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1. Introduction. Many authors have investigated the behaviour of the elements of
finite order of a group G when finiteness conditions are imposed on the automorphism
group Aut G of G. The first result was obtained in 1955 by Baer [1], who proved that a
torsion group with finitely many automorphisms is finite. This theorem was generalized by
Nagrebeckii in [6], where he proved that if the automorphism group Aut G is finite then
the set of elements of finite order of G is a finite subgroup.

More generally Robinson and the authors [4] have recently shown that finiteness
conditions on the ranks of the automorphism group Aut G give strong restrictions on the
elements of finite order of G.

Other finiteness conditions on automorphism groups have been considered, for
instance, in [10], [14] and [3].

The object of this paper is to study how the imposition of the maximal or minimal
conditions on normal or subnormal subgroups of the automorphism group forces the set
of elements of finite order of the group to be small.

Our main results are as follows.

THEOREM A. Let G be a soluble-by-finite group.
(i) / / Aut G satisfies the maximal condition on subnormal abelian subgroups with

defect at most 2, then the Sylow subgroups of G have finite exponents.
(ii) / / Aut G satisfies the minimal condition on subnormal subgroups with defect at

most 2, then the elements of finite order of G form a subgroup of finite exponent.

THEOREM B. Let G be a torsion group.
(i) / / G is soluble-by-finite and Aut G satisfies the maximal condition on normal

subgroups, then G has finite exponent.
(ii) If G is nilpotent-by -finite and Aut G satisfies the minimal condition on normal

subgroups, then G has finite exponent.

In the situation of Theorem A(i) infinitely many Sylow subgroups can occur in the
group G. Moreover in Theorem A and Theorem B the Sylow subgroups of G can be
infinite. Finally an example will be given of a group G such that Aut G satisfies the
minimal condition on subnormal abelian subgroups and Z(G) is a p°°-group.

We also obtain some information on torsion groups whose automorphism groups are
metanilpotent and satisfy the minimal condition on normal subgroups (see Theorem C in
§3).

For homological results we refer to [5] and [13].
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NOTATION

Gab: the derived factor group GIG'.
M{G): the Schur multiplicator of G.
n{G): the set of prime divisors of the orders of elements of G.
Inn G: the group of all inner automorphisms of G.

Ap: the p-component of the abelian group A.

2. The maximal and minimal conditions on subnormal subgroups.

LEMMA 1. Let G be a group such that G/Z(G) is a Cernikov group and GIZi{G) is
finite. Then G/Z(G) is finite.

Proof. The finite residual R/Z(G) of G/Z(G) is a central subgroup of G/Z(G) and
so [R, G] is a radicable subgroup of G 'DZ(G) . Since G/Z(G) is a Cernikov group,
Af(G/Z(G)) is finite [9], and hence also its homomorphic image G ' f lZ(G) is finite.
Therefore [R, G] = 1 and G/Z(G) is finite.

LEMMA 2. Let G be a group satisfying the maximal condition on subnormal abelian
subgroups with defect at most 2. Then every soluble normal subgroup of G is polycyclic.

Proof. Let H be a soluble normal subgroup of G. Then by induction we may assume
that H' is polycyclic. If C = CH{H'), the group H/C is polycyclic (see [7, Part 1, Theorem
3.27]), and [C, C] =£[//', C] = 1, so that C is nilpotent. Let 1̂ be a maximal normal
abelian subgroup of C; then A = CC(A) and A is finitely generated since C is a nilpotent
group satisfying the maximal condition on normal abelian subgroups. Therefore C/A is
finitely generated and hence H is polycyclic.

LEMMA 3 (see [4, Lemma 4]). Let G be a group and let C be a central subgroup of G.
Assume that G/C is soluble-by-finite with finite abelian section rank and C is an infinite
p-group of finite exponent. Then G has an infinite direct factor contained in C.

Proof of Theorem A. (i) Let C = Z(G) and Q = G/C.

