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Abstract. Let M be a compact smooth manifold without boundary. Based on results
by Good and Meddaugh [Invent. Math. 220 (2020), 715–736], we prove that a strong
distributional chaos is C0-generic in the space of continuous self-maps (respectively,
homeomorphisms) of M. The results contain answers to questions by Li, Li and Tu
[Chaos 26 (2016), 093103] and Moothathu [Topology Appl. 158 (2011), 2232–2239] in
the zero-dimensional case. A related counter-example on the chain components under
shadowing is also given.
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1. Introduction
Throughout, let X denote a compact metric space endowed with a metric d. We denote
by C(X) (respectively,H(X)) the set of continuous self-maps (respectively, homeomorph-
isms) of X. Let dC0 : C(X) × C(X) → [0, ∞) be the metric defined by

dC0(f , g) = sup
x∈X

d(f (x), g(x))

for f , g ∈ C(X). A metric d̂C0 : H(X) ×H(X) → [0, ∞) is given by

d̂C0(f , g) = max{dC0(f , g), dC0(f
−1, g−1)}

for f , g ∈ H(X). With respect to these metrics, C(X) and H(X) are complete metric
spaces.

A subset S of X is called a Mycielski set if it is a countable union of Cantor sets. Define
CDC1∗(X) to be the set of f ∈ C(X) such that there is a Mycielski subset S of X, which is
distributionally n-δn-scrambled for all n ≥ 2 for some δn > 0. Let

HDC1∗(X) = H(X) ∩ CDC1∗(X).
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We say that a subset F of a complete metric space Z is residual if it contains a countable
intersection of open and dense subsets of Z. The aim of this paper is to prove the following
theorem.

THEOREM 1.1. Given any compact smooth manifold M without boundary, CDC1∗(M) is a
residual subset of C(M), and if dim M > 1, then HDC1∗(M) is also a residual subset of
H(M).

We recall the definition of distributional n-chaos [22, 37].

Definition 1.1. For f ∈ C(X), an n-tuple (x1, x2, . . . , xn) ∈ Xn, n ≥ 2, is said to be
distributionally n-δ-scrambled for δ > 0 if

lim sup
m→∞

1
m

∣∣∣{0 ≤ k ≤ m − 1: max
1≤i<j≤n

d(f k(xi), f k(xj )) < ε
}∣∣∣ = 1

for all ε > 0, and

lim sup
m→∞

1
m

∣∣∣{0 ≤ k ≤ m − 1: min
1≤i<j≤n

d(f k(xi), f k(xj )) > δ
}∣∣∣ = 1.

Let DC1δ
n(X, f ) denote the set of distributionally n-δ-scrambled n-tuples and let

DC1n(X, f ) = ⋃
δ>0 DC1δ

n(X, f ). A subset S of X is said to be distributionally
n-scrambled (respectively, n-δ-scrambled) if

(x1, x2, . . . , xn) ∈ DC1n(X, f ) (respectively, DC1δ
n(X, f ))

for any distinct x1, x2, . . . , xn ∈ S. We say that f exhibits the distributional n-chaos of
type 1 (DC1n) if there is an uncountable distributionally n-scrambled subset of X.

For any map f ∈ C(X), let htop(f ) denote the topological entropy of f (see, for example,
[38] for its definition). Then, for every compact topological manifold M, possibly with
boundary, Yano showed that generic f ∈ C(M) (respectively, f ∈ H(M), if dim M > 1)
satisfies htop(f ) = ∞ [40]. Since the positive topological entropy is a characteristic feature
of chaos, generic dynamics on M is, roughly speaking, chaotic. Another definition of
chaos is the so-called Li–Yorke chaos derived from [23]; and in [6], any map f ∈ C(X) is
proved to be Li–Yorke chaotic whenever htop(f ) > 0 (see [6, Corollary 2.4]), so Li–Yorke
chaos is topologically generic on manifolds. From a statistical viewpoint, the notion of
distributional chaos was introduced by Schweizer and Smítal in [35] as three variants
of Li–Yorke chaos for interval maps. They are numbered in order of decreasing strength
(DCβ2, β ∈ {1, 2, 3}), therefore DC12 is the strongest by definition, and DC22 (also called
mean Li–Yorke chaos) is still stronger than Li–Yorke chaos. Then it is natural to ask if
DC1n, n ≥ 2, is generic or not. Note that DC1n, n ≥ 2, does not necessarily imply DC1n+1

[22, 37].
For an interval map f ∈ C([0, 1]), all DCβ2, β ∈ {1, 2, 3}, are equivalent to

htop(f ) > 0 [35] (see also [34]). Since there is a Li–Yorke chaotic map f ∈ C([0, 1]) with
htop(f ) = 0, DC22 is strictly stronger than Li–Yorke chaos in general [36, 39] (see also
[34]). In general, improving the result of [6], Downarowicz showed that any map f ∈ C(X)

with htop(f ) > 0 exhibits DC22 [8] (see also [13]). On the other hand, Pikuła constructed a

https://doi.org/10.1017/etds.2021.127 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.127


On C0-genericity of distributional chaos 617

subshift (X, f ) such that htop(f ) > 0 and DC12(X, f ) = ∅ [31]. Since DC12(X, f ) 
= ∅
implies the existence of a distal pair for f (see [29, Corollary 15]), any proximal map
f ∈ C(X) with htop(f ) > 0, given in, for example, [12, 19, 30], does not exhibit DC12.
By [4, Theorem 2], we also know that a minimal map f ∈ C(X) with a regularly recurrent
point satisfies DC12(X, f ) = ∅, so every Toeplitz subshift with arbitrary topological
entropy does not exhibit DC12 (see also [7] and [15, Remark 2.2]). Thus, some additional
assumptions besides htop(f ) > 0 are needed to ensure DC1n, n ≥ 2, for a general map
f ∈ C(X).

Shadowing is a natural candidate for such an assumption. In [21], Li, Li and Tu proved
that for any transitive map f ∈ C(X) with the shadowing property, f ∈ CDC1∗(X) if one
of the following properties holds: (1) f is non-periodic and has a periodic point; or (2) f

is non-trivial weakly mixing. Here, we have htop(f ) > 0 in both cases. This result is
extended in [15] by using a relation defined by Richeson and Wiseman [33] (see also
[14]). Note that it was previously known that shadowing with (chain) mixing implies the
specification and so DC12, except for the degenerate case (see [20, 25, 28]). In [11], for
every compact topological manifold M with dim M > 1, Guihéneuf and Lefeuvre proved
that generic f ∈ Hμ(M) satisfies the shadowing property, where Hμ(M) is the set of
f ∈ H(M) preserving a non-atomic Borel probability measure μ on M with the full
support and μ(∂M) = 0. Since such f ∈ Hμ(M) is also (chain) mixing, DC1n, n ≥ 2, is
generic for the conservative homeomorphisms. As forH(M), the situation is very different
because, in particular, generic f ∈ H(M) has no isolated chain component, at least for
any smooth closed M [2]. Nevertheless, it is still useful to focus on the chain components.
Since shadowing is shown to be generic in C(M) andH(M) [24, 32], any consequence of
shadowing is a generic property in C(M) and H(M). When we consider the result of Li,
Li and Tu, one of the obvious difficulties in proving DC1n, n ≥ 2, for generic f ∈ C(M)

(or f ∈ H(M), if dim M > 1) is that even if f has shadowing, its restriction f |C to a chain
component C for f does not necessarily have the shadowing property. Another difficulty
arises from the additional assumption such as (1) or (2) above. The main results of this
paper resolve these difficulties and establish the genericity of DC1n, n ≥ 2. Note that for
generic f ∈ C(M) (respectively, f ∈ H(M)), the chain recurrent set CR(f ) is known to
be zero-dimensional, or equivalently, totally disconnected [2, 18].

In outline, the proof of Theorem 1.1 goes as follows. In [10], Good and Meddaugh
found and investigated a fundamental relationship between subshifts of finite type (SFTs)
and shadowing. The following two lemmas are from [10].

LEMMA 1.1. Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of

equivariant maps and let (X, f ) = limπ (Xn, fn). If fn : Xn → Xn has the shadowing
property for each n ≥ 1, and π satisfies the Mittag-Leffler condition (MLC), then f has the
shadowing property.

LEMMA 1.2. Let f : X → X be a continuous map with the shadowing property. If
dim X = 0, then there is an inverse sequence of equivariant maps

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1
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such that the following properties hold:
(1) π satisfies the MLC;
(2) (Xn, fn) is an SFT for each n ≥ 1;
(3) (X, f ) is topologically conjugate to limπ (Xn, fn).

Note that these results concern the so-called Mittag-Leffler condition of an inverse
sequence of equivariant maps. Most of this paper is devoted to a study of the MLC focusing
on the structure of chain components. By using the above lemmas and a method in [15]
with Mycielski’s theorem, we prove the following lemma. Here,D(f ) is the partition of X
with respect to the equivalence relation ∼f defined by Richeson and Wiseman (see §2.2
for details).

LEMMA 1.3. Let f : X → X be a transitive continuous map with the shadowing property
such that htop(f ) > 0. If there are a compact metric space Y such that dim Y = 0, a
transitive continuous map g : Y → Y with the shadowing property, and a factor map

π : (Y , g) → (X, f ),

then there exists a sequence of positive numbers (δn)n≥2 such that every D ∈ D(f )

contains a dense Mycielski subset S which consists of transitive points for f and is
distributionally n-δn-scrambled for all n ≥ 2.

A question in [21] asks whether or not, for any continuous map f : X → X, the
shadowing property, transitivity, and positive topological entropy imply DC1n, n ≥ 2.
Lemma 1.3 gives a partial answer to this question. As a direct consequence, we obtain
the following corollary, which answers the question in the zero-dimensional case.

COROLLARY 1.1. Let f : X → X be a transitive continuous map with the shadowing
property. If dim X = 0 and htop(f ) > 0, then there exists a sequence of positive numbers
(δn)n≥2 such that every D ∈ D(f ) contains a dense Mycielski subset S which consists of
transitive points for f and is distributionally n-δn-scrambled for all n ≥ 2.

Then, by dropping the transitivity assumption through Lemma 4.1, we obtain the
following theorem. Here, C(f ) is the set of chain components for f (see §2.2 for the
definition).

THEOREM 1.2. Given any continuous map f : X → X with the shadowing property, if
dim X = 0 and htop(f ) > 0, then there exist C ∈ C(f ) and a sequence of positive numbers
(δn)n≥2 such that every D ∈ D(f |C) contains a dense Mycielski subset S which consists
of transitive points for f |C and is distributionally n-δn-scrambled for all n ≥ 2.

