BL belongs to a finite number of full orbits of TL .

Proof. According to the proof of Lemma 4.1.2, BL ,acc is finite, thus according to
Lemma 4.2.2 there is an admissible sequence {BL,m}m≥m1 of BL , with m1 > 0 given by
Lemma 4.2.3. Fix some m ≥ m1 and consider the shift Lm associated with codm . For each
v ∈ FactLm , let Ev = {x ∈ I | cod0,m(x)cod0,m(TL(x)) . . . cod0,m(T

|v|−1
L (x))= v}, i.e. the

set of the points in I having symbolic orbits by codm with v as the prefix (note that Ev is
not necessarily connected). For each n > 0,

⊔
v∈FactLm (n)

Ev is a partition of I , and the set
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{T− j
L (BL,m) | j = 0, . . . , n − 1} defines the endpoints of the interval components of this

partition. Then, for any point x ∈ BL,m , if the set T−n
L (x) has a point y in the interior of

some Ev with v ∈ FactLm (n), it means that to each side of y there are components of Ev1

and Ev2 , with v1, v2 ∈ FactLm (n + 1) with v as the prefix, and v1 6= v2. Thus v is a right
special factor and it induces an increase in the complexity pLm of Lm .

Now, let km ≤ |BL,m | = m be the number of distinct full orbits of BL,m . Since Lm is
aperiodic minimal, each of these orbits may contain at most one occurrence of each point
in BL,m . And since BL,m is finite, in each of these orbits there is at least− j ∈ Z− for which
a point of BL,m occurs in {T− j

L (BL,m) | j = 0, . . .}. Thus there are at least km points in
BL,m such that for all n > 0, their preimages by T−n

L avoid BL,m , and being in the interior
of some Ev , they induce an increase of the number of the length-n factors. Hence, for
all m ≥ m1 and for all n > 0, kmn ≤ pLm (n). By Lemma 4.2.5, and since L has linear
complexity, there exists a > 1 such that

pLm (n)≤ pL(n + hm)≤ a(n + hm),

that is,

km ≤ a +
ahm

n
.

Since n is a free variable, we have km ≤ a for all m ≥ m1, and thus letting m go to infinity,
this inequality holds also for BL of TL . �

We can then prove Theorem 2 as stated in the introduction.

Proof. Since L has linear complexity, Theorem 1 applies, and we get a conjugate IET
TL . By Lemmas 3.2.2 and 4.1.2, TL has the two first properties of almost finiteness. Next,
applying Lemma 4.2.6, and using the fact that DL ⊆ BL , then TL has also the third property
of almost finiteness. �

5. Building infinite interval exchange transformations
In this section, we present results in the context of zero entropy about how to build effective
approximations of the conjugate IETs TL given by Theorem 1 for a set of corresponding
σ -invariant measures on the shifts L .

5.1. An approximation scheme. Given a shift L over an ordered alphabet A, and its
complexity pL , we define a sequence of maps {Tn}n>1, where each Tn is a map I →
I , x 7→ y = Tn(x), such that the source on the x-axis is divided into pL(n) right-open
intervals of equal length, and the range on the y-axis is divided into pL(n − 1) ones. The
intervals of the source are then put into correspondence with the cylinders of the factors
in FactL(n), using the lexicographic order between these factors, and the same is done for
the intervals of the range with cylinders of the factors in FactL(n − 1). Next, Tn is defined
as the piecewise affine map which sends for each v ∈ FactL(n) the interval corresponding
to CylL(v) to the interval corresponding to CylL(σ (v)), where σ(v) denotes v minus its
first letter, by using a slope pL(n)/pL(n − 1).

First, here is a technical result about the above slopes converging to 1. Recall
that spL ,l(n) denotes the number of left special factors in FactL(n), and let spL ,r (n) denote
the same for the right special factors.
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LEMMA 5.1.1. Let L be a shift such that FactL is prolongable. Let {ns}s∈N be
a subsequence of N \ {0, 1}. Then lims→∞ (pL(ns)/pL(ns − 1))= 1 if and only if
lims→∞ (spL ,l(ns − 1)/pL(ns − 1))= 0. The same holds for spL ,r (ns − 1).

