Adv. Appl. Prob. 45, 51-85 (2013)
Printed in Northern Ireland
© Applied Probability Trust 2013

MONOTONE POLICIES AND INDEXABILITY
FOR BIDIRECTIONAL RESTLESS BANDITS

K. D. GLAZEBROOK,* Lancaster University
D. J. HODGE,** The University of Nottingham
C. KIRKBRIDE,* *** Lancaster University

Abstract

Motivated by a wide range of applications, we consider a development of Whittle’s
restless bandit model in which project activation requires a state-dependent amount of
a key resource, which is assumed to be available at a constant rate. As many projects
may be activated at each decision epoch as resource availability allows. We seek a policy
for project activation within resource constraints which minimises an aggregate cost rate
for the system. Project indices derived from a Lagrangian relaxation of the original
problem exist provided the structural requirement of indexability is met. Verification of
this property and derivation of the related indices is greatly simplified when the solution
of the Lagrangian relaxation has a state monotone structure for each constituent project.
We demonstrate that this is indeed the case for a wide range of bidirectional projects in
which the project state tends to move in a different direction when it is activated from that
in which it moves when passive. This is natural in many application domains in which
activation of a project ameliorates its condition, which otherwise tends to deteriorate or
deplete. In some cases the state monotonicity required is related to the structure of state
transitions, while in others it is also related to the nature of costs. Two numerical studies
demonstrate the value of the ideas for the construction of policies for dynamic resource
allocation, most especially in contexts which involve a large number of projects.
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1. Introduction

Gittins [4], [5], in what is now regarded as a classical contribution, demonstrated the
optimality of policies of index form for a version of the multiarmed bandit problem with a
discounted reward criterion. Such problems present to the decision-maker a fixed range of
alternatives (often called projects, arms, or bandits) which evolve stochastically when chosen
and which earn state-dependent rewards as they do so. They represent one of the simplest
interesting classes of models for dynamic resource allocation. Whittle [17] proposed an
extension of this model class such that passive projects also evolve, though according to a
different stochastic law. His setting called for m of n restless bandits (as he called them) to be
active at any time, the goal being to devise a policy for project activation to maximise the time
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average reward achieved over an infinite horizon. He proposed an index policy derived from
a Lagrangian relaxation in which a subsidy is paid to passive projects, equivalently a charge
is levied for project activation. While Whittle’s index heuristic does not achieve optimality
in general, Weber and Weiss [15], [16] have demonstrated a form of asymptotic optimality,
under given conditions, in a limiting regime in which m and n grow in proportion. Whittle’s
model has proved extremely popular and has been proposed in many application contexts.
These include the routeing of unmanned military aircraft (see, for example, [10]), opportunistic
communication channel usage (see [11]), inventory routeing (see [2]), machine maintenance
(see [18]), asset management (see [7]), and queueing control (see [1]).

Whittle’s index is only defined for restless bandits which enjoy a structural property called
indexability. This property requires that each bandit, when subject to a charge for its activation,
should have an associated family of optimal policies in which the set of states in which activation
is optimal is monotone decreasing in the charge. This property, while natural, is by no means
universal. A complete understanding has certainly not been achieved. Nifio-Mora [12], [13]
has espoused an approach to indexability based on the achievable region approach to stochastic
optimisation. See also [3] and [8].

In this paper we propose a simple direct approach to indexability in the context of families
of more complex restless bandits than those envisaged by Whittle in that they require a state-
dependent amount of some key resource (manpower, money, equipment) for their activation.
A fixed amount of this resource is available in total at each decision epoch and as many of
the projects may be activated as may be accommodated within the resource constraint. This
class of models is introduced in Section 2 and has widespread application. For example, more
depleted inventories require more resource for their replenishment, older machines may require
more man-hours to be serviced, and more highly performing assets may need more investment
to maintain their performance. Note that Glazebrook and Minty [6] developed a generalised
Gittins index appropriate for a similar extension of the classical discounted reward multiarmed
bandit problem. Furthermore, while the models of Jacko [9] feature state-dependent resource
usage, no global resource constraint is imposed.

For models of the kind considered in this paper, indexability is studied by solving an average
cost activation problem for each constituent restless bandit when a charge W is levied per unit
of resource consumed. For indexability, we need to demonstrate the existence of activation
policies which are monotone in W in the strong sense described above. We shall describe a
simple direct approach which draws upon the fact that, for a large number of important cases,
we can demonstrate the existence of optimal policies for the activation problems with resource
charge which are state monotone, namely which have the character that the set of states in
which activation of the project is optimal lie above (or below) some threshold. In Section 3
this is demonstrated for a class of so-called bidirectional projects in which the active and
passive actions tend to move the project in opposite directions, and which are skip-free in the
direction of passive evolution. This class includes the spinning plates model of Glazebrook
et al. [7] and the Ehrenfest project of Whittle [17] as special cases, neither of which feature
state-dependent resource consumption. Once state monotonicity of optimal activation policies
has been established for this class, the subsequent analysis of indexability is straightforward.
For example, should activation be optimal for large states (above an appropriate threshold) then
indexability will be secured whenever the rate at which resource is consumed decreases as the
threshold for activation rises. This kind of condition is often easy to check.

In Section 4 we seek to escape the skip-free assumption of passive evolution made in Section 3
in pursuit of the goal of broadening further the applicability of the material. A natural and

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

Monotone policies and indexability for bidirectional restless bandits 53

important domain of application is to inventory management where, under the passive action (no
stock replenishment), an inventory will be depleted by the maximum of the remaining stock and
one day’s demand for it. If when managing a collection of such inventory-holding locations the
key resource in the replenishment process is the availability of stock itself, then it is plain that the
appropriate restless bandit model will indeed consume state-dependent amounts of this resource
when activated, thus extending the scope of the models of Archibald et al. [2]. In Section 4
state monotonicity of optimal policies for the associated activation problem with resource
charge is achieved by constraining the cost structure of the problem. This has the innovative
consequence that indexability, namely the demonstration that optimal policies are monotone in
the resource charge W, is initially demonstrated only over a finite W-range. It is also the case
for these more complex models that indexability does not flow simply from the demonstrated
state monotonicity of optimal policies for the activation problems as it did in Section 3. While
applications to inventory management are highlighted in Section 4, the approach and the results
have relevance to other application domains.

In the course of the paper, we use two numerical studies to illustrate how the theoretical
results of the paper may be deployed to develop index heuristics for dynamic resource allocation
and how strongly the resulting policies perform.

2. Indexability and index heuristics

We define a restless bandit model with general resource requirements [{€2, p?, p?, C ? C ;’,
R;};1 < j < J] to be a Markov decision process (MDP) with average costs whose main
features are as follows.

(i) The state space of the process is X ]J-Zl 2; with ; the (finite or countable) state space
of project (or bandit) j, denoted by P;. For most of the examples discussed in the
paper, Q; will be a finite subset of N. The szate of the process is observed at each time
t € N. At time ¢, we write X (¢) = {X1(t), X2(?), ..., Xj(¢)} for the process state with
X(t) € 2j, the state space of bandit j.

(ii) At each time r+ € N an action a = {aj,az,...,ay} is applied to the process, with
aj € {a, b} the action applied to bandit j. The action a is active and calls for the positive
commitment of resource. The alternative action b is passive. Under action a, the N
projects evolve independently, each according to its own Markov law. We write

PXt+1)=7| X(t)=x,a)

J
= HIP{Xj(t + 1=y | X;@) =xj,a;}
j=I1
J
= [[1p9 . ypI@j = @)+ ph(xj. yj)I (aj = b)), ()
j=I1

where in (1) and elsewhere, I is an indicator.

(iii) For all j, C¢ and C? are cost functions which map the state space 2 j to the positive
reals RT. The expected cost incurred when action a is applied to the process in state X
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is written
J

C@ @) =) (C{(xplaj =a)+Cix)I(a; = b)),
j=1
and so costs are additive across projects.