Let
• Csh(X) = {f ∈ C(X) : f has the shadowing property},
• Ccr0(X) = {f ∈ C(X) : dim CR(f ) = 0},
• Ch>0(X) = {f ∈ C(X) : htop(f ) > 0},
and letHσ (X) = H(X) ∩ Cσ (X) for σ ∈ {sh, cr0, h > 0}. Note that for any

f ∈ Csh(X) ∩ Ccr0(X) ∩ Ch>0(X),
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the restriction f |CR(f ) : CR(f ) → CR(f ) has the following properties:
• the shadowing property;
• dim CR(f ) = 0;
• htop(f |CR(f )) = htop(f ) > 0.
By applying Theorem 1.2 to f |CR(f ), we obtain f ∈ CDC1∗(X); therefore,

Csh(X) ∩ Ccr0(X) ∩ Ch>0(X) ⊂ CDC1∗(X)

and so

Hsh(X) ∩Hcr0(X) ∩Hh>0(X) ⊂ HDC1∗(X).

Let M be a compact smooth manifold without boundary. Then Theorem 1.1 follows from
the previous claims and the following results in the literature:
• shadowing

– Csh(M) is a residual subset of C(M) [24],
– Hsh(M) is a residual subset ofH(M) [32];

• chain recurrence
– Ccr0(M) is a residual subset of C(M) [2, 18],
– Hcr0(M) is a residual subset ofH(M) [2];

• topological entropy
– Ch>0(M) is a residual subset of C(M) [40],
– if dim M > 1, thenHh>0(M) is a residual subset ofH(M) [40].

The proof also gives an insight into how the distributionally scrambled sets exist in the
chain recurrent set. As shown in the proof of Lemma 4.1 in §4, any chain component with
positive topological entropy is approximated by one also with the shadowing property. The
latter component is partitioned into the equivalence classes of the relation by Richeson
and Wiseman. Then Corollary 1.1 implies that all equivalence classes densely contain
distributionally scrambled Mycielski sets within them. It deepens the understanding about
the chaotic aspect of C0-generic dynamics on manifolds.

We remark that for generic f ∈ H(M) with dim M > 1, the set of x ∈ CR(f ) which is
contained in some C ∈ C(f ), such that (C, f |C) has a non-trivial subshift of finite type as
a factor, is dense in CR(f ) [2]; therefore,⊔

{C ∈ C(f ) : htop(f |C) > 0}
is a dense subset of CR(f ). We also recall from [2] that for generic f ∈ H(M) with
dim M > 1, the set of x ∈ CR(f ) which lies in some C ∈ C(f ) such that C is initial
or terminal, implying, if dim CR(f ) = 0, that C is a periodic orbit or (C, f |C) is
topologically conjugate to an odometer, is a residual subset of CR(f ). Thus, for such
f ∈ H(M) with shadowing, the distributionally scrambled Mycielski sets should be
contained in intermediate chain components, and the distributional chaos occurs in a dense
but meager subset of CR(f ).

Lastly, Theorem 1.2 also provides a method to prove the genericity of DC1n, n ≥ 2,
for continuous self-maps or homeomorphisms of various underlying spaces which are
not necessarily manifolds. We can find many results on the genericity of shadowing,
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zero-dimensionality of the chain recurrent set, and positive topological entropy in the
context of topological dynamics (see, for example, [9, 17, 18]). Here, let us mention only
the case where X is the Cantor set. In this case, it is shown that H(X) has a residual
conjugacy class [1, 16]. Then generic f ∈ H(X) has the shadowing property but satisfies
htop(f ) = 0 and has no Li–Yorke pair [5, 9]; therefore, the generic homeomorphisms of X
are not chaotic.

This paper consists of six sections. The basic notation, definitions, and facts are briefly
collected in §2. In §3 we prove some preparatory lemmas. In §4 we prove Lemma 4.1 to
reduce Theorem 1.2 to Lemma 1.3. In §5 we prove Lemma 1.3. In §6, as a bi-product of the
proof of Lemma 4.1, we answer a question by Moothathu [26] in the zero-dimensional case,
and give a related counter-example showing that the chain components with the shadowing
property can be relatively few.

2. Preliminaries
In this section we collect some basic definitions, notations, facts, and prove some lemmas
which will be used in what follows.

2.1. Chains, cycles, pseudo-orbits and the shadowing property. Given a continuous map
f : X → X, a finite sequence (xi)

k
i=0 of points in X, where k > 0 is a positive integer, is

called a δ-chain of f if d(f (xi), xi+1) ≤ δ for every 0 ≤ i ≤ k − 1. A δ-chain (xi)
k
i=0 of

f is said to be a δ-cycle of f if x0 = xk . Let ξ = (xi)i≥0 be a sequence of points in X. For
δ > 0, ξ is called a δ-pseudo-orbit of f if d(f (xi), xi+1) ≤ δ for all i ≥ 0. For ε > 0, ξ

is said to be ε-shadowed by x ∈ X if d(f i(x), xi) ≤ ε for all i ≥ 0. We say that f has the
shadowing property if, for any ε > 0, there is δ > 0 such that every δ-pseudo-orbit of f is
ε-shadowed by some point of X.

2.2. Chain components and a relation.

2.2.1. Chain recurrence and chain transitivity. Given a continuous map f : X → X, a
point x ∈ X is called a chain recurrent point for f if, for any δ > 0, there is a δ-cycle
(xi)

k
i=0 of f with x0 = xk = x. We denote by CR(f ) the set of chain recurrent points for

f. It is a closed f -invariant subset of X, and the restriction f |CR(f ) : CR(f ) → CR(f )

satisfies CR(f |CR(f )) = CR(f ). It is known that if f has the shadowing property, then so
does f |CR(f ) [26]. We call f chain recurrent if X = CR(f ). For any x, y ∈ X and δ > 0,
the notation x →f ,δ y means that there is a δ-chain (xi)

k
i=0 of f with x0 = x and xk = y.

Then f is said to be chain transitive if x →f ,δ y for any x, y ∈ X and δ > 0. We say that
f is transitive if, for any two non-empty open subsets U, Vof X, there is n > 0 such that
f n(U) ∩ V 
= ∅. If f is transitive, then f is chain transitive, and the converse holds when f
has the shadowing property.

2.2.2. Chain components. For any continuous map f : X → X, CR(f ) admits a
decomposition with respect to a relation ↔f in CR(f )2 = CR(f ) × CR(f ) defined as
follows: for any x, y ∈ CR(f ), x ↔f y if and only if x →f ,δ y and y →f ,δ x for every
δ > 0. Note that ↔f is a closed (f × f )-invariant equivalence relation in CR(f )2.
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An equivalence class C of ↔f is called a chain component for f. We denote by C(f )

the set of chain components for f. Then the following properties hold.
(1) CR(f ) = ⊔

C∈C(f ) C, here
⊔

denotes the disjoint union.
(2) Every C ∈ C(f ) is a closed f -invariant subset of CR(f ).
(3) f |C : C → C is chain transitive for all C ∈ C(f ).
Note that f is chain transitive if and only if f is chain recurrent and satisfies C(f ) = {X}.

2.2.3. A relation. Let f : X → X be a chain transitive map. For δ > 0 and a δ-cycle
γ = (xi)

k
i=0 of f, k is called the length of γ . Let m = m(f , δ) > 0 be the greatest common

divisor of all the lengths of δ-cycles of f. We define a relation ∼f ,δ in X2 as follows: for
any x, y ∈ X, x ∼f ,δ y if and only if there is a δ-chain (xi)

k
i=0 of f with x0 = x, xk = y,

and m|k. Then the following properties hold.
(1) ∼f ,δ is an open and closed (f × f )-invariant equivalence relation in X2.
(2) For any x ∈ X and n ≥ 0, x ∼f ,δ f mn(x).
(3) There exists N > 0 such that, for any x, y ∈ X with x ∼f ,δ y and n ≥ N , there is a

δ-chain (xi)
k
i=0 of f with x0 = x, xk = y and k = mn.

Following [33], define a relation ∼f in X2 as follows: for any x, y ∈ X, x ∼f y if and
only if x ∼f ,δ y for every δ > 0. This is a closed (f × f )-invariant equivalence relation in
X2. We denote byD(f ) the set of equivalence classes of ∼f . This gives a closed partition
of X. A pair (x, y) ∈ X2 is said to be chain proximal if, for any δ > 0, there is a pair
((xi)

k
i=0, (yi)

k
i=0) of δ-chains of f such that (x0, y0) = (x, y) and xk = yk . As claimed in

[33, Remark 8], for any (x, y) ∈ X2, (x, y) is chain proximal if and only if x ∼f y.

2.3. Inverse limit.

2.3.1. Inverse limit spaces. Given an inverse sequence of continuous maps

π = (πn+1
n : Xn+1 → Xn)n≥1,

where (Xn)n≥1 is a sequence of compact metric spaces, define πm
n : Xm → Xn by

πm
n =

{
idXn if m = n,

πn+1
n ◦ πn+2

n+1 ◦ · · · ◦ πm
m−1 if m > n,

for all m ≥ n ≥ 1. Note that πl
n = πm

n ◦ πl
m for any l ≥ m ≥ n ≥ 1. The inverse limit space

X = limπ Xn is defined by

X =
{
x = (xn)n≥1 ∈

∏
n≥1

Xn : πn+1
n (xn+1) = xn, for all n ≥ 1

}
,

which is a compact metric space.
For any n ≥ 1, note that πm

n (Xm) ⊃ πm+1
n (Xm+1) for every m ≥ n, and let

X̂n =
⋂
m≥n

πm
n (Xm).
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By compactness, we easily see that, for any n ≥ 1 and x ∈ Xn, x ∈ X̂n if and only if there
is a sequence

(xm)m≥n ∈
∏
m≥n

Xm

with πm+1
m (xm+1) = xm for every m ≥ n. For each n ≥ 1, πn+1

n (X̂n+1) = X̂n, that is,
π̂n+1

n = (πn+1
n )|

X̂n+1
: X̂n+1 → X̂n is surjective. Let

π̂ = (π̂n+1
n : X̂n+1 → X̂n)n≥1

and X̂ = limπ̂ X̂n. Since any x = (xn)n≥1 ∈ X satisfies xn ∈ X̂n for every n ≥ 1, we see
that the inclusion i : X̂ → X is a homeomorphism.

2.3.2. The Mittag-Leffler condition. Given π = (πn+1
n : Xn+1 → Xn)n≥1, an inverse

sequence of continuous maps, π is said to satisfy the Mittag-Leffler Condition if, for any
n ≥ 1, there is N ≥ n such that πN

n (XN) = πm
n (Xm) for all m ≥ N . We say that π satisfies

MLC(1) if

πn+1
n (Xn+1) = πn+2

n (Xn+2)

for any n ≥ 1.

LEMMA 2.1. Let π = (πn+1
n : Xn+1 → Xn)n≥1 be an inverse sequence of continuous

maps. Then the following properties are equivalent.
(1) π satisfies MLC(1).
(2) For any n ≥ 1 and m ≥ n + 1, πn+1

n (Xn+1) = πm
n (Xm).

(3) For every n ≥ 1, X̂n = πn+1
n (Xn+1).