Proof. We prove the result for spL ,l (the proof for spL ,r is similar): (⇒) (pL(ns)/

pL(ns − 1))− 1= (pL(ns)− pL(ns − 1))/pL(ns − 1)≥ spL ,l(ns − 1)/pL(ns − 1)≥
0, (⇐) |A| spL ,l(ns − 1)/pL(ns − 1)≥ (pL(ns)− pL(ns − 1))/pL(ns − 1)= (pL(ns)/

pL(ns − 1))− 1≥ 0. �

For zero entropy, using subsequences is indeed useful.

LEMMA 5.1.2. Let L be a minimal aperiodic shift with zero topological entropy. Then
there is a subsequence {ns}s∈N of N \ {0, 1} such that lims→∞ (pL(ns)/pL(ns − 1))= 1.

Proof. Since L is minimal aperiodic, then for all n > 1, pL(n)/pL(n − 1) > 1.
Next, pL(n)/pL(n − 1) is not bounded away from 1. Assume on the contrary there is
c > 0 such that for all n > 1, pL(n)≥ (1+ c)pL(n − 1). Hence pL(n)≥ (1+ c)n , and
the topological entropy of L would not be less than log(1+ c), a contradiction. �

Let FactL(u, n)= {v ∈ FactL(n) | v = uv′, v′ ∈ A∗}, i.e. the set of length-n factors with
u as prefix, and let pL(u, n)= |FactL(u, n)|. In the next result we simultaneously build
measures on L and approximations of the corresponding TL .

PROPOSITION 5.1.3. Let L be a minimal aperiodic shift with zero topological entropy. Let
{Tn}n>1 be the corresponding sequence of maps as defined above, and let T = {Tns }s∈N,
where {ns}s∈N is a subsequence of N \ {0, 1} such that lims→∞ (pL(ns)/pL(ns − 1))= 1.
Then:
(1) there is at least one shift-invariant measure µ on L, induced by the Tns ’s interval

lengths;
(2) there is a subsequence of T converging to a map T , equal almost everywhere to the

conjugate IET TL obtained by Theorem 1 from L measured by µ.

Proof. (1) For every s ∈ N and for every u ∈ FactL , we consider pL(u, ns)/pL(ns), that
is, the length of the interval corresponding to CylL(u) on the x-axis of Tns . By a diagonal
process on {pL(u, ns)/pL(ns)}s∈N, we obtain a sequence Q = {mi }i∈N such that, for every
u, limi→∞ (pL(u, mi )/pL(mi )) exists, and we denote it by Mu . We then define µ on
the cylinders of L by µ(CylL(u))= Mu . Note that µ(L)= Mε = 1. The finite unions of
the cylinders of AN together with the empty cylinder form a semiring of sets, thus the
intersection of this semiring with the cylinders of L too, and µ is a premeasure on this
semiring. By Caratheodory’s extension theorem, µ extends as a Borel probability measure
on L .

Note that limi→∞ (pL(u, mi )/pL(mi ))= Mu implies that limi→∞(pL(u, mi − 1)/
pL(mi − 1))= Mu too, that is, putting di = (pL(u, mi )/pL(mi ))−

(pL(u, mi − 1)/pL(mi − 1)), we have that limi→∞ di = 0. Indeed, first, since L is
aperiodic minimal, pL(mi ) > pL(mi − 1) for every i , thus

di <
pL(u, mi )

pL(mi − 1)
−

pL(u, mi − 1)
pL(mi − 1)

≤ |A|
spL ,l(mi − 1)

pL(mi − 1)
,
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which, by Lemma 5.1.1, converges to 0. Next, since pL(u, mi )≥ pL(u, mi − 1),

di ≥
pL(u, mi − 1)

pL(mi )
−

pL(u, mi − 1)
pL(mi − 1)

= pL(u, mi − 1)
pL(mi − 1)− pL(mi )

pL(mi )pL(mi − 1)

≥ −pL(u, mi − 1)|A|
spL ,l(mi − 1)

pL(mi )pL(mi − 1)
=−|A|

pL(u, mi − 1)
pL(mi )

spL ,l(mi − 1)
pL(mi − 1)