Firstly we will prove that the torsion subgroup T of C is reduced. Suppose by
contradiction that the p -component Tp of T is not reduced for some prime p , and denote
by A the divisible part of Tp. Then C = AxK for some subgroup K and so
H2(Q, C) = H\Q, A) © H2(Q, K). By the Universal Coefficients Theorem we have
H\Q, A) = Hom(M(Q), A), and since Q = Inn G is polycyclic-by-finite by Lemma 2, the
Schur multiplicator M(Q) is finitely generated and H2(Q, A) is a torsion group. If A is the
cohomology class of the central extension

we can write A = Ao + A1; where Ao e H2(Q, A) and Ai e H2(Q, K), so that eA0 = 0 for
some e>0. For each p-adic integer a = 0 (modp), the automorphism r of C defined by
ar = a1+ea, kx = k (a eA, k e K) can be extended to an automorphism of G acting
trivially on Q since eA0 = 0. Therefore the group T of all automorphisms of G acting
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trivially on G/C and C/A, and as p-adic integers on A, is an uncountable normal
subgroup of Aut G. The derived subgroup F' of F stabilizes the series G s* C ̂ A s= 1, so
that T is soluble and therefore countable by Lemma 2, a contradiction. Therefore T is
reduced.

Suppose that Tp is infinite for some prime p. Then TPITP
P is infinite and so C/C is an

infinite group. The group G' is polycyclic-by-finite (see [7, p. 115]), and so G/G'C has
an elementary abelian infinite p-quotient. Since the group Hom(G/G'C, C) is
isomorphic with a normal abelian subgroup of Aut G, it is countable, and this forces
(C)p = 1. Therefore Tp has exponent p, if it is infinite. It follows that the Sylow
subgroups of G have finite exponents.

(ii) Let C = Z(G) and Q = G/C. Since the factors of the derived series of the soluble
radical of Q satisfy the minimal condition, then Q is a Cernikov group, and hence the
Schur multiplicator M{Q) is finite [9]. Then we can prove as in (i) that the Sylow
subgroups of C have finite exponents.

Firstly we will prove that Q is finite. Suppose that this is false. Then by Lemma 1 the
group Q/Z(Q) is infinite. If R denotes the finite residual of Q, there exists a prime p such
that the p-component S of [R, Q] is non-trivial. As in the proofs of Lemma 1 and Lemma
2 of [10] it can be proved that there exists an automorphism of infinite order a of G acting
trivially on C and Q/S, and as the multiplication by a fixed integer on 5. The group F of
all automorphisms of G acting trivially on C and Q/S, and as multiplications by fixed
integers on 5, is a normal subgroup of Aut G, and F' is nilpotent since it acts trivially on
S. It follows that F is a Cernikov group, a contradiction since a e F. Therefore Q is finite.

By contradiction assume that the torsion subgroup Tot C has infinite exponent; then
the set nQ = n{C)\n(Q) is infinite. If/?, <p2< • • • <pn < . . . is the ordered sequence of
primes in n0, we can write G = (CPl X . . . x CPn) x Kn for all n; therefore the auto-
morphism An of T which acts as the inversion on CPl x . . . x CPn and as the identity on
Dr CPh can be extended to an automorphism of G, and so {Xn \ n e N) is an infinite
h>n
elementary abelian group contained in the centre of the group A of all automorphisms
induced by Aut G on T. This is impossible since A satisfies the minimal condition on
normal subgroups. Therefore T has finite exponent and the result follows.

We have a stronger result for purely-non-abelian groups (recall that a group is
purely-non-abelian if it has no non-trivial abelian direct factors).

COROLLARY. Let G be a soluble-by-finite group which is also purely-non-abelian.
(i) / / Aut G satisfies the maximal condition on subnormal abelian subgroups with

defect at most 2, then the Sylow subgroups of G are finite.
(ii) / / Aut G satisfies the minimal condition on subnormal subgroups with defect at

most 2, then the elements of finite order of G form a finite subgroup.