(iv) Forall j, Rj: Q; — R is a resource consumption function. The amount of resource
consumed when action a is applied to the process in state x is written

J
R@ %) =Y Rj(xpla;=a),

j=1
and is also additive across projects. The set of admissible actions in state x is given by
A(x) =f{a; R(a,x) < R},

where R is the total resource available at each decision epoch. We shall suppose
that A(X) # @, x € X! j=1 2, and, moreover, that there exists X € XJ_1 2; such that
A(F) # {a,b)’. Hence resource availability is taken to strictly constram the set of
available actions.

(v) Anadmissible policy 7 is a rule for choosing an admissible action at each decision epoch.
Such a rule can in principle depend upon the entire history (successive actions taken and
states occupied) of the process to date. We shall seek an admissible policy to minimise
the average cost per unit time incurred over an infinite horizon. See Puterman [14] for
an account of the general theory relating to such problems. The standard approach to
such problems utilises dynamic programming (DP). However, a pure DP approach is
unlikely to yield insight and will be computationally intractable for problems of realistic
size. Hence, the primary quest is for strongly performing heuristic policies. In what
follows we shall restrict to the class S of admissible, statlonary, deterministic, and Markov
policies which are identified with functions 7 : X -1 2 — {a, b}’ and which choose
admissible actions without randomisation and on the bas1s of the current process state
only.

Following the classical work of Gittins [4], [S] and Whittle [17] we shall seek heuristics in the
form of index policies. Hence, we shall seek calibrating functions W;: Q; — R, 1 < j < J,
which will guide the construction of good actions in each process state. In order to develop
such indices, we shall seek a decomposition of (a relaxation of) our optimisation problem into J
individual problems, one for each bandit. It is these individual problems which, when suitably
structured, will yield the calibrating functions required.

We proceed via a series of relaxations as follows: we state the optimisation problem of
interest as

J
CoP'(x%) = inf_{z C7 (¥ } )
eSS’
j=1
In(2),C ;_T (x) is the average cost per unit time incurred by P; under policy 7 from initial state x.

Note that we make no a priori assumption that this quantity is independent of x. We now relax
(2) by extending to a class of policies S(x) (some of which may be inadmissible) which are
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stationary, deterministic, and Markov and for which the average resource consumed per unit
time from initial state x does not exceed R. We express this latter condition by writing

R} (X) <R, 7 e S(x). (3)

||M\

In (3), R;’ (%) is the average resource consumed per unit time by P; when policy 7 is applied
from initial state x. Plainly,

_ _ J
Sx)2>S, xe X Qj,
and we relax (2) to

~Oopt (= T
CP(x) = néréfx>{2 C; (x)} )

We now further relax the problem by (i) extending to the class of stationary, deterministic, and
Markov policies in which all admissibility requirements are abandoned and (ii) incorporating
the average resource consumption constraint (3) into the objective in a Lagrangian fashion. The
class of policies described in (i) is denoted by S’ and is identified with the set of all functions
T ij':l Q; — {a, b}’ . We now write

CP'(x, W) = inf Z{C” (x) + WR” x)} — . 5)

neS’

Plainly,
J
CP'(x, W) < C°P'(x) < C°P'(%), Xe X Qj, WeR".
j_
It is clear that the Lagrangian relaxation (5) permits an additive decomposition by individual

project. We write
J

CP (X, W)= Cj(x;,W)—WR. (6)
j=1
In (6), Cj(x;, W) is the value of a stochastic DP concerning P; only in which we seek a
stationary, deterministic, and Markov policy 7 : ; — {a, b} to minimise an aggregate of the
rate of costs incurred by project activation and the rate of charges imposed for the resource
consumed. We write, in a natural notation,

Ci(x;, W)= ngﬁ{c}’-’ (x;) + WR}T-" (x))}. (7)
J

Note that the Lagrange multiplier W has an economic interpretation as a charge imposed per
unit of resource consumed. Denote this optimisation problem for P; by P;(x;, W). From (6),
an optimal policy for the Lagrangian relaxation in (5) runs optimal pohcles for the P;(xj, W),
1 < j < J, in parallel. We note at this point that we shall use c’ i and R 7 for the
cost/consumption rates in (7) if these are known to be independent of x;.

In order to develop ideas further we shall need to explore issues relating to the structure
of solutions to the problems P;(x;, W), 1 < j < J. We shall say that a policy is optimal
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Sfor P;(W) if it minimises C;(x;, W) for all x; € ;. Hence, the solution to P;(W), should
one exist, is a policy which is optimal for P;(x;, W) uniformly over initial states x;. Let
7j: Qj — {a, b} be some policy for P;(-, W); we write b; () = {x; € Qj; 7;(x;) = b}
for its passive set, namely the set of states in which 7; takes the passive action. The natural
requirement that the passive set of an optimal policy for P; (W), should one exist, be increasing
in the resource charge W is expressed in Definition 1 below along with other related and stronger
notions. Since in this definition we are describing properties of individual projects, we shall
drop the project identifier j from the notation. We shall do this for much of the rest of the paper.

Definition 1. Project P is indexable if there exists a collection of policies {w (W), W € R}
such that

(i) 7 (W) is optimal for P(W) for all W € R; and
(i1) the passive set b(mr(W)) is increasing in W.

The related index function W: Q — R U {—o00, oo} is given by

—00 if x € b(w(W)) forall W € R,
Wx)={c0 ifx ¢ b(m(W)) forall W € R,
inf{W; x € b(w(W))} otherwise.

An indexable project is strictly indexable whenever there is an index function which is one-to-
one and whose range is contained in R.

Remark 1. In the models discussed in the paper, it may be that there are isolated W-values
at which there is more than one choice of optimal policy 7 (W). Even when this is the case,
the corresponding related index functions are all equal. Hence, in practice, there may be some
arbitrariness in relation to the specification of optimal policies for P (W) but none in relation
to index functions.

Remark 2. From the above definitions, there exist optimal policies for the Lagrangian
relaxation in (5) of index form when all J constituent projects P; are indexable. In state x there
exists an optimal policy 77 (W) which will apply the active action to all projects P; for which
W;(x;) = W and the passive action to all projects for which W; (x;) < W. Furthermore, should
there exist a positive W-value, W (R) say, for which the policy 7 (W (R)) achieves equality in
(3) for all initial states then it must be optimal for the relaxation in (4). These facts motivate
the design of heuristic policies in which the choice of action is based on current values of the
related index functions W;, 1 < j < J.

Remark 3. For most practical purposes, R can be replaced by R™ throughout Definition 1. This
modification replaces Definition 1(ii) in requiring that only b(;r (W)) be increasing in W over
RT and modifies the related index function by setting W(x) = 0 if x € b(n(W)), W € RT.
We shall say that the project is (strictly) indexable over RT. This is the approach taken, for
example, in Glazebrook and Minty [6]. To see why such a formulation may be adequate, indeed
natural, for the development of index heuristics, note that in some applications (including,
for example, the inventory problems of Section 4) it may be best in some states not to
attempt to use as much of the available resource as possible. Hence, imagine that the model
[{2;, p;l., p?, C?, C;?, R;};1 < j < J] is enhanced to include a number of additional ‘do
nothing” projects, each of which has a single state *, incurs no costs, and consumes resource
at a constant rate. Such projects are trivially indexable, with W (x) = 0. Suppose that these
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‘do nothing’ projects collectively exhaust all of the available resource. If all the projects P;
are indexable over R™ then there is an optimal solution to the Lagrangian relaxation which is
as follows. When W = 0, in state x activate all the ‘do nothing’ projects and all conventional
projects P; for which W;(x;) > 0. When W > 0, activate all conventional projects P; for
which W;(x;) > W. In this solution, the ‘do nothing’ projects are always preferred to any
conventional project whose index over R* is zero. It is also true that, for any x, the number
of activated projects is decreasing in W. It is then natural to develop a policy for the original
problem by taking this solution to the Lagrangian relaxation and, in every state x, increasing
W from zero until enough projects are rendered passive that an admissible action is achieved.
These observations motivate the description of index heuristics given in Remark 4 below. For
the simpler models in Section 3, we are able to analyse (strict) indexability as in Definition 1,
while for the more complex models of Section 4, we deal with (strict) indexability over R™.

