Bull. Austral. Math. Soc. 77 (2008), 353-363
doi:10.1017/S0004972708000117

AN ALGORITHM FOR FINDING ALL ZEROS OF
VECTOR FUNCTIONS

IBRAHEEM ALOLYAN

(Received 10 May 2007)

Abstract

Computing a zero of a continuous function is an old and extensively researched problem in numerical
computation. In this paper, we present an efficient subdivision algorithm for finding all real roots of a
function in multiple variables. This algorithm is based on a simple computationally verifiable necessity
test for the existence of a root in any compact set. Both theoretical analysis and numerical simulations
demonstrate that the algorithm is very efficient and reliable. Convergence is shown and numerical
examples are presented.

2000 Mathematics subject classification: 65H10, 65Y20.

Keywords and phrases: numerical solution of nonlinear system of equation, exclusion test, decomposable
functions, computational complexity.

1. Introduction

One of the oldest and most basic problems in mathematics is that of solving an
equation F(x)=0. This problem has motivated many theoretical developments
including the fact that solution formulas do not in general exist (as in the case
where F(x) is a fifth degree polynomial). Thus, the development of algorithms for
finding solutions has historically been an important enterprise. Our goal here is to
contribute to this enterprise by describing a numerical method for finding all solutions
of an equation F(x) =0 for a relatively broad class of nonlinear functions F. By
all solutions, we mean all solutions lying in a given compact set &%. Essentially, the
method starts with the compact set &% and uses a recursive subdivision process to
eliminate all of % except the zeros contained in Z.

Several different methods have been proposed for solving nonlinear systems. A
class of methods that is suitable for finding curves of solutions, for example, in the case
of bifurcation problems, is that of continuation methods [1, 13]. As the name implies,
these methods piece together local problems, thus using local methods to solve a
problem of a more global character. Of course, a known solution is needed to start

Supported by the research center project # (Math/2008/5).
© 2008 Australian Mathematical Society 0004-9727/08 $A2.00 + 0.00

353

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

354 I. Alolyan 2]

the process. Homotopy algorithms [1, 12, 15, 18] are similar to continuation methods
in that the idea is to start from a known solution and progress along a path to another
solution. However, in the case of homotopy methods the path is the homotopy path that
connects the given system to an artificial system that is readily solvable. Homotopy
methods have proven to be effective in many cases, and in the case of polynomial
systems have been incorporated into an algorithm for finding all the solutions of the
system [12].

Numerical methods based on topological degree theory have also been
proposed [16, 17]. In these methods it is the computation of the degree of a function on
a given domain that is the major task. As with degree theory itself, a non-zero degree
is only a sufficient condition for the existence of a zero in the given region. Thus, some
solutions can remain undetected. For example, a pair of solutions in a given region can
produce a degree of zero. Closely related to the topological degree methods are the
search methods of Hsu [7, 8] which subdivide the domain into cells and then apply
index theory to determine approximate locations of the zeros of a function. Another
method of finding the solution of a nonlinear system of equations is the exclusion
algorithms [2, 3, 5, 6, 19, 20].

Exclusion algorithms are a well-known tool in the area of interval analysis [4, 9-11]
for finding all solutions of a system of nonlinear equations

F:ZcR'->R", Fx)=0, FeC (1.1)

where Z is a cell, that is a rectangular box, and C = C (%) is the space of continuous
functions.

These types of algorithms are different in principle from those of homotopy, interval
and cell mapping dynamical analysis approaches [1]. They are based on cellular
partitions of Z and use of a computationally verifiable necessity test called the root
condition for the solution of (1.1). The main advantages of the algorithms include their
simplicity, reliability, and general applicability.