Proof. (1) ⇒ (2): We use an induction on m. For m = n + 1, πn+1
n (Xn+1) = πm

n (Xm) is
trivially true. Assume πn+1

n (Xn+1) = πm
n (Xm) for some m ≥ n + 1. Then we have

πm+1
n (Xm+1) = πm−1

n (πm+1
m−1 (Xm+1)) = πm−1

n (πm
m−1(Xm)) = πm

n (Xm) = πn+1
n (Xn+1),

completing the induction.
(2) ⇒ (1): Put m = n + 2 in (2).
(2) ⇒ (3): Property (2) implies

X̂n = πn
n (Xn) ∩

⋂
m≥n+1

πm
n (Xm) = Xn ∩ πn+1

n (Xn+1) = πn+1
n (Xn+1)

for every n ≥ 1.
(3) ⇒ (2): Since πn+1

n (Xn+1) ⊃ πn+2
n (Xn+2) ⊃ · · · ⊃ X̂n, X̂n = πn+1

n (Xn+1)

implies πm
n (Xm) = X̂n = πn+1

n (Xn+1) for any m ≥ n + 1, completing the proof.

Remark 2.1. Property (2) in the above lemma implies that π satisfies the MLC.

LEMMA 2.2. Let π = (πn+1
n : Xn+1 → Xn)n≥1 be an inverse sequence of continuous

maps. If π satisfies the MLC, then there is a sequence 1 ≤ n(1) < n(2) < · · · such that,
letting π ′ = (π

n(j+1)

n(j) : Xn(j+1) → Xn(j))j≥1, π ′ satisfies MLC(1).

https://doi.org/10.1017/etds.2021.127 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.127


On C0-genericity of distributional chaos 623

Proof. Put n(0) = 1. Inductively, define a sequence 1 = n(0) < n(1) < n(2) < · · ·
as follows: given j ≥ 0 and n(j), take n(j + 1) > n(j) such that π

n(j+1)

n(j) (Xn(j+1)) =
πm

n(j)(Xm) for every m ≥ n(j + 1). Then, for each j ≥ 1, π
n(j+1)

n(j) (Xn(j+1)) =
π

n(j+2)

n(j) (Xn(j+2)) since n(j + 2) > n(j + 1), implying that π ′ satisfies MLC(1).

2.3.3. Equivariance, factor and the topological conjugacy. Given two continuous maps
f : X → X and g : Y → Y , where X and Y are compact metric spaces, a continuous
map π : X → Y is said to be equivariant if g ◦ π = π ◦ f , and such π is also denoted
by π : (X, f ) → (Y , g). An equivariant map π : (X, f ) → (Y , g) is called a factor map
(respectively, topological conjugacy) if it is surjective (respectively, a homeomorphism).
Two systems (X, f ) and (Y , g) are said to be topologically conjugate if there is a
topological conjugacy h : (X, f ) → (Y , g).

2.3.4. Inverse limit systems. For an inverse sequence of equivariant maps

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1,

the inverse limit system (X, f ) = limπ (Xn, fn) is well defined by X = limπ Xn, and
f (x) = (fn(xn))n≥1 for all x = (xn)n≥1 ∈ X.

For every n ≥ 1, note that X̂n is a closed fn-invariant subset of Xn, and let f̂n =
(fn)|X̂n

: X̂n → X̂n. For all n ≥ 1, π̂n+1
n = (πn+1

n )|
X̂n+1

: X̂n+1 → X̂n gives a factor map

π̂n+1
n : (X̂n+1, f̂n+1) → (X̂n, f̂n).

Let

π̂ = (π̂n+1
n : (X̂n+1, f̂n+1) → (X̂n, f̂n))n≥1

and (X̂, f̂ ) = limπ̂ (X̂n, f̂n). Then the inclusion i : X̂ → X is a topological conjugacy
i : (X̂, f̂ ) → (X, f ).

LEMMA 2.3. Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of

equivariant maps and let (X, f ) = limπ (Xn, fn). If fn : Xn → Xn is chain recurrent
(respectively, chain transitive) for each n ≥ 1, then f : X → X is chain recurrent
(respectively, chain transitive).

Proof. Let n ≥ 1. Then, for any m ≥ n, since fm : Xm → Xm is chain recurrent (respect-
ively, chain transitive), and πm

n : (Xm, fm) → (Xn, fn) is an equivariant map,

(fn)|πm
n (Xm) : πm

n (Xm) → πm
n (Xm)

is chain recurrent (respectively, chain transitive). Because X̂n = ⋂
m≥n πm

n (Xm),

f̂n : X̂n → X̂n

is chain recurrent (respectively, chain transitive). Since

π̂ = (π̂n+1
n : (X̂n+1, f̂n+1) → (X̂n, f̂n))n≥1
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is a sequence of factor maps, we see that f̂ : X̂ → X̂ is chain recurrent (respectively, chain
transitive). Thus, f : X → X is chain recurrent (respectively, chain transitive), because
(X, f ) and (X̂, f̂ ) are topologically conjugate, completing the proof.

For an inverse sequence of equivariant maps

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1

and a sequence 1 ≤ n(1) < n(2) < · · · , πn(j+1)

n(j) : Xn(j+1) → Xn(j) is an equivariant map
for each j ≥ 1. Letting

π ′ = (π
n(j+1)

n(j) : (Xn(j+1), fn(j+1)) → (Xn(j), fn(j)))j≥1

and (Y , g) = limπ ′(Xn(j), fn(j)), we have a topological conjugacy h : (X, f ) → (Y , g)

given by h(x) = (xn(j))j≥1 for all x = (xn)n≥1 ∈ X. By this and Lemma 2.2, we obtain
the following lemma.

LEMMA 2.4. Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of

equivariant maps. If π satisfies the MLC, then there is a sequence 1 ≤ n(1) < n(2) < · · ·
such that, letting π ′ = (π

n(j+1)

n(j) : (Xn(j+1), fn(j+1)) → (Xn(j), fn(j)))j≥1, π ′ satisfies
MLC(1), and limπ (Xn, fn) is topologically conjugate to limπ ′(Xn(j), fn(j)).

2.4. Subshifts.

2.4.1. Subshifts of finite type. Let S be a finite set with the discrete topology. The shift
map σ : SN → SN is defined by σ(x) = (xn+1)n≥1 for all x = (xn)n≥1 ∈ SN. Note that σ

is continuous with respect to the product topology of SN. The product space SN (and also
(SN, σ)) is called the (one-sided) full-shift over S. A closed σ -invariant subset X of SN (and
also the subsystem (X, σ |X) of (SN, σ)) is called a subshift. A subshift X of SN (and also
(X, σ |X) of (SN, σ)) is called a subshift of finite type if there are N > 0 and F ⊂ SN+1

such that, for any x = (xn)n≥1 ∈ SN, x ∈ X if and only if (xi , xi+1, . . . , xi+N) ∈ F for all
i ≥ 1. The shift map σ : SN → SN is positively expansive and has the shadowing property.
We know that a subshift X of SN is of finite type if and only if σ |X : X → X has the
shadowing property [3].

2.4.2. Some properties of SFTs. Let (X, σ |X) be an SFT (of some full-shift over S) and
put f = σ |X. Then f has the following properties.
(1) CR(f ) = Per(f ), where Per(f ) denotes the set of periodic points for f.
(2) For any x ∈ X, there is y ∈ CR(f ) such that limn→∞ d(f n(x), f n(y)) = 0.
In fact, these two properties are consequences of the positive expansiveness and the
shadowing property of f : X → X. Since the restriction f |CR(f ) : CR(f ) → CR(f ) is
surjective and positively expansive, it is c-expansive. Also, it has the shadowing property.
Applying [3, Theorem 3.4.4] to f |CR(f ), we obtain the following property.
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(3) There is a finite set C of clopen f -invariant subsets of CR(f ) such that

CR(f ) =
⊔
C∈C

C,

and f |C : C → C is transitive for every C ∈ C.
An element of C is called a basic set. We easily see that C = C(f ), that is, the basic
sets coincide with the chain components for f. For every C ∈ C, f |C has the shadowing
property, so C (or (C, f |C)) is a transitive SFT.

Consider the case where f is transitive (or (X, f ) is a transitive SFT). Then we have X =
CR(f ) and C = C(f ) = {X}. Again by [3, Theorem 3.4.4], X admits a decomposition

X =
m−1⊔
i=0

f i(D),

where m > 0 is a positive integer, such that f i(D), 0 ≤ i ≤ m − 1, are clopen
f m-invariant subsets of X, and

f m|f i(D) : f i(D) → f i(D)

is mixing for every 0 ≤ i ≤ m − 1. Here, a continuous map g : Y → Y is said to be mixing
if, for any two non-empty open subsets U, V of Y, there is N > 0 such that gn(U) ∩ V 
= ∅
for all n ≥ N . In this case, we easily see thatD(f ) = {f i(D) : 0 ≤ i ≤ m − 1}.

3. Preparatory lemmas
In this section we prove some preparatory lemmas needed for the proofs of the main results.
The first two lemmas give an expression of the chain recurrent set (respectively, chain
components) for the inverse limit system.

LEMMA 3.1. Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of

equivariant maps and let (X, f ) = limπ (Xn, fn). Then

CR(f ) = {x = (xn)n≥1 ∈ X : xn ∈ CR(fn), for all n ≥ 1}.
Proof. Let R denote the right-hand side of the equation. CR(f ) ⊂ R is clearly true. Let
us prove R ⊂ CR(f ). Note that πn+1

n (CR(fn+1)) ⊂ CR(fn) for every n ≥ 1. Let Yn =
CR(fn), gn = (fn)|Yn : Yn → Yn, and π̃n+1

n = (πn+1
n )|Yn+1 : Yn+1 → Yn for each n ≥ 1.

Consider the inverse sequence of equivariant maps

π̃ = (π̃n+1
n : (Yn+1, gn+1) → (Yn, gn))n≥1

and let (Y , g) = limπ̃ (Yn, gn). Since gn is chain recurrent for all n ≥ 1, by Lemma 2.3,
g is chain recurrent. On the other hand, R is a closed f -invariant subset of X and satisfies
Y = R. The inclusion i : Y → R gives a topological conjugacy i : (Y , g) → (R, f |R),
and so f |R : R → R is chain recurrent, which clearly implies R ⊂ CR(f ); therefore, the
lemma has been proved.

Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of equivariant

maps and let (X, f ) = limπ (Xn, fn). Note that for any n ≥ 1 and Cn+1 ∈ C(fn+1), there
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is Cn ∈ C(fn) such that πn+1
n (Cn+1) ⊂ Cn. Let

Cπ =
{
C∗ = (Cn)n≥1 ∈

∏
n≥1

C(fn) : πn+1
n (Cn+1) ⊂ Cn, for all n ≥ 1

}
.

Also, for any C∗ = (Cn)n≥1 ∈ Cπ , let

[C∗] = {x = (xn)n≥1 ∈ X : xn ∈ Cn, for all n ≥ 1}.
The next lemma gives an expression of C(f ).

LEMMA 3.2. It holds that C(f ) = {[C∗] : C∗ ∈ Cπ }, where C(f ) is the set of chain
components for f.

Proof. For any C∗ = (Cn)n≥1 ∈ Cπ , [C∗] is a closed f -invariant subset of X. We prove that
f |[C∗] : [C∗] → [C∗] is chain transitive. For each n ≥ 1, let gn = f |Cn : Cn → Cn and let

π̃n+1
n = (πn+1

n )|Cn+1 : Cn+1 → Cn.