Remark 4. Following Remarks 2 and 3, a natural policy proposal for the optimisation problem
(2) when all projects P; are indexable (whether over R or R*) constructs an action a in the
process state x as follows. List the projects in descending order of the index values W;(x;),
with largest first. Proceed down the list and choose the active action for projects until either
the resource constraint is violated by any further activation of projects or the next index on the
list is nonpositive. Repeat for all states. This is the greedy index heuristic (GI heuristic). It is
possible for the GI heuristic to perform poorly because it makes inadequate use of the available
resource. One proposed fix for this is to replace the index W (x ;) by the product W; (x;) R (x )
in the above prescription. We thus derive the weighted greedy index heuristic (WGI heuristic).
An alternative approach is to choose action a to maximise the sum

J
> WiGpIa; = a)

j=1

within the resource constraint. This is the knapsack index heuristic (KI heuristic). We develop
a weighted knapsack index heuristic (WKI heuristic) in the obvious way.

Over the next two sections of the paper, we elucidate a project structure which is both natural
and which also yields indexability. In doing so we are then able to develop strong heuristic
policies for applications which include asset management, machine maintenance, and inventory
routeing.

3. Bidirectional bandits, monotone structures, and indexability

Throughout the theoretical development of this section and the next, we shall focus on
structural properties of individual projects and drop the project identifier j from the notation.
Hence, the focus of our study will be project P = {2, p“, p", ce, Cb, R} and the associated
optimisation problem P (W). Recall that in the latter the challenge is to determine some policy
m: Q — {a, b} to minimise an average cost rate for the project which aggregates costs directly
incurred through project activation with charges levied for resource consumption.

In this section we focus on projects which arise in many applications in which the active and
passive actions tend to move the project state in opposite directions. In a descendant project,
the active action consumes resource to move the state downwards to states in which costs are
incurred at a lower rate. Under the passive action, a descendant project tends to deteriorate
via transitions upwards to states in which costs are incurred at a higher rate. In ascendant
projects these directions are reversed. In a descendant (ascendant) project, good policies will
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call for the active action in high (low) states and we should expect index values to be larger for
these. In Definition 2 below and for the remainder of this section up to the comments following
Theorem 2, we suppose that project P has the finite state space 2 = {0, 1, ..., N}.

Definition 2. A project P is descendant if

(D1) p%(x,y) =0,y > x,and p?(x,x) < 1, x € Q\ {0};

D2) p?0,0) =1;

(D3) pP(x,y) =0,y >x+1,and p(x,x +1) > 0, x € Q\ {N}.
A project P is ascendant if

(Al) p%(x,y) =0,y <x,and p*(x,x) <1, x € Q\ {N};

(A2) p“(N,N) =1;

(A3) pb(x,y) =0,y <x—1,and p’(x,x — 1) > 0, x € Q\ {0}

It will also usually be the case that costs C*(x) and C b (x) are nondecreasing (respectively,
nonincreasing) in x for descendant (respectively, ascendant) projects and this is borne out in the
examples discussed in Section 3.3. However, the indexability theory for bidirectional restless
bandits developed in Section 3.1 and Section 3.2 depends upon project structure through only
p® and p”. To make that clear, we prefer not to include conditions on project cost structure
in Definition 2. The nature of the resource consumption function R(x) varies considerably
between applications.

Note from (D3) that evolution under the passive action is right skip-free, reflecting the notion
that project deterioration tends to be gradual. In (D3) a possible leftward jump toward a lower
state under the passive action may model, for example, some catastrophic failure of a machine,
say, with enforced replacement/renewal at high cost. See Example 2 below for an instance of
this. Similar comments apply to ascendant projects.

Please note that a descendant (ascendant) project becomes ascendant (descendant) under a
redesignation of states under the transform x — N — x. Hence, in these finite-state cases,
we need only develop theory for the descendant case. We shall always adopt a choice of state
variable (and, hence, of project type) which seems natural for the example concerned and/or
which is consistent with conventions adopted in related literature. Extensions of the theory to
projects with countable state space are discussed later.

3.1. Monotone policies are optimal for P (W)

The study of the indexability of descendant and ascendant projects is considerably simplified
by the fact that there always exists a monotone policy which is optimal for P(W). Denote the
monotone policy 7 such that

T(y)=b <— O0<y=<x-1

by xP. Note that OP takes the action a in all states while (N + 1)P takes the action b in all
states. Denote the monotone policy 7 such that

7(y)=a <<= 0<y<x

by x™. Note that (—1)? takes the action b in all states while N* takes the action « in all states.
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Proposition 1. (i) If project P is descendant, there exists some policy x® which is optimal for
P(W).

(i) If project P is ascendant, there exists some policy x® which is optimal for P(W).

The correspondence between descendant and ascendant projects noted above means that we
need only prove Proposition 1(i). Before we proceed to the proof, we need some preparatory
ideas and notation. Assume henceforth that P is descendant. Consider the state process
{X(t), t € N} evolving under policy xP. This is a Markov chain with one-step transition

. D
matrix p* , where

D
P 3 )=pP0 O <y<x—1D)+pi(y, ) [ x<y<N), yeQ.

We call this Markov chain the xP-chain. Write D(x) € Q for the communicating class of
state x for the xP-chain. Similarly, write D’(N) for the communicating class of state N for the
(N 4+ 1)P-chain. The following result is preparatory to the proof of the above proposition.

Lemma 1. (i) D(0) = {0} and 0 is an absorbing state for the 0P-chain.

(i) If x € 2\ {0} then D(x) has the form {y., yx + 1, ..., x}, where y, < x and is closed for
the xP-chain.

(iii) D'(N) has the form {y\;, yy, + 1, ..., N}, where y\, < N and is closed for the (N + 1)P-
chain.

Proof. Part (i) is a trivial consequence of conditions (D1) and (D2). We now prove part (ii).
Consider the xP-chain with initial state x. It is clear from conditions (D1) and (D3) that if
X (0) = x then the chain can never enter the subset {y; y > x 4 1} and, hence, there does not
exist y > x with y € D(x). Plainly, condition (D1) together with the right skip-free evolution
of (D3) imply that there exists y < x for which y € D(x). Use y, to denote the smallest such
and consider any y in the range y, < y < x. Condition (D3) implies that evolution of the
chain from y, to y in y — y, time units has positive probability as does evolution from y to x
in x — y time units. This, together with the fact that y, € D(x), plainly implies that y € D(x).
It then follows that D(x) must have the form claimed in the lemma.

Suppose now that D(x) is not closed and, hence, that there exist y € D(x) and z ¢ D(x)
with pr (v, 2) > 0. From the above argument, it follows that z < y,. However, under condition
(D3), evolution from z to y in y — z time units has positive probability, from which it follows
that z € D(x), which is the required contradiction. This completes the proof of part (ii). Part
(iii) is proved similarly.

We are now in a position to prove Proposition 1 for descendant projects. Before we do
so, the reader should recall the notation C” (y) and R” (y) for the average cost incurred and
the resource consumed, respectively, by the project per unit time when operating under policy
7 from initial state y. We thus have cost rate C* (y) and resource consumption rate R* (y)
when monotone policy xP is applied. However, it is clear that, under pohcy xP ;any ¢ descendant
project will become trapped in D(x) in finite tlme andDhence that C*° (y) and R’ ) c&o not
depend upon y. We thus use the notation ¢*” and R*" for descendant projects (and C* and
R*" for ascendant projects) without ambiguity.

Proof of Proposition 1. Consider policy 7 € S’ for descendant project P. We suppose
initially that w(0) = b, and define the integers r™ and xJ, y7, 1 < r < r”, as follows.
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If 7 # (N + 1)P then set
x7 = minfz; 7(z) = a}.

Otherwise, set x7 =y =N + 1. If x7 <N and w(z) = b for some z, x] +1 <z <N,
then set
yf =min{z; z > xT + 1 and w(z) = b}.