We now give some definitions that will be used in the subsequent sections. In R”,
we use the component-wise < as a partial ordering, that is we define x <y ifx; <y;
foralli=1,2,...,n. A cell X CR”" is a rectangular box, that is there are two
vectors my, rx € R" with r > 0, such that

X=[mxy —rx,myx —}—rx]:{xe]R" cmyxy —rx <x <myx +rx}.
We call X :=myx — rx the lower corner, X :=myx +ryx the upper corner, my the
midpoint, and ry the radius of X. The mesh size of a cell X is defined to be ||rx]||.
We briefly describe our view of an exclusion method. We begin with some region,
e.g. acell, in which we expect all zeros to be found. The algorithm is based on a given
root condition which can be applied to each cell. If a cell fails the condition, we know
it will not contain a zero and it can be discarded. If a cell satisfies the condition, it

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

(O8]
W
W

[3] An algorithm for finding all zeros of vector functions

is subdivided and the condition is applied to the new cells. This leads to a recursive
algorithm as we will show in the next section. The success and efficiency of these
algorithms will strongly depend on the choice of the condition. This paper is organized
as follows. In Section 2, a general framework of the algorithm is developed. In
Section 3, a root condition is given with some examples. In Section 4, convergence and
complexity analysis of the algorithms is presented. In Section 5, numerical simulation
results are provided to demonstrate the effectiveness of the algorithms.

2. Basic version of the algorithm

In this section, we present some basic versions of an exclusion algorithm for finding
all the zeros of a real-valued function F(x) that lie in a compact set in R”. Since
any compact set in R” can be enclosed in a rectangle, we assume for simplicity that
the given compact set is a closed rectangle % € R", with sides parallel to coordinate
planes. Thus, we present these algorithms in the context of finding the set of zeros
in Z of a system of equations F(x) =0 (thatis Z :={x € Z : F(x) =0}).

By an exclusion algorithm, we mean a process that generates a sequence of
subsets {Z;}{°, that approximate Z with successively increasing accuracy. By

construction, this will be a nested sequence, %;+1 C %; for all i, that converges
to Z in the sense that Z := ﬂfi {Z#;}. 1In each case, the process consists of
subdividing the current subset Z; into smaller subsets which are then either retained
or discarded according to a selection criterion. Those that are retained determine the
next subset %;11. In this section, four different selection criteria are suggested. A
sequence of partitions of & is needed for the subdivision process. A first partition
of Z into congruent subrectangles can be obtained by slicing Z into two equal parts
in one of the coordinate directions. For example, if & is a rectangle in the plane, this
results in two congruent subrectangles if we consider the partition in the xj-axis. For

arectangle in R" there will also be two subrectangles.

If . is a finite set of cells, we say that . is a cellular partition of Z if & is the
union of the cells in ., and the intersection of each two cells in .¥ is either a common
face or the empty set. If %] and % are two cellular partitions of %, we say that .7
is finer than .7} if each cell in .%3 is contained in a cell in .#].

An exclusion algorithm systematically discards cells as it progresses. In order to do
this, the algorithm makes use of some test which we will refer to as a root condition.
A root condition is a necessary, but not sufficient, condition which must be satisfied
if a zero point is present in a cell. Thus, if a cell fails the root condition, we know it
does not contain a zero and may be discarded immediately. This is one of the desirable
features of exclusion algorithms. Now we formally define a root condition.

DEFINITION 2.1 (Root condition). A root condition is a computationally verifiable
necessity test for the presence of a zero in a cell.

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

356 I. Alolyan [4]

For example, when F is a Lipschitz function which satisfies the condition || F (x) —
F(y)|l < L|lx — y|l, where L >0, then there is a solution x* in X € % only if
[F(mx)|l <Lllmx — x*|| < Lllrx|l. This implies that [|F(mx)| < L|rxll is a root
condition for existence of solutions to F(x) = 0 in each cell of Z.

In order to locate the set of zeros Z, the algorithm starts with &, then it is based
on a given sequence of refining partitions .%; and uses at each stage a given root
condition to exclude cells which cannot contain a root of F. The remaining cells
are then stored in ;.

In summary, the exclusion algorithm consists of applying an exclusion test on a cell.
If the test is negative, that is the necessary condition does not hold, then we are sure
that the interval contains no zero, and we exclude it. Otherwise, we bisect the interval
and apply the test again. This leads to the following algorithm.

ALGORITHM 2.1.

(1) Let.¥; be a sequence of cellular partitions of Z with . = {#}, such that % 1
is finer than .%;.

(2) Let %y ={Z} (initialization)
(3) Fori=0,1,2,...

Kiy1:=¢

forY € %, suchthatY C X € %,

If Y satisfies the root condition,
then %11 == %11 U{Y}.