Consider the inverse sequence of equivariant maps

π̃ = (π̃n+1
n : (Cn+1, gn+1) → (Cn, gn))n≥1

and let (Y , g) = limπ̃ (Cn, gn). Since gn is chain transitive for all n ≥ 1, by Lemma 2.3,
g is chain transitive. On the other hand, we have Y = [C∗]. The inclusion i : Y → [C∗]
gives a topological conjugacy i : (Y , g) → ([C∗], f |[C∗]), which implies that f |[C∗] is
chain transitive.

Given any C∗ = (Cn)n≥1 ∈ Cπ , from what is shown above, there is C ∈ C(f ) such that
[C∗] ⊂ C. Fix x = (xn)n≥1 ∈ [C∗]. Then, for every y = (yn)n≥1 ∈ C, we easily see that
{xn, yn} ∈ Cn for all n ≥ 1; therefore, y ∈ [C∗]. This implies C ⊂ [C∗] and so [C∗] = C,
proving

{[C∗] : C∗ ∈ Cπ } ⊂ C(f ).

To prove

C(f ) ⊂ {[C∗] : C∗ ∈ Cπ },
for any C ∈ C(f ), fix x = (xn)n≥1 ∈ C, and take Cn ∈ C(fn) with xn ∈ Cn for each n ≥ 1.
Then C∗ = (Cn)n≥1 ∈ Cπ and x ∈ [C∗] ⊂ C. Similarly to the argument above, we obtain
C = [C∗], completing the proof.

The next lemma gives an expression for D(f ), which was introduced in §2.2, for the
inverse limit system under MLC(1). Given

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1,

an inverse sequence of equivariant maps, let (X, f ) = limπ (Xn, fn) and suppose that
fn : Xn → Xn is chain transitive for all n ≥ 1. Then, by Lemma 2.3, f : X → X is chain
transitive. Note that, for any n ≥ 1 and Dn+1 ∈ D(fn+1), there is Dn ∈ D(fn) such that
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πn+1
n (Dn+1) ⊂ Dn. Let

Dπ =
{
D∗ = (Dn)n≥1 ∈

∏
n≥1

D(fn) : πn+1
n (Dn+1) ⊂ Dn, for all n ≥ 1

}
.

Also, for any D∗ = (Dn)n≥1 ∈ Dπ , let

[D∗] = {x = (xn)n≥1 ∈ X : xn ∈ Dn, for all n ≥ 1}.
LEMMA 3.3. If π satisfies MLC(1), thenD(f ) = {[D∗] : D∗ ∈ Dπ }.
Proof. Let D∗ = (Dn)n≥1 ∈ Dπ and let x = (xn)n≥1, y = (yn)n≥1 ∈ [D∗]. We prove that
(x, y) ∈ X2 is chain proximal for f. Fix any N > 0 and δ > 0. Since {xN+1, yN+1} ⊂
DN+1 ∈ D(fN+1), (xN+1, yN+1) ∈ X2

N+1 is chain proximal for fN+1, implying that there
is a pair

((x
(i)
N+1)

k
i=0, (y

(i)
N+1)

k
i=0)

of δ-chains of fN+1 such that (x
(0)
N+1, y

(0)
N+1) = (xN+1, yN+1) and x

(k)
N+1 = y

(k)
N+1. Let

(z(0), w(0)) = (x, y) ∈ X2 and note that

(z(0)
n , w(0)

n ) = (xn, yn) = (πN+1
n (xN+1), πN+1

n (yN+1)) = (πN+1
n (x

(0)
N+1), πN+1

n (y
(0)
N+1))

for every 1 ≤ n ≤ N . For each 0 < i ≤ k, since

{πN+1
N (x

(i)
N+1), πN+1

N (y
(i)
N+1)} ⊂ πN+1

N (XN+1) = X̂N

by MLC(1) (see Lemma 2.1), there are (z(i), w(i)) ∈ X2, 0 < i ≤ k − 1, and z(k) = w(k) ∈
X such that

(z(i)
n , w(i)

n ) = (πN+1
n (x

(i)
N+1), πN+1

n (y
(i)
N+1))

and also

z(k)
n = w(k)

n = πN+1
n (x

(k)
N+1) = πN+1

n (y
(k)
N+1)

for every 1 ≤ n ≤ N . Let dn, n ≥ 1, be the metric on Xn. For any 0 ≤ i ≤ k − 1 and
1 ≤ n ≤ N , we have

dn(f (z(i))n, z(i+1)
n ) = dn(fn(z

(i)
n ), z(i+1)

n )

= dn(fn(π
N+1
n (x

(i)
N+1)), πN+1

n (x
(i+1)
N+1 ))

= dn(π
N+1
n (fN+1(x

(i)
N+1)), πN+1

n (x
(i+1)
N+1 ))

with dN+1(fN+1(x
(i)
N+1), x

(i+1)
N+1 ) ≤ δ, and similarly,

dn(f (w(i))n, w(i+1)
n ) = dn(π

N+1
n (fN+1(y

(i)
N+1)), πN+1

n (y
(i+1)
N+1 ))

with dN+1(fN+1(y
(i)
N+1), y

(i+1)
N+1 ) ≤ δ. Therefore, for every ε > 0, if N is large enough, and

then δ is sufficiently small,

((z(i))ki=0, (w(i))ki=0)
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is a pair of ε-chains of f with (z(0), w(0)) = (x, y) and z(k) = w(k), proving that (x, y) ∈
X2 is chain proximal for f.

Given any D∗ = (Dn)n≥1 ∈ Dπ , from what is shown above, we have [D∗] ⊂ D for
some D ∈ D(f ). The rest of the proof is identical to that of Lemma 3.2.

The final lemma gives a sufficient condition for an inverse sequence of subsystems to
continue satisfying condition MLC(1).

LEMMA 3.4. Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of

equivariant maps with MLC(1). Let (X, f ) = limπ (Xn, fn) and suppose that a sequence
of closed fn-invariant subsets Yn of Xn, n ≥ 1, has the following properties:
(1) πn+1

n (Yn+1) ⊂ Yn for every n ≥ 1;
(2) any x = (xn)n≥1 ∈ X satisfies xn ∈ Yn for all n ≥ 1.
For each n ≥ 1, let gn = (fn)|Yn : Yn → Yn and let π̃n+1

n = (πn+1
n )|Yn+1 : Yn+1 → Yn.

Then the inverse sequence of equivariant maps

π̃ = (π̃n+1
n : (Yn+1, gn+1) → (Yn, gn))n≥1

satisfies MLC(1).

Proof. For any n ≥ 1 and q ∈ Xn+1, since πn+1
n (q) ∈ πn+1

n (Xn+1) = X̂n by MLC(1)

of π (see Lemma 2.1), we have xn = πn+1
n (q) for some x = (xj )j≥1 ∈ X. Since

πn+1
n (q) = xn = πn+2

n (xn+2), by property (2), we obtain πn+1
n (q) ∈ πn+2

n (Yn+2),
implying πn+1

n (Xn+1) ⊂ πn+2
n (Yn+2). Then

πn+1
n (Yn+1) ⊂ πn+1

n (Xn+1) ⊂ πn+2
n (Yn+2) ⊂ πn+1

n (Yn+1),

therefore πn+1
n (Yn+1) = πn+2

n (Yn+2). Since n ≥ 1 is arbitrary, π̃ satisfies MLC(1).

4. Reduction of Theorem 1.2 to Lemma 1.3
The aim of this section is to prove the following lemma to reduce Theorem 1.2 to
Lemma 1.3.

LEMMA 4.1. Let f : X → X be a continuous map with the shadowing property. If
dim X = 0 and htop(f ) > 0, then there is C ∈ C(f ) such that f |C : C → C has the
shadowing property and satisfies htop(f |C) > 0.

A lemma is needed for the proof. It states that, for an inverse sequence of SFTs, we can
consider the inverse sequence of chain recurrent sets without losing MLC(1).

LEMMA 4.2. Let π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of

equivariant maps with MLC(1). Let (X, f ) = limπ (Xn, fn) and suppose that (Xn, fn)

is an SFT for each n ≥ 1. Let Yn = CR(fn), gn = (fn)|Yn : Yn → Yn, and π̃n+1
n =

(πn+1
n )|Yn+1 : Yn+1 → Yn for every n ≥ 1. Then the inverse sequence of equivariant maps

π̃ = (π̃n+1
n : (Yn+1, gn+1) → (Yn, gn))n≥1

satisfies MLC(1).
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Proof. Let n ≥ 1. Since Yn+1 = Per(fn+1) and πn+1
n (Per(fn+1)) ⊂ Per(fn),

πn+1
n (Yn+1) = πn+1

n (Per(fn+1)) ⊂ πn+1
n (Per(fn+1)) ⊂ πn+1

n (Yn+1) ∩ Per(fn).

By MLC(1) of π , πn+1
n (Yn+1) ⊂ πn+1

n (Xn+1) = πn+2
n (Xn+2); therefore, for any p ∈

πn+1
n (Yn+1) ∩ Per(fn), there is q ∈ Xn+2 such that p = πn+2

n (q). Then there is r ∈ Yn+2

such that

lim
k→∞ dn+2(f

k
n+2(q), f k

n+2(r)) = 0,

implying

lim
k→∞ dn(f

k
n (p), f k

n (πn+2
n (r))) = lim

k→∞ dn(f
k
n (πn+2

n (q)), f k
n (πn+2

n (r)))

= lim
k→∞ dn(π

n+2
n (f k

n+2(q)), πn+2
n (f k

n+2(r)))

= 0,

where dn, dn+2 are the metrics on Xn, Xn+2. Note that πn+2
n (r) ∈ πn+2

n (Yn+2). From

p ∈ Per(fn) and the fn-invariance of πn+2
n (Yn+2), it follows that p ∈ πn+2

n (Yn+2) =
πn+2

n (Yn+2). Since p ∈ πn+1
n (Yn+1) ∩ Per(fn) is arbitrary, we obtain

πn+1
n (Yn+1) ∩ Per(fn) ⊂ πn+2

n (Yn+2)

and so

πn+1
n (Yn+1) ⊂ πn+1

n (Yn+1) ∩ Per(fn) ⊂ πn+2
n (Yn+2) = πn+2

n (Yn+2).

Thus, πn+1
n (Yn+1) = πn+2

n (Yn+2), proving the lemma.

We now prove Lemma 4.1. The proof is based on Lemma 1.2 and by carefully choosing
an inverse sequence of chain components with MLC(1).