Otherwise, set yJ = N + 1. If yJ = N + 1 then stop and set " = 1.
We now proceed inductively. Suppose that we have x[, y7, 1 <r <r". If y7,_ <N +1
and yf, = N + 1, then stop and set r* = r/. If y;’, < N + 1, we continue as follows. If

7(z) = a for some z, y7, +1 < z < N, then set
x;’,H =min{z; z >y, + 1 and 7(z) = a}.

Otherwise, set x| = y7, =N+ L.IfxJ | <N and () = b for some z, x7_ | +1 <
z < N, then set
i, =min{z;z > x7,, + land 7(z) = b}.

Otherwise, set y,_ | = N + 1, and then stop and set 7™ =r' + 1.
We have
O<af <yf < <xF<yr=N+1L

We now define the subsets QF, 1 <r <r”, by

QF =,y + 1, yF =1}, 1<r<r", (8)

r

where we set yj = 0. Notethatx € Q7, 1 <r < r" — 1. Theactions taken by policy = when
applied to the states in any subset Q7, 1 < r < r" — 1, have the form {bb ... baa ...a}. Inthe
case of Q7 this remains valid when x% < y%. When x% = y%, then w(x) = b, x € Q7.
‘We now consider these cases in turn.

Case 1: x% < y% = N + 1. Consider project P evolving under policy 7. We say that
7 has a cycle at x' € QT if the communicating class D(x) € Q7F. Note that it is trivial to
deduce from Lemma 1 that 7 certainly has a cycle in set 7. It follows from the fact that the
set D(x) is closed for the xP-chain that, should the state process {X (¢), t € N} evolving under
7 ever enter one of the D(x) at which & has a cycle, then it will remain there. Suppose that
X(0) € QF, r > 1, and that  has a cycle at x]. It is clear from the nature of the one-step
transition matrix for the state process evolving under 7, denoted by p”, that in finite time the
system will either evolve to | J, -, Q7 or it will be trapped in D(x]7). If X (0) € Q7, r > 1,
and 7 has no cycle at x7, evolution of the system state to Uyp<r—1 227 is guaranteed in finite
time. It now follows simply that, from any initial state, the system evolving under = will in
finite time be trapped in one of the D(x]") at which 7 has a cycle almost surely.

Let X(0) = x and write p™ (r | x) for the probability that the system state, evolving from
x under policy m, becomes trapped in D(x]) at which 7 has a cycle. Conditional upon this
entrapment, the cost rate incurred in the problem P (W) under 7 over an infinite horizon is the
same as that incurred from any initial state under the monotone policy x; " This latter assertion
follows from the fact that, under conditions (D1)—(D3), the system state evolving from any state
under monotone policy yP becomes trapped in the closed set D(y) in finite time, almost surely.
We thus have an expression for the cost rate under & from initial state x of the form

b4 T _ T x;’D fo . yD yD
CT()+ WR™(x) =Y p"(r | ){CT +WR¥ }= min (C*" +WR"), (9
’ 0<y=N+1
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where the summation is over those r for which 7 has a cycle at x”. See (7) and note that
the average cost rates and consumption rates for the monotone policies featuring in (9) are
independent of the initial state x. From (9) we infer the existence of a monotone policy yP
with cost rate no higher than , uniformly over initial states.

Case 2: x[% = y&% = N+ 1. If X(0) ¢ Q7 then the analysis and conclusions of case 1
apply. Suppose now that X (0) = x € Q7. Over therange | <r < r" — 1 we continue to say
that 7 has a cycle at x77 if D(x7) € QF. However, the changed structure of Q7 in this case
means that we now say that 7 has a cycle at N if D'(N) € Q7. Suppose that 7 has a cycle
at N. It will then follow that, from any initial state x € Q7, the system state will, in finite
time, either evolve to | J, .~ | 2] or will be trapped in D'(N). Should 7 not have a cycle at
N then evolution to Uv<rn 1 Q7 in finite time is guaranteed. From this point, the argument
which yields the conclusion that there exists a monotone policy xP with cost rate for P(W)
no higher than that under 7, uniformly over initial states, is a minor perturbation of that which
concludes the consideration of case 1. This now concludes the consideration of policies & € §
for descendant project P for which 7 (0) = b.

When 77 (0) = a, we obtain the values xJ7, yJ, 1 <r <r", by setting x] = 0 and thereafter
proceeding according to the algorithm above (8). The sets @7, 1 <r <r”, are as defined
there. This case differs from the preceding setup in that now all actions taken by m in QF
are a. However, this means that, should the system state ever enter Q7 then absorption in state
0 is guaranteed, as would be the case from any state under monotone policy OP. With this
observation, a modest adjustment to the preceding discussion also yields the conclusion that
there exists a monotone policy xP with cost rate no higher than 7 uniformly over initial system
states. This concludes the proof of Proposition 1(i).

3.2. Sufficient conditions for the (strict) indexability of P and the related indices

In light of Proposition 1, the minimisation in (7) which defines problem P (W) can now be
re-expressed as

C(W)= min (C* +WR") (10)
0<x<N+1
in the descendant case and by

C(W) = lmm (C" + WR" )
—1<x<N
in the ascendant case. We continue to focus on the descendant case. As is plain from the above
discussion, the system state evolving under policy x becomes trapped in finite time in the set
D(x) when x € {0, 1, ..., N} and in the set D’(N) when x = N + 1. Consider some fixed
x in the range {1, ..., N}. Suppose that X (0) = x and that policy xP is applied. Use r}? to
denote the time of the first return of the system state to x, namely,

tD = min{r;1 € Z*, X (1) = x, and there exists s < 7 with X (s) # x}.

During [0, r? ) there is an initial sojourn in state x of expected duration (1 — p“(x, )L during
which resource is consumed at rate R(x) as the active action is applied and costs are incurred
at rate C%(x). This is followed by departure from x and sojourns in states y € D(x) \ {x} in
which xP takes the passive action and no resource is consumed. It will be convenient to write
mP(x) = E{‘E)P } and cP(x) for the total expected cost incurred by P (excluding charges levied
for resource consumption) during [0, t)]? ). It follows from the above discussion that

mP(x) > 1+ (1 — p*(x,x)"!

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

62 K.D. GLAZEBROOK ET AL.

and cP(x) > C%(x)(1 — p*(x, x))~!. Standard theory yields
' =PwmPwy!, R = RmP@( - p )}, T=x <N (D
The special features of the system evolving under OP and (N + 1)P yield the expressions
c®=c0. R =RO)

and
CcNHD? — DN 4 ymP(v + 1)), RWVDY — o, (12)

the new quantities in (12) having their natural meanings. We are now ready to state our main
result regarding indexability.

Theorem 1. (i) Descendant project P is indexable if R is decreasing in x over the range
0<x=<N+1

. . N o kD Lo
(ii) Descendant project P is strictly indexable if R* " is decreasing in x over the range 0 < x <

N +1and
C(x—H)D _ CxD

WP (x) := (13)

Rx® — RGx+1)P
is finite and strictly increasing in x over the range 0 < x < N. Under these conditions,
WP: Q — R is the index function.

Proof. Write xy for the largest x-value achieving the minimum in (10). Plainly, C(W) is
increasing, continuous, piecewise linear, and concave in W with right W-gradient equal to R*w
everywhere. Concavity implies that R is decreasing in W. The hypothesis of part (i) then
implies that xy must be increasing in W. Hence, the collection {xv?,, W e R} constitutes a
family of optimal policies whose passive sets b(x{?,) ={0,1,...,xw — l}areincreasingin W.
This concludes the proof of part (i). Under the hypotheses of part (ii), it is easy to see that the
minimum in (10) is achieved by x if and only if WP (x — 1) < W < WP(x), 0 <x < N +1,
where we take WP (—1) = —oo and WP(N + 1) = oco. Hence, if we take

aW)=xP — WPx-1)<w<WwPu), 0<x<N+1,

then {w (W), W € R} is a collection of optimal policies for P (W) whose related index function
is WP. The latter is strictly increasing and, hence, one-to-one. Hence, P is strictly indexable.
This concludes the proof.