Whenever one cycle of co-ordinate bisections is accomplished, we say that we have
reached a new bisection level, and we think of an exclusion algorithm as performing a
fixed number of bisection levels. The intervals which have not been discarded after i
bisection levels will be considered as the intervals which the algorithm generates
on the ith bisection level. This list of intervals is denoted by %; in the algorithm.
Obviously, if %; = ¢ for some level i, then the algorithm has shown that there
are no zero points of F in the initial interval Z. 1t is clear that the efficiency of
exclusion algorithms hinges mainly on the construction of a good exclusion test which
is computationally inexpensive but relatively tight. Otherwise, too many intervals
remain undiscarded on each bisection level, and this leads to significant numerical
inefficiency. Note the preceding definition of the list .#; of intervals which were not
discarded after the initial interval &% has been bisected i times. Also note that the
algorithm may stop with an empty list .%; indicating that F has no zero in %. For
clarity of exposition and notation, the list of intervals is processed breadth-first rather
than depth-first.

3. The monotonicity root condition

In this section, we present a root condition that can be used to discard cells in
Algorithm 2.1. We first define isofone functions.

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

[5] An algorithm for finding all zeros of vector functions 357
DEFINITION 3.1 (Isotone function). A function F : % — R" is said to be isotone if
F(x) < F(y) whenever x < y.

DEFINITION 3.2 (Monotonically decomposable). The function F is said to be
monotonically decomposable if there are two isotone functions G and H such
that F =G — H.

The following examples illustrate monotonically decomposable functions.

EXAMPLE 3.1.
(1) Consider the function F : [0, 10] — R which is defined by

F(x) =3x* —4x® —5x +09.
If we take G (x) = 3x* + 9 and H (x) = 4x> + 5x, then G and H are isotone and

Fx)=G(x) — H(x).
(2) Consider the function F : [—2, 4] x [—1, 5] = R? which is defined by

2 2
—| 1 Tx
F(XI, XZ) - [2x1x2 _l_xl} .

We can expand this function about the point (—2, —2), and we get

2
| oyt +2x0+3
Glx1, x2) = |:2x1xz +3x1 +4dxo +41|°
2
x4+ 2x0 + 3
H(xl:XZ)—|: x1+4x2+4

One can easily check that H and G are isotone on the cell [-2, 4] x [—1, 5] and
Fx)=G(x) — H(x).

THEOREM 3.1. Let F be a monotonically decomposable function (that is
F =G — H, where G and H are isotone functions), and let X be a cell that contains
a solution to the system (1.1). Then we have the monotonicity root condition

GX)<H(X) and H(X)<G(X). (3.1
PROOF. If F contains a solution, say x*, to the system F(x) = 0, then we have
G(x*) —HX")=Fx*)=0.
By the isotone property of G and H, we have
G(X)—H(X)<0 and H(X)—-G(X)<0.

From these equations, we obtain the root condition (3.1). O

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

358 I. Alolyan [6]

4. Convergence and complexity

In this section, we prove the main result underlying our algorithm. We prove both
the global convergence of Algorithm 2.1 and estimate the complexity of the algorithm.
The sequence we obtain using Algorithm 2.1 does indeed converge to the roots of F
(namely, Z).

THEOREM 4.1. Let %; be the set of cells generated by Algorithm 2.1 using the
monotonicity root condition (3.1), and let Z be the set of solutions to the system (1.1).
If F = G — H is monotonically decomposable with G and H continuous, then Z # ¢
if and only if the algorithm does not terminate in a finite number of steps, and we have

lim %,’ =Z.

i—00

PROOF. Let % = lim; _ o0 %, SO 7 # ¢ because the algorithm does not terminate in
a finite number of steps. Since each %; contains all roots of F, we have Z C %. Now,
for any X € Z, there is a sequence of cells {X;}, where X; € %;, such that X € X; for
alli > 1.

Now for each cell X;, it must satisfy the monotonicity root condition (3.1), and we
have

(G + H) (X)) = (G + H) (X)) = IG(Xy) = HX)| + I1HX:) = GXD)-
Since G + H is uniformly continuous on X;, we have
(G + H) (Xi) = (G + H) (X)) = 0 as [y, || = 0.
Therefore, we have
IG(X;) — HX)I =0 and [|H(X;) — G(X)I| -0 asi— oo.