,

which also converges to 0, again by Lemma 5.1.1.
We now check the preservation of µ by σ . Assume that the letter prolongations in

FactL of u to the left are a1, . . . , ah ∈ A, where h > 0 since FactL is prolongable, L
being minimal. Thus σ−1(CylL(u))=

⋃h
j=1 CylL(aj u). For all mi ∈ Q, we also have∑h

j=1 pL(aj u, mi )≥ pL(u, mi − 1), and the difference between these two terms depends
on the number of left special factors in FactL(u, mi − 1) and on the number of their
prolongations:

0≤
h∑

j=1

pL(aj u, mi )− pL(u, mi − 1)≤ |A| spL ,l(mi − 1). (10)

Similarly, for each aj , pL(aj u, mi )≥ pL(aj u, mi − 1), and the difference between these
terms depends on the number of right special factors in FactL(aj u, mi − 1):

0≤
h∑

j=1

pL(aj u, mi )−

h∑
j=1

pL(aj u, mi − 1)≤ |A| spL ,r (mi − 1). (11)

Reversing (11) and adding it to (10), for all mi ∈ Q, we get

−|A| spL ,r (mi − 1)≤
h∑

j=1

pL(aj u, mi − 1)− pL(u, mi − 1)≤ |A| spL ,l(mi − 1).

We then divide the above terms by pL(mi − 1), let i go to infinity, and using Lemma 5.1.1
again, we obtain µ(CylL(u))=

∑h
j=1 µ(CylL(aj u)). Hence µ is an invariant measure for

L . Moreover, since L is aperiodic minimal, µ is non-atomic.
(2) On the x-axis for each u ∈ FactL , the length of the interval corresponding to CylL(u)

converges to Mu as limi→∞ (pL(u, mi )/pL(mi )), and the same is true on the y-axis for
σ(u) with Mσ(u) as limi→∞ (pL(σ (u), mi − 1)/pL(mi − 1)). Now, since L has zero
topological entropy, and µ has all the requested properties, Theorem 1 applies to L
measured by µ, so as to obtain TL , with its associated partitions PARTL and PARTL ,I . The
main components of PARTL are the cylinders CylL(v

(k)) (see Lemma 3.2.5), and following
the construction of Tmi , on the x-axis for each k, the associated intervals I (k)mi are the union
of the intervals corresponding to CylL(v

(k)v), v(k)v ∈ FactL(mi ), then converging to an
interval I (k) of length Mv(k) . The same holds for the intervals J (k)mi in the y-axis with
CylL(σ (v

(k)v)), respectively converging to intervals J (k) of length Mσ(v(k)). Note then that

for every i , Tmi is continuous, hence is an affine map on each I (k)mi . Indeed, σ is increasing
on CylL(σ (v

(k))), thus Tmi on I (k)mi too. But if Tmi had a discontinuity, it would mean that
σ−1 is not well-defined in this cylinder, contradicting the definition of PARTL .
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Now, the left endpoint of I (k) is ok =
∑
v<v(k),v∈FactL (|v(k)|)

Mv , and the lower endpoint
of J (k) is o′k =

∑
v<σ(v(k)),v∈FactL (|v(k)|−1) Mv . By convergence, for every k and ε > 0, there

is j > 0 such that for all i ≥ j , the endpoints of I (k)mi are at distances < ε respectively from
ok and ok + Mv(k) . Thus let Ti,k,ε be Tmi restricted to I (k)ε = [ok + ε, ok + Mv(k) − ε] for
i ≥ j , on which it is affine with slope pL(mi )/pL(mi − 1). These slopes converge to 1,
and the endpoints of J (k)mi converge respectively to o′k and o′k + Mσ(CylL (v

(k))), hence Ti,k,ε

converges on I (k)ε . Since ε is arbitrary, {Tmi }i∈N converges on all the I (k)
o
, i.e. the I (k)

interiors. We put T as the limit map, so that for each x ∈ I (k)
o
, T (x)= o′k + (x − ok).