Proof of Lemma 4.1. By Lemmas 1.2 and 2.4, we may assume (X, f ) = limπ (Xn, fn),
where (Xn, fn), n ≥ 1, are SFTs, and

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1

is an inverse sequence of equivariant maps with MLC(1). Let Yn = CR(fn), gn =
(fn)|Yn : Yn → Yn, and π̃n+1

n = (πn+1
n )|Yn+1 : Yn+1 → Yn for every n ≥ 1. Then (Yn, gn),

n ≥ 1, are chain recurrent SFTs, and by Lemma 4.2,

π̃ = (π̃n+1
n : (Yn+1, gn+1) → (Yn, gn))n≥1

satisfies MLC(1). Letting (Y , g) = limπ̃ (Yn, gn) and

R = {x = (xn)n≥1 ∈ X : xn ∈ CR(fn), for all n ≥ 1},
we have R = CR(f ) by Lemma 3.1, and as in the proof of Lemma 3.1, the inclusion
i : Y → CR(f ) is a topological conjugacy i : (Y , g) → (CR(f ), f |CR(f )). By this, again
without loss of generality, we may assume that f and fn, n ≥ 1, are chain recurrent.

Since htop(f ) > 0, there is C† ∈ C(f ) such that htop(f |C†) > 0. A proof of this fact is
as follows. By the variational principle, there is an ergodic f -invariant Borel probability
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measure μ on X such that the measure-theoretical entropy hμ(f ) is positive. Since
f |supp(μ) : supp(μ) → supp(μ), the restriction of f to the support of μ, is transitive, there
is C† ∈ C(f ) such that supp(μ) ⊂ C†. By the variational principle again, we obtain

htop(f |C†) ≥ htop(f |supp(μ)) ≥ hμ(f |supp(μ)) = hμ(f ) > 0.

Then, by Lemma 3.2, there is C∗ = (Cn)n≥1 ∈ Cπ such that C† = [C∗]. Letting 
 =∏
n≥1 πn+1

n (Cn+1), a closed F-invariant subset of
∏

n≥1 Xn where F = ∏
n≥1 fn is the

product map, since C† ⊂ 
, we have

0 < htop(f |C†) = htop(F |C†) ≤ htop(F |
)

= htop

( ∏
n≥1

(fn)|πn+1
n (Cn+1)

)
=

∑
n≥1

htop((fn)|πn+1
n (Cn+1)

)

implying htop((fn)|πn+1
n (Cn+1)

) > 0 for some n ≥ 1.
Note that C(fm), m ≥ 1, are finite sets, and for any m ≥ 1 and D ∈ C(fm),

(fm)|D : D → D is transitive (see §2.4). Let us prove the following claim.

CLAIM. There is C′∗ = (C′
m)m≥n ∈ ∏

m≥n C(fm) with the following properties:
(1) C′

n = Cn;
(2) πn+1

n (Cn+1) ⊂ πn+1
n (C′

n+1);
(3) πm+1

m (C′
m+1) ⊂ C′

m for every m ≥ n;
(4) πm+1

m (C′
m+1) = πm+2

m (C′
m+2) for all m ≥ n.

Proof of the claim.

Step 1. Let C′
n = Cn. Take Dn+1 ∈ C(fn+1) such that

πn+1
n (Cn+1) ⊂ πn+1

n (Dn+1) ⊂ C′
n (P1)

and πn+1
n (Dn+1) is maximal among

{πn+1
n (En+1) : En+1 ∈ C(fn+1), πn+1

n (Cn+1) ⊂ πn+1
n (En+1) ⊂ C′

n}
with respect to the inclusion relation.

Step 2. Note that (fn)|πn+1
n (Dn+1)

is transitive, and take a transitive point p1 ∈
πn+1

n (Dn+1), that is, πn+1
n (Dn+1) = ω(p1, fn), the ω-limit set. Since

p1 ∈ πn+1
n (Dn+1) ⊂ πn+1

n (Xn+1) = πn+2
n (Xn+2),

we have p1 = πn+2
n (q1) for some q1 ∈ Xn+2. Take C′

n+1 ∈ C(fn+1) with πn+2
n+1 (q1) ∈

C′
n+1. Then choose Dn+2 ∈ C(fn+2) such that

πn+2
n+1 (q1) ∈ πn+2

n+1 (Dn+2) ⊂ C′
n+1 (P2)

and πn+2
n+1 (Dn+2) is maximal among

{πn+2
n+1 (En+2) : En+2 ∈ C(fn+2), πn+2

n+1 (q1) ∈ πn+2
n+1 (En+2) ⊂ C′

n+1}
with respect to the inclusion relation. By (P2), we have

p1 ∈ πn+2
n (Dn+2) ⊂ πn+1

n (C′
n+1),
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implying

πn+1
n (Dn+1) ⊂ πn+2

n (Dn+2) ⊂ πn+1
n (C′

n+1)

since πn+1
n (Dn+1) = ω(p1, fn), and πn+2

n (Dn+2) is fn-invariant. By (P1) and p1 ∈
πn+1

n (Dn+1), we see that πn+1
n (Cn+1) ⊂ πn+1

n (Dn+1) and p1 ∈ C′
n ∩ πn+1

n (C′
n+1); there-

fore,

πn+1
n (Cn+1) ⊂ πn+1

n (Dn+1) ⊂ πn+2
n (Dn+2) ⊂ πn+1

n (C′
n+1) ⊂ C′

n.

By the maximality of πn+1
n (Dn+1) in Step 1, we obtain

πn+1
n (Dn+1) = πn+2

n (Dn+2) = πn+1
n (C′

n+1). (Q1)

Step 3. Note that (fn+1)|πn+2
n+1 (Dn+2)

is transitive, and take a transitive point p2 ∈
πn+2

n+1 (Dn+2), that is, πn+2
n+1 (Dn+2) = ω(p2, fn+1). Since

p2 ∈ πn+2
n+1 (Dn+2) ⊂ πn+2

n+1 (Xn+2) = πn+3
n+1 (Xn+3),

we have p2 = πn+3
n+1 (q2) for some q2 ∈ Xn+3. Take C′

n+2 ∈ C(fn+2) with πn+3
n+2 (q2) ∈

C′
n+2. Then choose Dn+3 ∈ C(fn+3) such that

πn+3
n+2 (q2) ∈ πn+3

n+2 (Dn+3) ⊂ C′
n+2 (P3)

and πn+3
n+2 (Dn+3) is maximal among

{πn+3
n+2 (En+3) : En+3 ∈ C(fn+3), πn+3

n+2 (q2) ∈ πn+3
n+2 (En+3) ⊂ C′

n+2}
with respect to the inclusion relation. By (P3), we have

p2 ∈ πn+3
n+1 (Dn+3) ⊂ πn+2

n+1 (C′
n+2),

implying

πn+2
n+1 (Dn+2) ⊂ πn+3

n+1 (Dn+3) ⊂ πn+2
n+1 (C′

n+2)

since πn+2
n+1 (Dn+2) = ω(p2, fn+1), and πn+3

n+1 (Dn+3) is fn+1-invariant. By (P2) and
p2 ∈ πn+2

n+1 (Dn+2), we see that πn+2
n+1 (q1) ∈ πn+2

n+1 (Dn+2) and p2 ∈ C′
n+1 ∩ πn+2

n+1 (C′
n+2);

therefore,

πn+2
n+1 (q1) ∈ πn+2

n+1 (Dn+2) ⊂ πn+3
n+1 (Dn+3) ⊂ πn+2

n+1 (C′
n+2) ⊂ C′

n+1.

By the maximality of πn+2
n+1 (Dn+2) in Step 2, we obtain

πn+2
n+1 (Dn+2) = πn+3

n+1 (Dn+3) = πn+2
n+1 (C′

n+2). (Q2)

Assertions (Q1) and (Q2) yield πn+1
n (C′

n+1) = πn+2
n (C′

n+2).

Step 4. Note that (fn+2)|πn+3
n+2 (Dn+3)

is transitive, and take a transitive point p3 ∈
πn+3

n+2 (Dn+3), that is, πn+3
n+2 (Dn+3) = ω(p3, fn+2). Since

p3 ∈ πn+3
n+2 (Dn+3) ⊂ πn+3

n+2 (Xn+3) = πn+4
n+2 (Xn+4),
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we have p3 = πn+4
n+2 (q3) for some q3 ∈ Xn+4. Take C′

n+3 ∈ C(fn+3) with πn+4
n+3 (q3) ∈

C′
n+3. Then choose Dn+4 ∈ C(fn+4) such that

πn+4
n+3 (q3) ∈ πn+4

n+3 (Dn+4) ⊂ C′
n+3 (P4)

and πn+4
n+3 (Dn+4) is maximal among

{πn+4
n+3 (En+4) : En+4 ∈ C(fn+4), πn+4

n+3 (q3) ∈ πn+4
n+3 (En+4) ⊂ C′

n+3}
with respect to the inclusion relation. By (P4), we have

p3 ∈ πn+4
n+2 (Dn+4) ⊂ πn+3

n+2 (C′
n+3),

implying

πn+3
n+2 (Dn+3) ⊂ πn+4

n+2 (Dn+4) ⊂ πn+3
n+2 (C′

n+3)

since πn+3
n+2 (Dn+3) = ω(p3, fn+2), and πn+4

n+2 (Dn+4) is fn+2-invariant. By (P3) and
p3 ∈ πn+3

n+2 (Dn+3), we see that πn+3
n+2 (q2) ∈ πn+3

n+2 (Dn+3) and p3 ∈ C′
n+2 ∩ πn+3

n+2 (C′
n+3);

therefore,

πn+3
n+2 (q2) ∈ πn+3

n+2 (Dn+3) ⊂ πn+4
n+2 (Dn+4) ⊂ πn+3

n+2 (C′
n+3) ⊂ C′

n+2.

By the maximality of πn+3
n+2 (Dn+3) in Step 3, we obtain

πn+3
n+2 (Dn+3) = πn+4

n+2 (Dn+4) = πn+3
n+2 (C′

n+3). (Q3)

Assertions (Q2) and (Q3) yield πn+2
n+1 (C′

n+2) = πn+3
n+1 (C′

n+3).

Continuing inductively, we obtain a sequence C ′∗ = (C′
m)m≥n ∈ ∏

m≥n C(fm). Then
properties (1) and (2) are ensured in Steps 1 and 2. For any k ≥ 0, πn+k+1

n+k (C′
n+k+1) ⊂

C′
n+k and πn+k+1

n+k (C′
n+k+1) = πn+k+2

n+k (C′
n+k+2) are established in Steps k + 2 and

k + 3, respectively. Thus, C′∗ satisfies the required properties, and so the claim has been
proved.

We continue the proof of Lemma 4.1. Define C′′∗ = (C′′
j )j≥1 ∈ ∏

j≥1 C(fj ) by

C′′
j =

{
Cj if 1 ≤ j < n,

C′
j if n ≤ j .

By properties (1) and (3) in the claim, we see that C′′∗ ∈ Cπ . By Lemma 3.2, letting C =
[C′′∗ ], we obtain C ∈ C(f ). Let

π ′′ = ((π
j+1
j )|C′′

j+1
: (C′′

j+1, (fj+1)|C′′
j+1

) → (C′′
j , (fj )|C′′

j
))j≥1

and

π ′ = ((πm+1
m )|C′

m+1
: (C′

m+1, (fm+1)|C′
m+1

) → (C′
m, (fm)|C′

m
))m≥n.