In the strictly indexable cases of Theorem 1(ii), WP is the index function. The index in (13)
may be thought of as a marginal rate at which additional costs are incurred by being passive
rather than active in state x per unit of resource saved thereby. Nifio-Mora [13] referred to such
quantities as marginal productivity indices. In the more general indexable cases of part (i),
index values coincide with the W-values at which points of discontinuity in the right-gradient
of C(W) occur. These are easily obtained from the following algorithm.

Algorithm 1. Step 1. Calculate

cx’ — ¢
W, =

— O<)161;12+1 —ROD R (14)

and write x; for the largest minimiser. If x; = N + 1, stop.
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Step k. From the first k — 1 steps we have W-values Wi < W, < --- < Wj_1 and minimising
x-values x; < x3 < -+ < xp—1. If x4,—1 = N + 1, stop. Otherwise, calculate
D D
C*" — CMk=
Wy = min —_— (15)
xp—1<x<N+1 pX_; _ RxP
and write x; for the largest minimiser. Proceed to step k + 1 and continue. Define L € Z*
from the relation x; = N + 1.

It is straightforward to verify that the optimal policies {xﬁ,, W e R} yield the related index

function
L

W) =) Wil (et < x < xp), (16)
k=1
where we set xo = 0.
It is trivial to modify Theorem 1 and the content following to the case of ascendant assets.
For completeness, we now give the version of the main result which applies.

Theorem 2. (i) Ascendant project P is indexable if R s increasing in x over the range
-1 <x<N.

(i) Ascendant project P is strictly indexable if R s increasing in x over the range
—1<x<Nand

A C(x—l)A _ CxA
w (X) = RxA _ R(x—l)A
is finite and strictly decreasing in x over the range 0 < x < N. Under these conditions,

WA: Q — R is the index function.

The sufficient condition for indexability in Theorem 1(i) has a natural interpretation. As
x increases, so the policy xD takes the active (remedial) action in fewer states. As this
happens, the condition requires that the rate at which the resource is consumed under the
policy decreases. While this condition seems intuitive, it is certainly not universal. Indeed, we
know that indexability is not guaranteed, even for Whittle’s restless bandits in which resource
consumption is constant over projects and states. See, forDexample, Whittle [17]. In the case
of our more complex projects, recall from (11) that R* = R(x){mD(x)(l — p%(x, x))}_1
and, hence, the requirement that R be decreasing in x plainly makes demands on both the
project’s resource consumption function R and its stochastic structure p¢, p?. In Section 3.3
below we give examples of indexable descendant projects with state space N in which it is
natural to assume that the resource consumption function R is nondecreasing. In Example 1, it
is enough for indexability that R also be concave while in Example 2, the requirement is that
the increasing function R should meet another condition (19) which also involves the project’s
stochastic structure. The index WP (x) of Theorem 1(ii) may be understood as a fair charge
(per unit of time and per unit of resource) for the application of the resource (deployment of
the active action) in state x. When W = WP (x), both actions a and b are optimal for P (W) in
state x.

Extension of the above material to descendant projects with countable state space N is
usually easily achieved. Obvious modifications are made to Definitions 1 and 2. Consider any
stationary, deterministic, and Markov policy & for a descendant project P with state space N
and its active set

a(m) ={x;7(x) = a}.

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

64 K.D. GLAZEBROOK ET AL.

If a(r) is unbounded then, for any initial state x, there exists a smallest member of a(7), x,
say, which exceeds x. The state process for project P evolving from x under 7 can never leave
the finite set {0, 1, ..., x;}. We argue as in the proof of Proposition 1 that there must exist
some monotone policy yP, say, whose cost rate from x is no greater than that of 7. Should
a(m) be bounded, write Ny, for its largest member. Evolution of the state process of P under &
from any initial state in the finite set {0, 1, ..., N} is covered by the same argument. Should
P’s evolution from an initial state x > Ny 4 1 under policy 7 be such that entry into the set
{0, 1, ..., N} in finite time is either almost sure or has probability zero, then the conclusion
that there exists a monotone policy yP with no larger cost rate from x persists. In the latter case,
this monotone policy could be ooP which takes the passive action in all states. Consideration of
indexability/index functions then involves obvious modification to Theorem 1 and the material
following its statement and proof. Note that, in applying an appropriate version of the algorithm
around (14)—(16) to a project with state space N, there will be either a finite number of distinct
index values (L < o0) or a countably infinite number.

3.3. Examples of indexable projects

Example 1. (Machine maintenance.) Consider descendant project P with countable state N
and stochastic dynamics given by

pix,0)=1—p=1-p%x,0), x €N,

and
pb(x,x)zl—pzl—pb(x,x—i-l), x e N.

In words, a machine is subject to gradual deterioration in performance at constant rate. Larger
states correspond to higher degrees of wear. In the absence of any maintenance intervention
(i.e. under the passive action) the machine spends an expected time p~! in each state x before
moving to state x + 1. Under the active action, the machine state is changed instantaneously
to O (the pristine state) after which a single passive deterioration step takes place. Note that
this setup is covered by the above comments on countable state projects. We take C* = 0 and,
hence, the only costs incurred in taking the active action concern the charge for maintenance
resource. We assume that C? is increasing with C?(0) = 0.

Plainly, R = px_lR(x) and, hence, from (a modest extension to) Theorem 1, P is
indexable when the resource function R is increasing and concave. Furthermore,

x—1
D _
c=x"y ),
y=0

from which we infer that we have strict indexability when the index function

COHI® _ o (Y3, CP()} — (x + DIXIZH CP ()

wP(x) = = , xeZt, (7
()= o~ gasp Pl + DRG0 — xR + 1) (4"

is strictly increasing. Observe that the active action is suboptimal in state O and that the implied
index value is WP (0) = —o0. In the affine resource function case R(x) = R; + Rox, R > 0

and R > 0, wP is strictly increasing if C? is. More generally, if we extend C?, R to smooth
functions from R to itself then it is straightforward to show that WP in (17) will be strictly
increasing if there exists such an extension for which

c?(x)

R(x—1)— R(x) (18)
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is strictly increasing over x > 1, where a prime denotes differentiation. Strictly indexable
examples with index given by (17) include

(RC1) R(x) = R + RyIn(x + 1); C? increasing and convex;

(RC2) R(x) = Ry + RyIn(x + 1); C’(x) = C1x%, @ € [0, 1);

(RC3) R(x) = (R1 4+ R2) — Ryexp(—0x); ch increasing and convex;

(RC4) R(x) = (Ri + Rp) — Ryexp(—0x); C*(x) = Ci{l —exp(—nx)}, n < 6;
(RC5) R(x) = Rix%, a € (0,1); Ct(x) = C1x#, o < B.

Inthe above examples, R, R, and C are positive constants. The numerical study in Section 3.4
below considers index policies for problems in which there are between 10 and 140 machines
to be maintained. In the study, the specification of each machine is as above, with the resource
and cost functions as in (RC3).

Example 2. (Machine maintenance.) We develop a machine maintenance model in which
costs are incurred at (catastrophic) machine breakdowns. Any such breakdown is deemed to be
followed by renewal of the machine at some high cost (K). Breakdowns can be preempted by
maintenance actions in the form of a planned renewal of the machine which consumes resource
R(x) when undertaken in machine state x. As in the previous example, large machine states
correspond to more advanced age/wear. Stochastic dynamics for descendant project P are
given by
pi(x,0)=1, x €N,

and
PP, 0 =px)=1-plx,x+1), x €N,

where the sequence {p(x), x € N} of breakdown probabilities is assumed nondecreasing.
Direct computation yields

x ry—1 x—1 —1
mP(x) = (Z[]’[{l - p(z)}D[]‘[{l - p(y)}] . xeNl
y=0"-z=0 y=0

Since we have 5
RY = R(x){mP(x)} ™",

it is straightforward to establish that the sequence {RXD, x € N} will be decreasing and P will
be indexable whenever {R(x), x € N} is increasing such that

RX){l — p(x)}~' = R(x + 1), x eN. (19)

However, (19) is achieved if and only if there exists a sequence {§(x), x € N} with§(x) € [0, 1]
for all x and

Rx+1D={1-8x)px)Hl — p(x)}_lR(x), x € N. (20)
Furthermore, we have

¢’ = K@ép(y) [yl"[]{l - p(z)}D <§

z=0 y=0

y—1 -1
[n{l - p(z)}]) , xeZ".

z=0
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If we suppose that the active action is disallowed in state O then strict indexability will be
achieved when

is strictly increasing over Z*. Straightforward calculation yields the conclusion that this will
be achieved when the § sequence above satisfies

8)p){l — pOHL =8 p(0)} ™" = 8(x + Dpx + 1), x eN. 21

If we specialise to the case p(x) = p, x € N, then we see that any sequence {§(x), x € N} of
values in [0, 1] yields indexability in (20). However, (21) implies that either 6(x) = 1, x € N,
or that §(x*) < 1 for some x* € N and that, for x > x*, §(x) decreases to zero faster than the
log-concave sequence obtained by enforcing equality in (21) over this range.