Proof, (i) By Theorem A(i) the Sylow subgroups of G have finite exponents. By
contradiction suppose that the p-component Cp of C = Z{G) is infinite for some prime p.
We have C = Cp x K for some subgroup K and by Lemma 3 there exists an infinite direct
factor H/K of G/K contained in C/K. Then we have G = HL with HC\L = K, and
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H = Kx(CpDH), so that G = HL = {CpnH)L = (CpnH)x L. It follows that
Cp (~1 H = 1 and H = K, a contradiction.

(ii) By the proof of Theorem A(ii) it follows that G/Z(G) is finite and the set of all
elements of finite order of G is a subgroup of finite exponent. Then the result can be
obtained as in (i).

REMARK 1. In the hypothesis of Theorem A(i) infinitely many Sylow subgroups can
occur in the group G. In fact in Theorem 3(ii) of [4] there is constructed a soluble group
G such that Aut G is polycyclic and n(G) is infinite.

REMARK 2. In the hypothesis of Theorem A the Sylow subgroups of G can be
infinite. In fact, let G be a countable elementary abelian /?-group and put F = Aut G. If
F* is the group of all automorphisms y of G such that ker(y — 1) has finite codimension,
then F/F* is finite-by-simple (see [11]) and F* is finite-by-simple-by-finite (see [2]).
Therefore Aut G satisfies the maximal and minimal conditions on subnormal subgroups.

PROPOSITION. There exists a metabelian group G such that Aut G satisfies the minimal
condition on subnormal abelian subgroups, and the centre of G is a p°°-group.

Proof. Let p be a prime and A = B x C, where B = (bn | n e No, bp
n+x = bn, bo = l)

and C = (cn\ne No, c£+1 = cn, c0 = 1) are ^"-groups. If a is a p-adic integer of infinite
multiplicative order, the automorphism x of A defined by bx

n = b"cn, cx
n = cn(n e No) has

infinite order. Let G = (x) \x.A; then Z(G) = C and A = C[A, x].
Firstly we will prove that the Baer radical F of Aut G (i.e. the subgroup of Aut G

generated by all subnormal abelian subgroups) stabilizes the series G> A > 1. If y is any
element of F, (y) is subnormal in Aut G and so it acts trivially on the infinite cyclic group
G/A. Moreover [A/C, y]^A/C and [A/C, y] is divisible; therefore y acts trivially on
A/C and, by a similar argument, y acts trivially on C. If a eA, then [a, y~l, x] = 1 and
[a, [x'1, y]] = 1. It follows that [JC, a~\ y] = 1. Thus y acts trivially on [A, x] and on C
and hence on the whole of A.

Therefore the mapping y •-» [JC, y] is a monomorphism of F into A. It follows that F is
a Cernikov group and so Aut G satisfies the minimal condition on subnormal abelian
subgroups.

3. The maximal and minimal conditions on normal subgroups.

Proof of Theorem B. (i) Let R be the maximum normal soluble subgroup of
/ = Inn G. If 5 is a factor of the derived series of R, the Sylow subgroups of 5 are
Aut G-invariant, and so the set ^(5) is finite since Aut G satisfies the maximal condition
on normal subgroups. By the same considerations it follows that the Sylow subgroups of 5
have finite exponents, so that / has finite exponent.

Write C = Z(G) and Q = G/C. Then 0 = / has finite exponent. Put nQ =
n{C)\n(Q); then the ^0-component H of C is a Hall subgroup of G and so G = H x K for
some subgroup K. It follows that Aut G = Aut H x Aut K, and Aut H - Cr Aut Cp is in
Max-n, so that n0 is finite and JT(G) is finite. pejl°
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Since Q is a soluble-by-finite group of finite exponent, an easy application of the
Lyndon-Hochschild—Serre spectral sequence for homology shows that the Schur multi-
plicator M(Q) of Q has finite exponent, and by the Universal Coefficients Theorem
H\Q, C) = Ext(gab, C) © Hom(M(<2), C) has finite exponent e.