Then (C, f |C) (respectively, limπ ′′(C′′
j , (fj )|C′′

j
)) is topologically conjugate to

lim
π ′′ (C

′′
j , (fj )|C′′

j
)
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(respectively, limπ ′(C′
m, (fm)|C′

m
)), so (C, f |C) is topologically conjugate to

lim
π ′ (C′

m, (fm)|C′
m
).

Let (Y , g) = limπ ′(C′
m, (fm)|C′

m
). By property (4) in the claim, π ′ satisfies MLC(1).

Since (fm)|C′
m

has the shadowing property for each m ≥ 1, due to Lemma 1.1, g has the
shadowing property. Let us prove htop(g) > 0. Again by MLC(1) of π ′, we have Ĉ′

n =
πn+1

n (C′
n+1) (see Lemma 2.1). Then a map φ : Y → πn+1

n (C′
n+1), defined by φ(y) = yn

for all y = (ym)m≥n ∈ Y , gives a factor map

φ : (Y , g) → (πn+1
n (C′

n+1), (fn)|πn+1
n (C′

n+1)
).

Property (2) in the claim ensures that πn+1
n (Cn+1) is a closed fn-invariant subset of

πn+1
n (C′

n+1), therefore,

htop(g) ≥ htop((fn)|πn+1
n (C′

n+1)
) ≥ htop((fn)|πn+1

n (Cn+1)
) > 0.

Thus, f |C has the shadowing property and satisfies htop(f |C) > 0, completing the proof
of the lemma.

5. Proof of Lemma 1.3
In this section we prove Lemma 1.3. Let

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1

be an inverse sequence of equivariant maps with MLC(1) and suppose that (Xn, fn) is a
transitive SFT for each n ≥ 1. For every n ≥ 1, note thatD(fn) is a finite set, and let mn =
|D(fn)|. Then mn|mn+1 for all n ≥ 1, and for any n ≥ 1 and E ∈ D(fn), (f

mn
n )|E : E →

E is mixing. The proof of the first lemma is similar to that of Lemma 4.1.

LEMMA 5.1. There is D∗ = (Dn)n≥1 ∈ Dπ such that

π̃ = ((πn+1
n )|Dn+1 : Dn+1 → Dn)n≥1

satisfies MLC(1).

Proof. We argue as in the proof of Lemma 4.1.

Step 1. Fix D1 ∈ D(f1) with π2
1 (F2) ⊂ D1 for some F2 ∈ D(f2). Take E2 ∈ D(f2) such

that

π2
1 (E2) ⊂ D1 (P1)

and π2
1 (E2) is maximal among

{π2
1 (F2) : F2 ∈ D(f2), π2

1 (F2) ⊂ D1}
with respect to the inclusion relation.

Step 2. Note that (f
m2
1 )|π2

1 (E2)
is mixing, so (f

m3
1 )|π2

1 (E2)
is transitive, and take a transitive

point p1 ∈ π2
1 (E2), that is, π2

1 (E2) = ω(p1, f
m3
1 ), the ω-limit set. Since

p1 ∈ π2
1 (E2) ⊂ π2

1 (X2) = π3
1 (X3),
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we have p1 = π3
1 (q1) for some q1 ∈ X3. Take D2 ∈ D(f2) with π3

2 (q1) ∈ D2. Then
choose E3 ∈ D(f3) such that

π3
2 (q1) ∈ π3

2 (E3) ⊂ D2 (P2)

and π3
2 (E3) is maximal among

{π3
2 (F3) : F3 ∈ D(f3), π3

2 (q1) ∈ π3
2 (F3) ⊂ D2}

with respect to the inclusion relation. By (P2), we have

p1 ∈ π3
1 (E3) ⊂ π2

1 (D2),

implying

π2
1 (E2) ⊂ π3

1 (E3) ⊂ π2
1 (D2)

since π2
1 (E2) = ω(p1, f

m3
1 ), and π3

1 (E3) is f
m3
1 -invariant. By (P1) and p1 ∈ π2

1 (E2), we
see that p1 ∈ D1 ∩ π2

1 (D2); therefore,

π2
1 (E2) ⊂ π3

1 (E3) ⊂ π2
1 (D2) ⊂ D1.

By the maximality of π2
1 (E2) in Step 1, we obtain

π2
1 (E2) = π3

1 (E3) = π2
1 (D2). (Q1)

Step 3. Note that (f
m3
2 )|π3

2 (E3)
is mixing, so (f

m4
2 )|π3

2 (E3)
is transitive, and take a transitive

point p2 ∈ π3
2 (E3), that is, π3

2 (E3) = ω(p2, f
m4
2 ). Since

p2 ∈ π3
2 (E3) ⊂ π3

2 (X3) = π4
2 (X4),

we have p2 = π4
2 (q2) for some q2 ∈ X4. Take D3 ∈ D(f3) with π4

3 (q2) ∈ D3. Then
choose E4 ∈ D(f4) such that

π4
3 (q2) ∈ π4

3 (E4) ⊂ D3 (P3)

and π4
3 (E4) is maximal among

{π4
3 (F4) : F4 ∈ D(f4), π4

3 (q2) ∈ π4
3 (F4) ⊂ D3}

with respect to the inclusion relation. By (P3), we have

p2 ∈ π4
2 (E4) ⊂ π3

2 (D3),

implying

π3
2 (E3) ⊂ π4

2 (E4) ⊂ π3
2 (D3)

since π3
2 (E3) = ω(p2, f

m4
2 ), and π4

2 (E4) is f
m4
2 -invariant. By (P2) and p2 ∈ π3

2 (E3), we
see that π3

2 (q1) ∈ π3
2 (E3) and p2 ∈ D2 ∩ π3

2 (D3); therefore,

π3
2 (q1) ∈ π3

2 (E3) ⊂ π4
2 (E4) ⊂ π3

2 (D3) ⊂ D2.
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By the maximality of π3
2 (E3) in Step 2, we obtain

π3
2 (E3) = π4

2 (E4) = π3
2 (D3). (Q2)

Assertions (Q1) and (Q2) yield π2
1 (D2) = π3

1 (D3).

Step 4. Note that (f
m4
3 )|π4

3 (E4)
is mixing, so (f

m5
3 )|π4

3 (E4)
is transitive, and take a transitive

point p3 ∈ π4
3 (E4), that is, π4

3 (E4) = ω(p3, f
m5
3 ). Since

p3 ∈ π4
3 (E4) ⊂ π4

3 (X4) = π5
3 (X5),

we have p3 = π5
3 (q3) for some q3 ∈ X5. Take D4 ∈ D(f4) with π5

4 (q3) ∈ D4. Then
choose E5 ∈ D(f5) such that

π5
4 (q3) ∈ π5

4 (E5) ⊂ D4 (P4)

and π5
4 (E5) is maximal among

{π5
4 (F5) : F5 ∈ D(f5), π5

4 (q3) ∈ π5
4 (F5) ⊂ D4}

with respect to the inclusion relation. By (P4), we have

p3 ∈ π5
3 (E5) ⊂ π4

3 (D4),

implying

π4
3 (E4) ⊂ π5

3 (E5) ⊂ π4
3 (D4)

since π4
3 (E4) = ω(p3, f

m5
3 ), and π5

3 (E5) is f
m5
3 -invariant. By (P3) and p3 ∈ π4

3 (E4), we
see that π4

3 (q2) ∈ π4
3 (E4) and p3 ∈ D3 ∩ π4

3 (D4); therefore,

π4
3 (q2) ∈ π4

3 (E4) ⊂ π5
3 (E5) ⊂ π4

3 (D4) ⊂ D3.

By the maximality of π4
3 (E4) in Step 3, we obtain

π4
3 (E4) = π5

3 (E5) = π4
3 (D4). (Q3)

Assertions (Q2) and (Q3) yield π3
2 (D3) = π4

2 (D4).

Continuing inductively, we obtain a sequence D∗ = (Dn)n≥1 ∈ ∏
n≥1 D(fn). For any

n ≥ 1, πn+1
n (Dn+1) ⊂ Dn and πn+1

n (Dn+1) = πn+2
n (Dn+2) are established in Steps n + 1

and n + 2, respectively. Thus, D∗ ∈ Dπ , and

π̃ = ((πn+1
n )|Dn+1 : Dn+1 → Dn)n≥1

satisfies MLC(1), completing the proof.

The next lemma relates the previous lemma to a method developed in [15]. Let
π = (πn+1

n : (Xn+1, fn+1) → (Xn, fn))n≥1 be an inverse sequence of equivariant maps
with MLC(1) and let (X, f ) = limπ (Xn, fn). Suppose that (Xn, fn), n ≥ 1, are transitive
SFTs, and for D∗ = (Dn)n≥1 ∈ Dπ ,

π̃ = ((πn+1
n )|Dn+1 : Dn+1 → Dn)n≥1
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satisfies MLC(1). By Lemma 3.3, letting D = [D∗], we have D ∈ D(f ). Let d, dn, n ≥ 1,
be the metrics on X, Xn.

LEMMA 5.2. For any ε > 0, there is δ > 0 such that every δ-pseudo-orbit (x(i))i≥0 of f
with x(0) ∈ D is ε-shadowed by some x ∈ D.

Proof. Fix any N > 0 and ε′ > 0. Note that fN+1 : XN+1 → XN+1 has the shadowing
property, and D(fN+1) is a clopen partition of XN+1; therefore, there is δ′ > 0 such that,
for any EN+1 ∈ DN+1, every δ′-pseudo-orbit (y

(i)
N+1)i≥0 of fN+1 with y

(0)
N+1 ∈ EN+1 is

ε′-shadowed by some yN+1 ∈ EN+1.
If δ > 0 is small enough, then, for every δ-pseudo-orbit ξ = (x(i))i≥0 of f with

x(0) ∈ D, ξN+1 = (x
(i)
N+1)i≥0 is a δ′-pseudo-orbit of fN+1 with x

(0)
N+1 ∈ DN+1, which is

ε′-shadowed by some xN+1 ∈ DN+1. Since

πN+1
N (xN+1) ∈ πN+1

N (DN+1) = D̂N

by MLC(1) of π̃ (see Lemma 2.1), there is x = (xn)n≥1 ∈ D = [D∗] such that xn =
πN+1

n (xN+1) for each 1 ≤ n ≤ N . Then, for any i ≥ 0 and 1 ≤ n ≤ N , we have

dn(f
i(x)n, x(i)

n ) = dn(f
i
n(xn), x(i)

n )

= dn(f
i
n(πN+1

n (xN+1)), πN+1
n (x

(i)
N+1))

= dn(π
N+1
n (f i

N+1(xN+1)), πN+1
n (x

(i)
N+1))

with dN+1(f
i
N+1(xN+1), x

(i)
N+1) ≤ ε′. Therefore, for every ε > 0, if N is large enough,

and then ε′ is sufficiently small, we have d(f i(x), x(i)) ≤ ε for all i ≥ 0, that is, ξ is
ε-shadowed by x ∈ D. Since ξ is arbitrary, the lemma has been proved.