Example 3. (Asset management.) Consider ascendant project P with finite state space {0, 1,
..., N} which models a reward earning/cost incurring asset whose reward/cost performance is
strongest for high states. The asset deteriorates under the passive action, but this deterioration
can be arrested by an active intervention. We shall suppose that, under the active action a
applied in any state x, resource of fixed magnitude R leads to an upward movement in the asset
state of random size X. All such upward transitions are truncated at the maximal state N and
so strong improvements to the project are less easily won for high states. We suppose that X
has probability mass function (PMF) {py, y € Z"}. Active stochastic dynamics are given by

Pl x+y)=py (1 <y <N—x)+Fy_I(y=N—x), (22)

where F, = Zy>n py- Passive dynamics model gradual deterioration of the asset at constant
rate and are given by

pPex)y=1—p=1-p’x,x—1, 1<x=<N,

and
p20,0) = 1.

It is straightforward that R-D* =0 and
xA L -1
R* =pR{F(x)} ", (23)
where
N—x
F(x)=Y_F,.
y=1
It is straightforward that RxA is increasing in x over the range —1 < x < N and, hence,

from Theorem 2, that P is indexable. We take C¢ = 0, and assume that C? is decreasing
(equivalently, returns are increasing in the state). We then have C D% = P (0) and

N—x
ot = {Z Chx + y)Fy}mx)}—l, 0<x<N. (24)
y=1

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

Monotone policies and indexability for bidirectional restless bandits 67

From (22)—(24) we conclude that

N
WA(©0) = [Z{C"(O) - c”@»E}(pR)‘

y=1

and

N—x
WA ) = [Z {CP(x) = C"(x + MHpy F(x) + FyFNm}]
y=1
x (pRFy—x+1)™', 1<x<N. (25)

An additional assumption that C? is strictly convex guarantees that W (x) is strictly decreasing
over the range 1 < x < N. This then yields from Theorem 2 an appropriate form of strict
indexability if the active action is mandated for the project in state 0. Project indices are given
by (25). To extend strict indexability to the range 0 < x < N requires an additional stipulation
that C?(0) > C, where C is chosen to enforce WA(0) = WA(1).

Further generalisation and simplification is possible when we consider the limit N — oo in
the above such that active stochastic dynamics become

Pa(xax‘f'y):Py: )’GN,

while passive dynan}%ics are unchanged. We consider a general resource function R: N — R,
and now have R~D" = 0 and

R = pROOE(XD™!,  xel.
Indexability is now guaranteed for any increasing R. Direct computation yields
WA = [C7(x) —E(C"(x + XNIP(R™) — Rx = D', xeZ,

which will be strictly increasing whenever C? is strictly decreasing and strictly convex and R
is strictly increasing and strictly convex. Under these conditions, we infer strict indexability
when the active action is mandated in state 0. As before, to extend strict indexability to N, we
need to impose a lower bound on C b(0).

3.4. Numerical study

We now briefly present some numerical evidence in illustration of the power and efficacy
of indices as building blocks for the construction of strongly performing heuristics. We shall
take the machine maintenance problems given above as Example 1 and consider scenarios
which involve the maintenance of collections of machines which number between J = 10
and J = 140. All such examples are comfortably beyond the realm where the calculation of
optimal policies by standard DP methods is feasible. Each of our machines will share a common
deterioration rate p, and will have resource consumption function and cost function as given in
(RC3). To model the resource required to maintain machine j, we make the parameter choices
Rij =1—exp(—z;/10), R2j =1 — Ry}, and 0; = 0.1, while the cost rate under the passive
action in state x is given by C 5’ x)=y sz, 1 < j < J, where the machine specific constants
y; and z; are now specified.

We shall make the choice z; = 20j/J, and so, as j increases, the machines become
increasingly resource intensive to maintain. We choose the cost parameters y; to reflect
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the likely corresponding importance of the more demanding machines in cost terms and set
yj = 2+Yj/J for some constant Y. Hence, machine costs in state x vary from 2x%to 2+Y)x2.
In our study we consider the performance of five heuristic policies for machine maintenance
for arangeof Y, J, and p.

The first two of our heuristic policies are the first of the index heuristics described in
Remark 4, namely the greedy heuristics GI and WGI. Note that, for problems of the size
considered here, the knapsack approach to the construction of index heuristics becomes
computationally intractable, notwithstanding the ready availability of the indices themselves.
The heuristic STATE allocates resource to machines according to their current state value x;,
in descending order, while the heuristic MYOP uses the current cost rate Cj.’ (x;) similarly.
If all machines were identical, these four heuristics would coincide. In addition to these,
a decentralised round-robin (RR) heuristic is also considered. At each timestep, a batch of
consecutively numbered machines (modulo J) is chosen for maintenance by the RR heuristic,
the batch being determined sequentially until the next candidate machine cannot be included for
lack of resource. At the next timestep, this is the first machine to be included in the following
batch.

InTables 1-3 we present the time average costs incurred when these five heuristics are applied
in 36 different problem scenarios. These costs are estimated by Monte Carlo simulation. We
provide these results as snapshots which illustrate a generically coherent picture across a much
wider range of parameter choices than those actually presented. In each of the tables the
final column headed LLB (Lagrangian lower bound) is a lower bound on the optimal cost rate
achievable which is obtained from the Lagrangian relaxation in (5). If we write C°P*(W) for
the value of the Lagrangian relaxation then

LLB := max C°PY(W)
WeR+
is a lower bound on the optimal cost rate C°P'. It is not difficult to show that LLB is equal to
C°P, the value of the relaxation in (4) which enforces average resource usage.

As the number of machines in each problem set grows from 10 to 140, the resource R
available also grows, roughly in proportion. Note that in the range 10 < J < 30, in which
the number of machines is relatively small, the heuristic GI can make relatively poor use of the

TaBLE 1: Cost rate estimates for five heuristics and the LLB for machine maintenance problems with
J=10to J =140, p = 0.9, and Y = 10. See the text for details.

J R GI WGI STATE MYOP RR LLB

10 2 144.71 134.25 143.58 137.91 194.80 99.26

20 3 619.79 614.78 639.89 638.03 890.17 544.87

30 5 664.89 661.63 676.31 729.82 885.92 623.32

40 7 773.38 772.90 796.86 848.66 932.94 742.90
9

50 892.23 894.49 931.07 972.29  1030.94 865.72
60 11 101490 1019.26 1064.37 1099.34 1186.77 989.87
70 13 113797 114486 1196.26 1227.49 1328776 1114.78
80 14 1548.87 1554.82 1603.86 171694 1765.82 1523.87
90 16 1668.44 1677.48 1739.66 1840.46 1867.50 1645.39
100 18 1790.11 1801.48 187420 1965.57 2009.84 1768.15
120 21 232741 233991 2413.84 2590.05 2577.05 2304.80
140 24 2869.43 2883.80 2950.35 322235 324243 2846.81
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TaBLE 2: Cost rate estimates for five heuristics and the LLB for machine maintenance problems with
J=10to J =140, p = 0.9, and Y = 14. See the text for details.