Now we show that X € Z. If F(X) = G(X) — H(X) > 0, then

0<IG® —H®I <IGX;) — HX)Il -0 asi— oo.
If F(X)=G(X) — H(X) <0, then

0<IG® - H®I < IHXi) — GX)Il -0 asi— oc.

Thus, F(X) =0and X € Z, so@QZ; therefore,@:Z. O

In the following theorem, we show that the number of cells that cannot be excluded
by the root condition (3.1) does not go to infinity. This means that in Algorithm 2.1
there should be a positive constant K such that the number of cells in %; (|%;|) for
i=1,2,... does not exceed K. This is imperative for exclusion algorithms to be
successful; otherwise, the cells that need to be checked by the algorithm increase
greatly so that the algorithm is hardly ever able to reach a pre-assigned accuracy.

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

[7] An algorithm for finding all zeros of vector functions 359

THEOREM 4.2. Let %; be the sets of cells generated by Algorithm 2.1 using the
monotonicity root condition (1.1), and let Z be the set of solutions to the system. If G
and H are Lipschitz functions and Z consists of a finite number of regular solutions to
the system (namely, || F'(X)| is invertible for any X € Z), then there is a constant K > 0
such that |%;| < K foralli > 1.

PROOF. Since G and H are Lipschitz functions, G + H is also a Lipschitz function;
therefore, there is a constant L such that

(G + H) (x) = (G+ H)(WII<Lllx—y| forallx,yeZ.

Now consider any cell X € #Z, then either F(myx)=G(mx) — H(mx) >0 or
F(mx)=G(myx) — H(myx) <0. In the first case, we have 0 < G(myx) — H(my) <
G(X) — H(X). We combine this condition with the monotonicity condition H (X) —
G(X) >0, and we get

0< | Fmx)| <I(G+ H) (X) = (G + H) (X)|.
In the second case, we can show that we will get the same result. Therefore, we have
IFmx)| <G+ H) (X)—(G+H) (X)|| <LIIX — X[<2L|rx|l. (4.1)
It is clear that if X lies on the cell X then |[mx — X|| < ||rx||. Now consider the set
H-={XeR:|mx —%| > |Irx| forall X € Z}.

Since F' is continuous on the compact set X, || F(x)]| attains a minimum m > 0 on R
(thatis || F(x)|| > m forall x €). Now consider mx € %, and take |lrx || sufficiently
small such that 2L ||rx|| <m < || F(mx)||. Therefore, the cell X does not satisfy (4.1)
and thus it will be discarded.

Therefore, for sufficiently large i, the volume of a ball around X which may contain
a cell that satisfies the root condition in R” is at most (2L + 1)2|rx||)". Thus the
number of cells that could fit inside the ball is approximately (2L + 1)"”. Since we
are dealing with a finite number of roots M, the total number of cells will be bounded
by QL+ 1)"M =K. O

The functions G and H in condition (3.1) are computed globally (that is they are
isotone on the interval #). If we consider the functions Gy and H; to be isotone
on the subcell Xy C Z, then we will get tighter conditions and more cells will be
discarded which improves the efficiency of the algorithm. One can verify the following
theorem easily.

THEOREM 4.3. If the function F is a polynomial then F is monotonically
decomposable on any interval %. Let . C % be a subinterval. If we expand the
function F about the point X and take the positive and negative coefficients to be G g
and Hg, respectively, and we expand F about the point . and take the positive and
negative coefficients to be G » and H ., respectively, then we have

Gz(x)<Ggo(x) and Hgz(x) <Hgy(x) forallx € .

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

360 I. Alolyan [8]

Here is an example to illustrate the previous theorem.
EXAMPLE 4.1. Consider the function F:% :=[-2,2] x [—1, 1] = R? which is

defined by
2 2
—| *1 7%
F(xi, x) = [2x1x2 +x1} .