For the proof of Lemma 1.3, we need a sequence of lemmas. Let f : X → X be a chain
transitive continuous map. For ε, δ > 0, we denote by Dε,δ(f ) the set of D ∈ D(f ) for
which every δ-pseudo-orbit (xi)i≥0 of f with x0 ∈ D is ε-shadowed by some x ∈ D. We
set

Dsh(f ) =
⋂
ε>0

⋃
δ>0

Dε,δ(f ).

LEMMA 5.3. Let f : X → X be a chain transitive continuous map and let ε, δ > 0. For
any D ∈ D(f ), if D ∈ Dε,δ(f ), then f (D) ∈ Dε,δ(f ).

Proof. Let D ∈ Dε,δ(f ). For any δ-pseudo-orbit ξ = (xi)i≥0 of f with x0 ∈ f (D), take
y ∈ D with f (y) = x0 and consider

(y, x0, x1, x2, . . .),

a δ-pseudo-orbit of f, which is ε-shadowed by x ∈ D. Then ξ is ε-shadowed by f (x) ∈
f (D). Since ξ is arbitrary, we obtain f (D) ∈ Dε,δ(f ), proving the lemma.

LEMMA 5.4. Let f : X → X be a chain transitive continuous map and let ε, γ > 0. If
Dsh(f ) ∩Dε,γ (f ) 
= ∅, thenD(f ) = Dε,δ(f ) holds for every 0 < δ < γ .
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Proof. Fix D0 ∈ Dsh(f ) ∩Dε,γ (f ), x ∈ D0, and a sequence 0 < ε1 > ε2 > · · · → 0.
Since D0 ∈ Dsh(f ), there is a sequence 0 < δ1 > δ2 > · · · → 0 such that D0 ∈ Dεn,δn(f )

for every n ≥ 1. Given any D ∈ D(f ) and any δ-pseudo-orbit ξ = (xi)i≥0 of f with
x0 ∈ D, since f is chain transitive, for every n ≥ 1, there is a δn-chain (x

(n)
i )

kn

i=0 of f with
x

(n)
0 = x and x

(n)
kn

= x0. Then, for each n ≥ 1, because D0 ∈ Dεn,δn(f ) and x
(n)
0 = x ∈

D0, we have xn ∈ D0 with d(f i(xn), x
(n)
i ) ≤ εn for all 0 ≤ i ≤ kn. Since

d(f kn(xn), x0) = d(f kn(xn), x
(n)
kn

) ≤ εn,

n ≥ 1, limn→∞ εn = 0, and δ < γ , there exists N > 0 such that for all n ≥ N ,

ξn = (f kn(xn), x1, x2, . . .)

is a γ -pseudo-orbit of f with f kn(xn) ∈ f kn(D0). For any n ≥ N , because D0 ∈ Dε,γ (f ),
by Lemma 5.3, we have f kn(D0) ∈ Dε,γ (f ), so ξn is ε-shadowed by some yn ∈ f kn(D0).
Taking a sequence N ≤ n1 < n2 < · · · such that limj→∞ ynj

= y for some y ∈ X, we
easily see that ξ is ε-shadowed by y. Note that, for each n ≥ N , {f kn(xn), yn} ⊂ f kn(D0)

and so f kn(xn) ∼f yn. Because ∼f is closed in X2, by

lim
j→∞(f

knj (xnj
), ynj

) = (x0, y),

we obtain x0 ∼f y and thus y ∈ D. In other words, ξ is ε-shadowed by y ∈ D. Since ξ

and then D ∈ D(f ) are arbitrary, we conclude thatD(f ) = Dε,δ(f ).

As a consequence of Lemma 5.4, we obtain the following corollary.

COROLLARY 5.1. For any chain transitive continuous map f : X → X, if Dsh(f ) 
= ∅,
thenD(f ) = Dsh(f ).

The next lemma is needed for the proof of Lemma 5.6.

LEMMA 5.5. Let f : X → X be a chain transitive continuous map and let D ∈ D(f ). If,
for any x ∈ D and ε > 0, there is δ(x, ε) > 0 such that every δ(x, ε)-pseudo-orbit (xi)i≥0

of f with x0 = x is ε-shadowed by some y ∈ D, then D ∈ Dsh(f ).

Proof. Fix ε > 0 and, for any x ∈ D, take δ(x, ε/2) > 0 as in the assumption. Then, for
each x ∈ D, there is 0 < δ(x) < ε/2 such that, for every δ(x)-pseudo-orbit ξ = (xi)i≥0 of
f with d(x, x0) < δ(x),

ξ ′ = (x, x1, x2, x3, . . .)

is a δ(x, ε/2)-pseudo-orbit of f, ε/2-shadowed by some y ∈ D. This clearly implies that ξ

is ε-shadowed by y ∈ D. Take a finite subset F ⊂ D such that

D ⊂
⋃
x∈F

Bδ(x)(x)

where Bδ(x)(x) denotes the δ(x)-ball. Let δ = min{δ(x) : x ∈ F }. It follows that every
δ-pseudo-orbit (xi)i≥0 of f with x0 ∈ D is a δ(x)-pseudo-orbit of f with x0 ∈ Bδ(x)(x)
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for some x ∈ F , and so ε-shadowed by some y ∈ D. Since ε > 0 is arbitrary, we obtain
D ∈ Dsh(f ), proving the lemma.

LEMMA 5.6. Let f : X → X be a chain transitive continuous map with the shadowing
property. Let Y be a compact metric space and let g : Y → Y be a chain transitive
continuous map. If there is a factor map π : (Y , g) → (X, f ), and if Dsh(g) 
= ∅, then
Dsh(f ) 
= ∅.

Proof. Fix D ∈ D(f ). By Lemma 5.5, it suffices to show that, for any x ∈ D and ε > 0,
there exists δ > 0 such that every δ-pseudo-orbit (xi)i≥0 of f with x0 = x is ε-shadowed
by some q ∈ D, because this implies D ∈ Dsh(f ).

Let dY denote the metric on Y. For any ε′ > 0, Lemma 5.4 with Dsh(g) 
= ∅ implies
D(g) = Dε′,δ′

(g) for some δ′ > 0. For any γ > 0, take 0 < ε′′ < ε/2 such that d(x, y) ≤
ε′′ implies

π−1(y) ⊂ Bγ (π−1(x)) = {z ∈ Y : dY (z, π−1(x)) < γ }
for all y ∈ X. Since f has the shadowing property, there is δ > 0 such that every
δ-pseudo-orbit ξ = (xi)i≥0 of f with x0 = x is ε′′-shadowed by some y ∈ X. Take z ∈
π−1(y) and note that d(x, y) = d(x0, y) ≤ ε′′. By the choice of ε′′, we obtain w ∈ π−1(x)

such that dY (z, w) < γ . If γ is sufficiently small, then

ξ ′ = (yi)i≥0 = (w, g(z), g2(z), g3(z), . . .)

is a δ′-pseudo-orbit of g. By D(g) = Dε′,δ′
(g), ξ ′ is ε′-shadowed by some p ∈ Y with

w ∼g p. Here, w ∼g p implies π(w) ∼f π(p), so, putting q = π(p), we have x ∼f q,
that is, q ∈ D. Note that

d(q, x0) = d(q, x) = d(π(p), π(w)) = d(π(p), π(y0)),

and

d(f i(q), xi) ≤ d(f i(q), f i(y)) + d(f i(y), xi)

= d(f i(π(p)), f i(π(z))) + d(f i(y), xi)

= d(π(gi(p)), π(gi(z))) + d(f i(y), xi)

= d(π(gi(p)), π(yi)) + d(f i(y), xi)

≤ d(π(gi(p)), π(yi)) + ε′′

< d(π(gi(p)), π(yi)) + ε/2

for each i ≥ 1. Since ξ ′ is ε′-shadowed by p, we have dY (gi(p), yi) ≤ ε′, i ≥ 0, so if ε′ is
sufficiently small, then d(f i(q), xi) ≤ ε for all i ≥ 0, that is, ξ is ε-shadowed by q ∈ D.
Since ξ is arbitrary, this shows the existence of δ, and thus the lemma has been proved.

For any chain transitive continuous map f : X → X, we denote by T (f ) the set of
transitive points for f :

T (f ) = {x ∈ X : X = ω(x, f )}
where ω(·, f ) denotes the ω-limit set.
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LEMMA 5.7. Let f : X → X be a chain transitive continuous map. For any D ∈ D(f ), if
D ∈ Dsh(f ), then D ∩ T (f ) is a dense Gδ-subset of D.

Proof. Let {Un : n ≥ 1} be a countable basis for the topology of X. Then

D ∩ T (f ) =
⋂
n≥1

⋂
j≥0

[
D ∩

⋃
k≥j

f −k(Un)

]
,

a Gδ-subset of D. For any n ≥ 1, take pn ∈ Un and εn > 0 such that

Bεn(pn) = {y ∈ X : d(pn, y) < εn} ⊂ Un.

Let n ≥ 1 and j ≥ 0. For any x ∈ D and 0 < ε < εn, since D ∈ Dsh(f ), we have D ∈
Dε,δ(f ) for some δ > 0. Then the chain transitivity of f gives a δ-chain (xi)

k
i=0 of f with

x0 = x, xk = pn, and also k ≥ j . By x ∈ D and D ∈ Dε,δ(f ), we obtain d(f i(y), xi) ≤
ε for all 0 ≤ i ≤ k for some y ∈ D. Note that d(y, x) = d(y, x0) ≤ ε, d(f k(y), pn) =
d(f k(y), xk) ≤ ε < εn, and so f k(y) ∈ Un, implying

y ∈ D ∩
⋃
k≥j

f −k(Un).

Since x ∈ D and 0 < ε < εn are arbitrary, this shows that

D ∩
⋃
k≥j

f −k(Un)

is dense in D. Since n ≥ 1 and j ≥ 0 are arbitrary, we conclude that D ∩ T (f ) is a dense
Gδ-subset of D, completing the proof.

To prove Lemma 1.3, we use the method in [15]. The next lemma is a modification of
[15, Lemma 2.6].

LEMMA 5.8. Let f : X → X be a chain transitive continuous map and let D ∈ D(f ). If
D ∈ Dsh(f ), then, for any y, z ∈ D and ε > 0, there is w ∈ D such that d(z, w) ≤ ε and
lim supk→∞ d(f k(y), f k(w)) ≤ ε.

Proof. Given any ε > 0, take δ > 0 so small that D ∈ Dε,δ(f ). For this δ, choose N > 0
as in property (3) of ∼f ,δ (see §2.2.3). Note that y, z ∈ D implies y ∼f z and so y ∼f ,δ z.
Since y ∼f ,δ f mN(y), we have z ∼f ,δ f mN(y). Then the choice of N gives a δ-chain
α = (yi)

mN
i=0 of f with y0 = z and ymN = f mN(y). Let

β = (f mN(y), f mN+1(y), . . .)

and ξ = αβ = (xi)i≥0. Then ξ is a δ-pseudo-orbit of f with x0 = z ∈ D, so is ε-shadowed
by some w ∈ D. Note that d(z, w) = d(x0, w) ≤ ε. Also, we have

d(f i(y), f i(w)) = d(xi , f i(w)) ≤ ε

for every i ≥ mN , so lim supk→∞ d(f k(y), f k(w)) ≤ ε. This completes the proof.
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Let f : X → X be a continuous map. For n ≥ 2 and r > 0, we say that an n-tuple
(x1, x2, . . . , xn) ∈ Xn is r-distal if

inf
k≥0

min
1≤i<j≤n

d(f k(xi), f k(xj )) ≥ r .