J R GI WGI STATE MYOP RR LLB

10 2 185.84 172.40 186.33 179.02 248.67 127.93
20 3 794.44  789.52 828.85 819.14 1141.16  696.58
30 5 853.16 852.30 874.28 945.07 1136.49 800.05
40 7 990.07 990.94 1032.79 1092.63 1197.49 951.19
50 9 114159 114294 120828 1248.61 1323.55 1107.25
60 11 1297.40 1300.03 1381.74 141091 152430 1265.67
70 13 145536  1459.23 155330 1574.43 1707.07 1425.43
80 14 198445 199032 2081.22 2209.06 2268.54 1952.46
90 16 2136.96 2142.80 2258.13 2364.93 2399.10 2106.82
100 18 2292.08 2298.74 243358 252391 2582.55 2262.94
120 21 2983.10 2993.12 3132.86 3331.55 3311.18 2953.74
140 24 368246 3701.64 382638 4151.06 4166.80 3652.82

TaBLE 3: Cost rate estimates for five heuristics and the LLB for machine maintenance problems with
J =10to J =140, p = 0.8, and Y = 10. See the text for details.

J R GI WGI STATE MYOP RR LLB

10 2 104.11 97.11 107.48 98.04 162.20 74.64
20 3 448.56 440.61 462.87 463.63 683.29 389.37
30 5 480.52 477.03 500.51 510.00 691.72 442.83
40 7 542.79 541.26 565.48 579.25 704.78 504.20
50 9 615.69 615.29 634.60 667.12 830.92 567.52
60 11 695.27 696.33 710.60 764.67 953.02 658.42
70 13 779.50 781.89 792.25 866.77 1068.85 751.64
80 14 107355 1079.80 1116.28 1156.87 1384.94 1042.55
90 16 1141.96 1149.22 1178.47 1244.44 1496.57 1104.99
100 18 1216.55 122349 124579 133955 1617.68 1167.63
120 21 1607.16 1621.36 1668.94 1734.13  2047.21 1580.85
140 24 2018.55 2039.64 211345 2160.73 2520.09 1996.53

available resource and is generally outperformed by the WGI heuristic. It is also true that, for
these relatively small values of J and R, the relaxation which yields LLB is likely to admit a
range of unfairly better policies which, in achieving an average resource usage of R, frequently
deploy actions which are inadmissible for the original problem. Notwithstanding this relative
looseness in the bound for small problems, it is already clear that, for the / = 30,R = 5
case, the index heuristics are unlikely to be far from optimal. As the value of J increases
above 50, say, the propensity of GI to make poor usage of the available resource diminishes in
importance and it begins to outperform WGI. It is also true that as J and R grow, the bound
LLB becomes tighter such that we observe progressively smaller percentage excesses of GI
over LLB with the associated suboptimalities of GI guaranteed to be no larger than around 1%
when J = 140, R = 24. In all cases, whichever is the appropriate choice of index heuristic, it
clearly outperforms STATE, MYOP, and RR. The results in Tables 1-3 show very clearly the
value of indices in the construction of good policies.
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4. Abandoning skip-free dynamics: applications to inventory control

We now abandon the assumption, omnipresent in Section 3, of skip-free dynamics (right or
left, as appropriate) under the passive action for project P = {2, p9, pb ,Cce. c?, R}. In this
section we shall rely more heavily on project P’s cost structure to guarantee the optimality
of monotone policies for P(W). Our primary envisaged application area for this material is
inventory control and our terminology and some of the notation will reflect that. The multi-
project problem may be thought of as one concerning the cost-effective management of a
network of stock-holding locations by a central controller. It will, for example, be convenient
to write the state space of P as 2 = {0, 1,..., M + N}, where M, N € Z%. In an inventory
context, positive integer N is a maximum stock level, while M is a maximum allowed number of
backordered customers. The project state may be understood as the inventory level augmented
by M, where a negative stock level represents a number of backordered customers.

Further project details are as follows. The active action a applied in state x returns the project
state instantaneously to the pristine (fully replenished) state M + N, from where it moves to
state (M + N — D)™, where D is a positive integer-valued random variable with support N and
PMF {py, y € N}. When the passive action is applied in state x, we observe a state transition
x — (x — D)T. Hence, active dynamics for P are given by

P, y) = puin—yI(1 <y <M+ N)+ FyynI(y =0), (x,y) € Q2 (26)
while passive dynamics are given by
PPy =peyIA <y <0+ FI(y=0),  (x,y) e, 27)

where Fy =3 . py.

In an inventory example, D is the demand for the stock during a single time unit (which we
shall take without loss of generality to be one day). We shall write E{D} = A, assumed strictly
positive, and call A the demand rate. State x represents stock level x — M, observed at the start
of a day. Under active action a, stock is replenished instantaneously (to its maximum level N)
and must then meet that day’s demand. The consequential one-step transition probabilities are
given in (26). Under the passive action b, there is no replenishment, the stock level is depleted
by one day’s demand and the one-step transition probabilities are given in (27).

The stochastic dynamics in (26) and (27) model any project P whose deterioration under
the passive action is a random process with stationary and independent positive integer-valued
increments, while the active action uses resource to restore P to some pristine state. Inter alia,
this also forms the basis for a natural model of machine maintenance problems with passive
dynamics which are not right skip-free.

Project costs are modelled as follows. The active action taken in state x incurs a direct
cost C(x), say. There are additional costs associated with state deterioration. The latter are
determined by the decreasing function ®: (—oo, M + N]NZ — R*. Expected costs incurred
when actions a and b are respectively taken in state x are given by

Cx)=C(x)+E{®M + N — D) — d(M + N)}, x e,

and
Cb(x) =E{®(x — D) — d(x)}, x € Q. (28)

In inventory examples, we set ® (M + N) = 0 and ® (x) is interpreted as the total inventory cost
incurred in a single cycle of the system (i.e. between successive replenishments) which reaches
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state x. If @ is assumed to be convex then C?(x) in (28) is decreasing in x, as is appropriate
in many applications, including machine maintenance. Finally, R(x) is the resource consumed
when the active action is taken in state x. It is natural to suppose that both R and C are
decreasing.

We shall suppose until further notice that Condition 1 below is satisfied. As we shall see later,
for some important examples, the need to meet Condition 1 implies that the range of values of
the resource charge W must be constrained. In (29) below we use the notation x* = max(x, 0).

Condition 1. The function Wy : (—oo, M + N1NZ — R given by
Wiy (x) = C(x™) + WR(xT) + @(x) (29)

is decreasing and convex.

4.1. Monotone policies are optimal for P (W) under Condition 1

We now consider optimisation problem P (W), which is as in (7). We seek a policy to
minimise the rate at which an aggregate of replenishment costs, inventory costs, and resource
costs are incurred over an infinite horizon from any initial state.

Lemma 2. Under Condition 1, there exists some monotone policy x® which is optimal for
P(W).

Proof. We consider two cases.

Case 1: the passive action is optimal for P(W) in state 0. Under the above assumptions
concerning stochastic structure, entry into state 0 is guaranteed in finite time under all policies.
If #(0) = b then, under 7, state 0 is absorbing. It follows that any such policy has the same
cost rate as (—1)*. Hence, in the case the monotone policy (— DA must be optimal.

Case 2: the active action is strictly optimal for P(W) in state 0. In such cases we can
optimise over Sp, the class of policies which mandate the active replenishment action in 0.
Furthermore, it is straightforward to establish that, for any policy in Sp, entry into state O in
finite time is guaranteed, irrespective of the initial state. Hence, we do not need to be concerned
about dependence on the initial state in (7).

Write V;(x) for the minimum cost incurred by a member of Sy over a ¢-day horizon from
initial state x. From the above project details, the DP recursion for V; gives

V;(0) = C(0) + WR(0) + E{®(M + N — D) — ®(M + N) + V,_1 (M + N — D))}

and
V;(x) = min[C(x) + WR(x)
+E{®M + N — D) — &M+ N) + V.1 (M + N — D)")};
E{®(x — D) — ®(x) + Vi—1((x — D))}, I1<x<M+N. (30

Note that the expectations in (30) are taken with respect to the distribution of the daily demand D.
We now write

Vi(x) = Vi(x) — C(x) — WR(x), 0<x<M+N,teN.