We may take the global monotonicity functions G4 and Hg to be

[G422 4+200+1)+3
G(x1, x2) = [2(x1 +2) (xp+ 1)+ (x1 + 2)] '
[4 +2) 4 (4 12
H(x1, x2) = |:2(x1 +2)+4(x+ 1)+ 2i| ‘

One can easily check that H and G are isotone on the interval & and F(x) =
G(x) — H(x). If we consider the partition of Z to be

R = U X;,

i=1:4
where
X1 =[-2,0] x[-1,0], X,=][0,2]x[-1,0],
X3=[-2,0] x[0, 1], X4=1[0,2]x [0, 1],
then we can consider the local monotonicity functions G; and H; fori=1,...,4
to be

2
G(}C],xz):[(X1+2) +2(x2+1)+3 i|’

214+ 2) (o + 1)+ (1 +2)
[A +2) + (o + 12
Hxt, x) = [2@1 +2) +4+ 1D+ 2} '

on the interval X,

2 2
_|xr 202+ 1) |G+ 1D +1
Ga(x1, x2) —[2+ 1) | Hy(x1, x2) = i ,
on the interval X»,
(x1 +2)> +4

4(x1 +2) + x%]

G3(x1,xz)=[4y +2

2(x1 4+ 2)x2 + (x1 +2)j| , Hz(x1, x0)= [

on the interval X3,

2 2
Ga(x1, x2) = [1 } . Ha(xy, x2) = [xoz} ,

2x1x3 + X1

on the interval X4. One can easily check that F(x) = G;(x) — H;(x) on the
interval X;, and G; and H; are isotone on the interval X;.
We can note that

Gi(x)<G(kx) and H;(x)<H(x) forallxe X;.

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

[9] An algorithm for finding all zeros of vector functions 361

2 2 2
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
0 0 0
-05 -05 -05
-1 -1 -
15 15 -1.5 -
-2 - -2
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(a) level 2 (b) level 4 (c) level 5

FIGURE 1. Partitions of exclusion algorithm at level i.

5. Numerical experiments

The application of an exclusion algorithm to an example problem is discussed in
this section. We present a numerical example to find all solutions of F(x) =0 in a
given interval Z € R. This example investigates the performance of the algorithm in
solving the following problem that was proposed by the author. We will graphical
present the set Z%; for some values of i to show the partitions of the domain % in
the level i. We will then present a table where we list the number of non-discarded
intervals on the bisection level i. In order to find the roots of the following function, we
use Algorithm 2.1 which has been implemented in MATLAB [14] and the experiments
executed on a PC with a Pentium Centrino 2000 MHz processor.

EXAMPLE 5.1. To convey a sense of how the algorithm works, we consider the
function F : # — R?, where Z := [—4, 4] x [—2, 2], defined by

. X1 — 2x2
Flxr, x2) = |:x1xz +x1 —4xy — 4:|)

This is a simple polynomial vector field having two regular zeros (—2, —1) and (4, 2).
We can define the global monotonicity functions G and H to be

X1 2x7
Glx1, x2) = |:x1xz + 3x1 +4xy + 8] > HGxn, x) = |:2x1 + 8xy + 12] ’

We now apply Algorithm 2.1 to the function F using both the global and local
monotonicity functions with Tolerance, Tol = 0.1, 0.01, 0.001, and 0.0001. In
Figure 1, we show the partitions of the domain % in the level i and we note that
more partitions are performed near the roots of the function. The number of cells in
Z, and the number of root condition checks (RC) is shown in Table 1.

In Table 1, we note that the number of cells when we use the global monotonicity
functions (MF) is more than the number of cells in the local case. Finally, we plot the
final refinement of Algorithm 2.1 in Figure 2.

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

362 I. Alolyan [10]

TABLE 1. Approximation of the roots of F.

Global MF Local MF
Tol Level x* |Z| RC |Z| RC
0.1 7 (3.9688, 1.9844), 31 235 23 147
(—2.0313, —0.9531)
0.01 10 (3.9961, 1.9980), 43 557 27 346
(—2.0039, —0.9941)
0.001 13 (3.9995, 1.9998), 47 784 32 478
(—2.0005, —0.9993)
0.0001 17 (4.0000, 2.0000), 45 1033 29 703
(—2.0000, —1.0000)
2 : .
e
REEH
15F |
1]
=
05F
0
s ‘ ‘ HH]
\ I
p T
|
-15]
_2 L L
—4 -3 -2 -1 0 1 2 3 4

FIGURE 2. Applying the exclusion algorithm to Example 5.1.