Now, in the proof of Lemma 3.2.8, TL(x)− x = KC(k) , where C (k) denoted CylL(v
(k)),

and where KC(k) = µ([wL ,min, σ (wC(k),min)])− µ([wL ,min, wC(k),min]). By the definition
of T , the first term of this difference is o′k and the second is ok , that is, TL(x)− x = T (x)−
x on I (k)

o
, thus by comparison with Lemma 3.2.8, I (k)

o
= I (k)

o

L . Since by Lemma 3.2.10,
µ(SPL)= 0, the union of the I (k)

o
has measure 1, whence T = TL almost everywhere. �

Note that the map T above can be extended to all of I by right-continuity, so that T can
be made equal to TL .

5.2. Explicit graph examples. A dynamical system (X, f ) is said to be uniquely
ergodic if there exists only one f -invariant Borel probability measure on X .

PROPOSITION 5.2.1. Let L be an aperiodic minimal shift with linear complexity which
is uniquely ergodic. Then T in Proposition 5.1.3, defined as {Tn}n>1, converges almost
everywhere to TL .

Proof. Since L has linear complexity, its topological entropy is zero. For the same
reason, there exists r > 0 such that for all n > 1, pL(n)− pL(n − 1)≤ r [Cas96], hence
limn→∞ (pL(n)/pL(n − 1))= 1, and Proposition 5.1.3 can be applied to L . Now, in the
proof of this proposition, unique ergodicity means there can be only one accumulation
point for each {pL(u, n)/pL(n)}n>1, u ∈ FactL . Thus these sequences converge without
any subsequence extraction, as then does T . �

In order to illustrate the above proposition, the simplest non-trivial examples are given
by the primitive substitutive case (see p. 1945).

COROLLARY 5.2.2. Let L be a shift associated with an aperiodic primitive substitution.
Then Proposition 5.2.1 applies to L.

Proof. Aperiodic primitive substitutions have associated shifts which are aperiodic
minimal with linear complexity [Pan84], and uniquely ergodic [Qué10]. �

Note that in this primitive substitutive case, the limit measure of each cylinder can also
be computed from the substitution itself [Qué10, § 5].

Example 5.2.3. Reconsider the Thue–Morse substitution θtm (see Examples 3.2.6, 3.2.11,
and 3.2.12). Since θtm is aperiodic primitive, Corollary 5.2.2 applies to its associated
shift L tm . In the following picture we show the graph of T100 from the converging
sequence T = {Tn}n>1 approximating the IET TL tm with BL tm as set of separation points.

https://doi.org/10.1017/etds.2015.131 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.131


Infinite interval exchange transformations from shifts 1963

The intervals converging to their respective I (k)L tm
of PARTL tm ,I are indicated for the

first k, by the associated v(k) determining the corresponding cylinders of PARTL tm (see
Lemma 3.2.5 and Example 3.2.6). As expected from the Examples 3.2.11 and 3.2.12,
two accumulations of discontinuity points can be observed, where non-injectivity holds.
Note first that, in this Thue–Morse case, the limit measure of each involved cylinder can
be directly obtained from [Dek92]. Second, this example suggests existing connections
with constructions of infinite permutations obtained from shifts associated with aperiodic
primitive substitutions [Mak09, AFP15].

Example 5.2.4. Here are other examples of approximated infinite IETs from linear
complexity shifts associated with aperiodic primitive substitutions. The pictures below
are the T100 graphs from the convergent sequences T = {Tn}n>1 given by Corollary 5.2.2
for: (i) the Tribonacci substitution, i.e. θ(a)= ab, θ(b)= ac, θ(c)= a; (ii) the
Tetranacci substitution, i.e. θ(a)= ab, θ(b)= ac, θ(c)= ad, θ(d)= a; (iii) the Rudin–
Shapiro substitution, i.e. θ(a)= ab, θ(b)= ac, θ(c)= db, θ(d)= dc; (iv) the Fibonacci
substitution, i.e. θ(a)= ab, θ(b)= a. In this last example, Lθ is known to be the shift
given by the natural coding of the minimal finite IET T over two intervals, where
B =D = {0, 1/ρ}, and ρ is the golden ratio [Fog02]. Note then that in accordance with
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Corollary 3.3.4, the drawn graph is an approximation of the graph of T and of the graph
of TLθ too, while the construction of TLθ describes it with an infinite set BLθ of separation
points.
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