Then the following lemma is a consequence of [15, Lemmas 2.4 and 2.5].

LEMMA 5.9. Suppose that a continuous map f : X → X is chain transitive and has
the shadowing property. If htop(f ) > 0, then, for any n ≥ 2, there is rn > 0 such
that, for every D ∈ D(f ), there is an rn-distal n-tuple (x1, x2, . . . , xn) ∈ Xn with
{x1, x2, . . . , xn} ⊂ D.

We recall a simplified version of Mycielski’s theorem [27, Theorem 1]. A topological
space is said to be perfect if it has no isolated point.

LEMMA 5.10. Let X be a perfect complete metric space. If Rn is a residual subset of
Xn for each n ≥ 2, then there is a Mycielski set S which is dense in X and satisfies
(x1, x2, . . . , xn) ∈ Rn for any n ≥ 2 and distinct x1, x2, . . . , xn ∈ S.

Finally, we complete the proof of Lemma 1.3.

Proof of Lemma 1.3. Due to Lemmas 1.2 and 2.4, (Y , g) is topologically conjugate to
(Z, h) = limπ (Xj , fj ) where (Xj , fj ), j ≥ 1, are SFTs, and

π = (π
j+1
j : (Xj+1, fj+1) → (Xj , fj ))j≥1

is an inverse sequence of equivariant maps with MLC(1). Since g is transitive and so is h,
we have Z ∈ C(h), so by Lemma 3.2, Z = [C∗] for some C∗ = (Cj )j≥1 ∈ Cπ . Then any
z = (xj )j≥1 ∈ Z satisfies xj ∈ Cj for all j ≥ 1, and (Z, h) is topologically conjugate to
limπ ′(Cj , (fj )|Cj

), where

π ′ = ((π
j+1
j )|Cj+1 : (Cj+1, (fj+1)|Cj+1) → (Cj , (fj )|Cj

))j≥1.

Note that (Cj , (fj )|Cj
), j ≥ 1, are transitive SFTs, and by Lemma 3.4, π ′ satisfies

MLC(1); therefore, without loss of generality, we may assume that fj is transitive for
every j ≥ 1. Then, by Lemma 5.1, there is D∗ = (Dj )j≥1 ∈ Dπ such that

π̃ = ((π
j+1
j )|Dj+1 : Dj+1 → Dj)j≥1

satisfies MLC(1). Letting E = [D∗] ∈ D(h), by Lemma 5.2, we see that E ∈ Dsh(h),
which implies Dsh(h) 
= ∅ and so Dsh(g) 
= ∅. From Lemma 5.6 and Corollary 5.1,
it follows that D(f ) = Dsh(f ). For any D ∈ D(f ), since D ∈ Dsh(f ), D satisfies the
conclusions of Lemmas 5.7 and 5.8. Note that the conclusion of Lemma 5.9 is also
satisfied. Similarly to the proof of [15, Theorem 1.1], it can be shown that there exists
a sequence of positive numbers (δn)n≥2 for which

Dn ∩ [T (f )n ∩ DC1δn
n (X, f )]
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is a residual subset of Dn for all D ∈ D(f ) and n ≥ 2. By Lemma 5.10, we conclude
that every D ∈ D(f ) contains a dense Mycielski subset S which is included in T (f ) and
distributionally n-δn-scrambled for all n ≥ 2, completing the proof.

6. A remark on the chain components under shadowing
Given any continuous map f : X → X, C(f ) can be seen as a quotient space of CR(f )

with respect to the closed (f × f )-invariant equivalence relation ↔f in CR(f )2. Then
C(f ) = CR(f )/ ↔f is a compact metric space.

In the case of dim X = 0, if f has the shadowing property, then by Lemmas 1.2 and
2.4, (X, f ) is topologically conjugate to limπ (Xn, fn), where (Xn, fn), n ≥ 1, are SFTs,
and

π = (πn+1
n : (Xn+1, fn+1) → (Xn, fn))n≥1

is an inverse sequence of equivariant maps with MLC(1). Without loss of generality, we
consider the case where (X, f ) = limπ (Xn, fn). For any C ∈ C(f ), by Lemma 3.2, we
have C = [C∗] for some C∗ = (Cn)n≥1 ∈ Cπ . As in the proof of Lemma 4.1, it can be
shown that for each N > 0, there is C′∗ = (C′

m)m≥N ∈ ∏
m≥N C(fm) with the following

properties:
(1) C′

N = CN ;
(2) πm+1

m (C′
m+1) ⊂ C′

m for every m ≥ N ;
(3) πm+1

m (C′
m+1) = πm+2

m (C′
m+2) for all m ≥ N .

Define C′′∗ = (C′′
n)n≥1 ∈ ∏

n≥1 C(fn) by

C′′
n =

{
Cn if 1 ≤ n < N ,

C′
n if N ≤ n.

Properties (1) and (2) ensure C′′∗ ∈ Cπ . By Lemma 3.2, letting C′′ = [C′′∗ ], we obtain
C′′ ∈ C(f ), and by property (3), similarly to the proof of Lemma 4.1, it can be seen that
f |C′′ : C′′ → C′′ has the shadowing property. Note that for any neighborhood U of C in
CR(f ), by property (1) above, if N is sufficiently large, then C ′′ ⊂ U . Thus, letting

Csh(f ) = {C ∈ C(f ) : f |C has the shadowing property},
we conclude that Csh(f ) is dense in C(f ). In other words, we obtain the following theorem.

THEOREM 6.1. Let f : X → X be a continuous map with the shadowing property. If
dim X = 0, then C(f ) = Csh(f ).

This theorem gives a positive answer to a question by Moothathu [26] in the
zero-dimensional case. Note that, for any C ∈ Csh(f ), by the shadowing property of
f |C , we have C = M(f |C), where M(f |C) denotes the set of minimal points for f |C (see
[26] for details).

As a complement to Theorem 6.1, we give an example of a continuous map f : X → X

with the following properties:
(1) X is a Cantor space;
(2) f has the shadowing property;
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(3) C(f ) is a Cantor space;
(4) Csh(f ) is a countable set and so is a meager subset of C(f ).

Example 6.1. For any closed interval I = [a, b] and c ∈ (0, 1/2), let Î = {a, b}, I
(0)
c =

[a, a + c(b − a)], and I
(1)
c = [b − c(b − a), b]. Let (cj )j≥1 be a sequence of positive

numbers with 1/2 > c1 > c2 > · · · . For any s = (sj )j≥1 ∈ {0, 1}N, let

i(s) =
⋂
j≥0

I (s, j),

where I (s, j) is defined by I (s, 0) = [0, 1], and I (s, j + 1) = I (s, j)
(sj+1)
cj+1 for every

j ≥ 0. Let

C = {i(s) : s ∈ {0, 1}N} ⊂ [0, 1]

and note that i : {0, 1}N → C is a homeomorphism, so C is a Cantor space. For any j ≥ 1,
let

Îj =
⋃

s∈{0,1}N
[I (s, j)]̂

and note that Î1 ⊂ Î2 ⊂ · · · . Also, let A1 = Î1, Aj+1 = Îj+1 \ Îj , j ≥ 1, and

A =
⊔
j≥1

Aj ⊂ C.

Let σ : {0, 1}N → {0, 1}N be the shift map. For each k ≥ 1, define

�k = {x = (xi)i≥1 ∈ {0, 1}N : for all i ≥ 1, for all j ∈ {i + 1, . . . , i + k},
xi = 1 ⇒ xj = 0},

which is a mixing SFT, so σ |�k
: �k → �k has the shadowing property. Note that �1 ⊃

�2 ⊃ · · · and consider

�∞ =
⋂
k≥1

�k = {0∞, 10∞} ∪ {0m10∞ : m ≥ 1}.

Then it is easily seen that σ |�∞ : �∞ → �∞ does not have the shadowing property.
Let �̂k = i(�k), k ≥ 1, and �̂∞ = i(�∞); here, i : {0, 1}N → C is the homeomorphism
defined above. Let

X = [(C \ A) × �̂∞] �
⊔
k≥1

[Ak × �̂k],

which is a perfect compact subset of C × C and so is a Cantor space.
Let σ̂ = i ◦ σ ◦ i−1 : C → C and

f = (idC × σ̂ )|X : X → X.

To ensure the shadowing property of f, we define a sequence of positive numbers (cj )j≥1

with 1/2 > c1 > c2 > · · · as follows. Fix a sequence of positive numbers (εk)k≥1 with
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limk→∞ εk = 0. Denote by π : X → C the projection onto the first coordinate. Let

Bk =
k⊔

j=1

Aj ,

k ≥ 1. For each k ≥ 1, since π−1(Bk) is a finite disjoint union of SFTs,

f |π−1(Bk)
: π−1(Bk) → π−1(Bk)

has the shadowing property, implying the existence of δ′
k > 0 such that every

δ′
k-pseudo-orbit (xi)i≥0 of f |π−1(Bk)

is εk/2-shadowed by some x ∈ π−1(Bk). Fix any
c1 ∈ (0, 1/2) and assume that ck , k ≥ 1, is given. For any δk ∈ (0, εk/2), if ck+1 ∈ (0, ck)

is small enough, then X is contained in the δk-neighborhood of π−1(Bk). Then, for every
δk-pseudo-orbit (yi)i≥0 of f, we have

d(xi , yi) = inf{d(yi , zi) : zi ∈ π−1(Bk)} ≤ δk

for all i ≥ 0 for some xi ∈ π−1(Bk). Since

d(f (xi), xi+1) ≤ d(f (xi), f (yi)) + d(f (yi), yi+1) + d(yi+1, xi+1)

for every i ≥ 0, if δk is small enough, then (xi)i≥0 is a δ′
k-pseudo-orbit of f |π−1(Bk)

,
εk/2-shadowed by some x ∈ π−1(Bk). This implies

d(f i(x), yi) ≤ d(f i(x), xi) + d(xi , yi) ≤ εk/2 + εk/2 = εk

for all i ≥ 0, that is, (yi)i≥0 is εk-shadowed by x. By defining (cj )j≥1 in this way, we
conclude that f has the shadowing property.

Note that X = CR(f ) and

Csh(f ) = {π−1(u) : u ∈ A},
which is a countable set. It remains to show that C(f ) is a Cantor space. Let π↔f

: X →
C(f ) be the quotient map. For any x, y ∈ X, we easily see that x ↔f y if and only if
π(x) = π(y). This implies that there is a continuous map h : C(f ) → C with π = h ◦
π↔f

, which is bijective and so is a homeomorphism. Thus, C(f ) is a Cantor space.
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