6. Conclusion

In this paper we have introduced a technique to solve a system of nonlinear
equations. We have formulated an exclusion test for Algorithm 2.1 for a monotonicity
decomposable function. It has been shown that the algorithm converges to the roots
of F and the number of cells, as Algorithm 2.1 proceeds, is bounded. Finally, the
numerical implementation of the obtained methods has been considered. The family of
iterative methods that are introduced in this paper uses a multi-precision and adaptive
floating point arithmetic with low computing times. Our numerical results indicate that
Algorithm 2.1 with global monotonicity functions converges to the roots much faster
when the monotonicity functions are chosen locally.

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

[11]

(1]
(2]
(3]
(4]
(3]

[10]
(11]
[12]
[13]

[14]
[15]

[16]
(17]
(18]

[19]

[20]

An algorithm for finding all zeros of vector functions 363

References

E. Allgower and K. Georg, Introduction to Numerical Continuation Methods (SIAM, Philadelphia,
PA, 2003).

E. Allgower, M. Erdmann and K. Georg, ‘On the complexity of exclusion algorithms for
optimization’, J. Complexity 18 (2002), 573-588.

I. Alolyan, ‘A new exclusion test for finding the global minimum’, J. Comput. Appl. Math. 200(2)
(2007), 491-502.

T. Csendes and D. Ratz, ‘Subdivision direction selection in interval methods for global
optimization’, SIAM J. Numer. Anal. 34(3) (1997), 922-938.

K. Georg, ‘A new exclusion test’, Proc. Int. Conf. on Recent Advances in Computational
Mathematics, J. Comput. Appl. Math. 152(1-2) (2003), 147-160.

K. Georg, ‘Improving the efficiency of exclusion algorithms’, Adv. Geom. 1 (2001), 193-210.
C.S.HsuandR. S. Guttalu, ‘Index evaluation for dynamical systems and its application to locating
all of the zeros of a vector function’, J. Appl. Mech. 50 (1983), 858-862.

C. S. Hsu and W. H. Zhu, ‘A simplical mapping method for locating the zeros of a function’,
Quart. Appl. Math. 42 (1984), 41-59.

R. Kearfott, ‘Rigorous global search: continuous problems’, in: Nonconvex Optimization and its
Applications, Vol. 13 (Kluwer Academic, Dordrecht, 1996).

R. B. Kearfott, ‘Empirical evaluation of innovations in interval branch and bound algorithms for
nonlinear algebraic systems’, SIAM J. Sci. Comput. 18(2) (1997), 574-594.

R. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied
Mathematics, 2 (SIAM, Philadelphia, PA, 1979).

A. P. Morgan, A. J. Sommese and L. T. Watson, ‘Finding all isolated solutions to polynomial
systems using HOMPACK’, ACM Trans. Math. Software 15 (1989), 93—-122.

W. C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations (Wiley, New York,
1986).

Using MATLAB (The MathWorks Inc. Natick, MA, 1996).

M. Sosonkina, L. T. Watson and D. E. Stewart, ‘A note on the end game in homotopy zero curve
tracking’, ACM Trans. Math. Software 22 (1996), 281-287.

M. N. Vrahatis and K. L. Iordanidis, ‘A rapid generalized method of bisection for solving systems
of non-linear equations’, Numer. Math. 49 (1986), 123-138.

M. N. Vrahatis, ‘Solving systems of nonlinear equations using the nonzero value of the topological
degree’, ACM Trans. Math. Software 14 (1988), 312-328.

L. T. Watson, ‘Globally convergent homotopy methods: A tutorial’, Appl. Math. Comput. 31
(1989), 369-396.

Z.-B. Xu, J.-S. Zhang and Y.-W. Leung, ‘A general CDC formulation for specializing the cell
exclusion algorithms of finding all zeros of vector functions’, Appl. Math. Comput. 86 (1997),
235-259.

J. C. Yakoubsohn, ‘Numerical analysis of a bisection-exclusion method to find the zeros of
univariant analytic functions’, J. Complexity 21 (2005), 651-772.

IBRAHEEM ALOLYAN, Mathematics Department, College of Science,
King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
e-mail: ialolyan05@yahoo.com

https://doi.org/10.1017/5S0004972708000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000117