By contradiction assume that the p -component Cp of C has infinite exponent for
some prime p. If A denotes the cohomology class of the central extension C >-» G -» Q,
we have eA = 0 and so, for any p-adic integer a = 0 (modp), the mapping x >-+x1+ea is an
automorphism ya of Cp which extends to a central automorphism of G acting trivially on

Let F be the group of all automorphisms induced by Aut G on Cp; then T satisfies the
maximal condition on normal subgroups and so Z(T) is countable. This is a contradiction,
since each ya belongs to Z(T).

Therefore each primary component of C has finite exponent and so G has finite
exponent.

(ii) Let F be the maximum normal nilpotent subgroup of G and put A = Z{F). Then
Z(G)^A and for each positive integer i the group Z,+1(/r)/Z,(F) is reduced and satisfies
the minimal condition on characteristic subgroups; therefore Z,+1(F)/Z,(F) has finite
exponent if i 3= 1, and so G/A has finite exponent. The group A is a trivial FM-module,
and so the group H2(F/A, A) has finite exponent by the Universal Coefficients Theorem.
Since F has finite index in G, the Lyndon-Hochschild-Serre spectral sequence for
cohomology shows that H2(G/A, A) has finite exponent e.

As in the proof of (i) we can now prove that each primary component of A has finite
exponent. Moreover it is easily seen that the set n{GIZ(G)) is finite and so, as in the
proof of (i), the set n{G) is finite. The result follows.

REMARK. In the hypothesis of Theorem B the Sylow subgroups of G can be infinite,
as proved by a countably infinite elementary abelian p-group.

Finally we have the following result.

THEOREM C. Let G be a torsion group. If Aut G is metanilpotent and satisfies the
minimal condition on normal subgroups, then the centre of G is reduced.

Proof. Let C = Z(G) and Q = G/C.

By contradiction assume that C contains a p"-subgroup P. If R/Q' is the
p'-component of Qab, then Q/R is an abelian p-group satisfying the minimal condition on
characteristic subgroups, and so it is the direct product of a group of finite exponent and a
radicable group. The group Hom(Q/R, C) is isomorphic with a subgroup of Aut G, and
hence it follows that Q/R is finite since Aut G is countable (see [12]).

Since Aut G is metanilpotent, there exists an integer i 5* 1 such that A/C = y,(<3) is
nilpotent. Then A is a characteristic nilpotent subgroup of G and C =s Z(A), so that P is
contained in the p-component B of Z{A).

We will prove that the cohomology group H2(G/B, B) has finite exponent. If H/A is
the p-complement of the nilpotent group G/A, then G/H is finite, and so the groups
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H2(G/H,H°(H/A,B)) and H\G/H, H\H/A, B)) have finite exponents. Since
H2(H/A, B) = 0 (see [8, Corollary 4.2]), the Lyndon-Hochschild-Serre spectral se-
quence for cohomology shows that H2(G/A, B) has finite exponent. The reduced group
A/Z(A) satisfies the minimal condition on characteristic subgroups and hence it has finite
exponent. It follows that H\A/Z(A), B)-Hom(A/Z(A), B) has finite exponent and so
H\GIA,H\AIZ{A), B)) has finite exponent. Moreover the group H2(A/Z(A), £) =
Ext((/1/Z(.4))ab, B) © Hom(M(A/Z(A)), B) has finite exponent. The Lyndon-
Hochschild-Serre spectral sequence for cohomology associated with the extension

A/Z(A) v-> GIZ{A) -» G/A

and the G/Z(v4)-module B implies that H2(G/Z(A), B) has finite exponent. Finally
Z(A)/B is ap'-group, and hence we obtain easily that H2(G/B, B) has finite exponent e.

If A denotes the cohomology class of the extension

we have eA = 0 and therefore, if or is a p-adic integer = 0 (modp), the mapping x <->x1+"c'
is an automorphism of B which extends to an automorphism y of G acting trivially on
GIB. The automorphism y has infinite order since B has infinite exponent, and this is a
contradiction since Aut G is a torsion group (see [7, Part 1, Theorem 5.25]).
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