This derived quantity has an interpretation as the minimum cost (over Sp) over a 7-day period
from state x when replenishment costs are accounted for incrementally as demand is met rather
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than when the active action is taken. From (29) and (30), we have

Vi(0) = E{Ww(M + N — D) — Wyw(M + N) + V-1 (M + N — D))},

_ - _ (31)
V,(x) = min[V; (0); E{W (x — D) — Wy (x) + Vi—1 (x — D))}

for 1 <x < M + N. From Condition 1, it follows that the expectation
E{Ww(x — D) — Wy (x)}

is positive and decreasing in x. Setting Vo =0 (i.e. Vo = C + WR), it then follows from (31)
and an induction argument that V; (x) is decreasing in x for all # € N. Standard arguments from
reward-renewal theory guarantee that the bias function given by the limit

v(x) = tlggo{f/,(x) - ViM+N)}, O0<x<M+N,

exists and is finite. The decreasing nature of V,(x) for all ¢ implies that v(x) must also be
decreasing in x. From (31) we express the DP recursion for the average cost problem P (W)
as

C(W)+v(0) = E{Wy(M +N — D) — Wy (M + N) +v((M+ N — D)")},

32
C(W) 4+ v(x) = min[C(W) + v(0); E{WUy (x — D) — U (x) + v((x — D)N)}] (32)

forl <x <M+ N.In (32), C(W) is the optimal average cost (including resource costs) for
P(W). From (32), if the active action is optimal in state x then

E{Ww(x — D) — Wy (x) + v((x — D)F)} = C(W) + v(0),
from which we infer that
E{Ww(y — D) — ¥w () +v((y — D)")} = C(W) + v(0), l<y=x,

and, hence, that the active action is optimal in all states y < x. We infer the optimality of
monotone policies of the form x”. This concludes the proof.

4.2. Sufficient conditions for the (strict) indexability of P and the related indices

We now progress to consider issues concerning the (strict) indexability of P. These are
considerably more challenging than the skip-free models of Section 3. Before proceeding
further, we specialise to the case

R(x)=Ri+R(M+ N —x), (33)

where R1 = R(M + N) and R; are both positive constants. Namely, the resource consumed
by the act of replenishment in state x is an affine function of the quantity supplied. Further
specialising by taking R; = 0 yields the case where the key resource is the stock to be supplied,
while taking R, = 0 gives the case where the key resource is the availability of replenishment
opportunities. From Theorem 2 (more exactly, a modeAst extension thereof), the crucial step in
establishing indexability is the demonstration that R*  is increasing in x. This is now stated
and proved.

AL, .
Lemma 3. R* is increasing in x over the range —1 < x < M + N.
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Proof. We begin by observing that RED* =0 and R >0,0<x<M+N. Fixxin
the latter range. Let {D,, n € Z"} be a sequence of independent and identically distributed
random variables (successive daily demands) each with the distribution of D. We introduce the
process {Y (¢), t € N} by

t
Y(1):=M+N—> D,
n=1

and define the related stopping time by

A :=min{r;r € Z* and Y (1) < x}.

If active action a had been taken at time O then 7/ is the first subsequent time at which the
active action is taken under policy x*. As before, we write m” (x) = E{tf} and express the
distribution of Y(rf) by

q(y | x) :=P{Y(E}) = x -y}, y €N.

Using standard reward-renewal theoretic arguments, it is straightforward that the rate of resource
used under policy x* is given by

A R+ RE{M+N—Yt ()

K mA (x)

, 0<x=<M+N. (34)

By a simple argument based on realisations of the process {Y (¢), t € N} we observe that, for
y>landx > 1,
gy =11x =1 —=q(y | x)=qx)py, (35)

where

o

q(x) = P{U{m) = x}}

t=0
is the probability that the process ever hits state x. Now, the process {Y () + Az, t € N} is
plainly a martingale and we deduce from the martingale stopping theorem that

E{Y(z2)} 4+ Am*(x) = M + N, (36)
and, hence, that
mA(x):A_l{M+N—x+qu(yIx)}. (37)
y=0

It follows from (35) and (37) that
mA(x — 1) —mA(x) = g(x), (38)

from which we conclude that, in order to prove that R* s increasing in x, it is enough to show
that the quantity

E(yf(z) — Yt} _ Yz yqgx +y | x)

M+ N —E{Yz})} M+ N —E{Y(z})}

a(x) =

is decreasing in x over therange 0 < x < M + N.

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

74 K.D. GLAZEBROOK ET AL.

Suppose now that M + N > x > 1. Repeated application of (35) and straightforward
algebra yields the identity

[M + N — E{YM)IM + N — E{Y2 Dfa(x — 1) —a(x)}
= q(x){(Z ypm)[M + N —EY@HI - 1) ygx+y | x)}
y=1 y=1

= q()p(x), (39)

say. It is easy to see that (M + N) = 0. Further direct calculation yields

Blx—1) = B(x) = (Z px+y_1>[M + N = E{Y@) +g()] > 0,

y=1

and, hence,
B(x) >0, 0<x<M+N -1,

from which we in turn infer that
alx —1) > alx), 1<x<M+N.

Hence, a(x) decreases in x over the range 0 < x < M + N. This concludes the proof.

At this point in the discussion, and in particular before we explore strict indexability for P,
it will be helpful to be more explicit about project costs. We now take

Cx)=K+C(M+N —x) (40)
as the model for replenishment costs, with inventory costs given by
Ox)=bM —x)I0O<x<M)+ bM —Ix)I(x <0), xe(—oo,M+N|NZ. (41)

In (40) we make the standard choice that C(x) is an aggregate of a fixed order cost (K) together
with a payment for the items supplied, levied at a per unit cost C. We interpret (41) as follows:
b is a cost incurred per backordered customer (of whom there will be (M — x)7 if state x is
reached) while [ is the cost incurred for each lost sale. All constants K, C, b, and [ are positive.
We assume that [ > b. Typically, we have [ > b. Note that we exclude inventory holding
costs. These are assumed to be negligible in comparison with those associated with shortages.
We shall see later that the piecewise-linear model in (41) may be generalised to a convex model
for inventory costs without seriously compromising the main results.
From (29), (33), (40), and (41), we have

Yyx) =WRi+ K+ (WR,+C)(M+ N —x)I(M <x <M+N)
F{WR+C)N+ (WR, +C+Db)(M —x)}[(0<x < M)
+F{WR, +CO)N+ (WRy + C+D)M — Ix}I(x < 0)

for x € (—oo, M + N]N Z. For Condition 1 to be met, we need the resource charge W to be
constrained to the range
Wel-R'C,R;'(I—b—O)l.
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Note that, when Ry = 0 and the key resource is opportunities for replenishment, we have
a development of the restless bandit model of Archibald et al. [2], and the range of W is
unconstrained. It is when R, > 0 that the resource used by the replenishment action is state
dependent and the range of W is constrained to a finite interval. Such a constraint on the
range of W requires a modification of the notions of indexability/index functions introduced in
Definition 1 as follows.

Definition 3. Project P is indexable over the range [W;, W] if there exists a collection of
policies {m (W), W e [W1, W>]} such that

(1) m(W) is optimal for P(W) for all W € [W}, W,]; and
(i1) b(x(W)) is increasing in W over the range W1 < W < W,.

The related index function W: Q — R U {—o00, oo} is given by

Wi if x € b(w(W)) forall W € [W}, W],
W)= W, if x ¢ b(w(W)) forall W € [Wy, W],
inf{W; x € b(m(W))} otherwise.

If project P is indexable over [W, W>] then it is strictly indexable over [W{, W] if, for any
x # y for which W(x) ¢ {W, Wa} and W(y) ¢ {W, W»}, we have W(x) #= W (y).

In what follows we shall establish (strict) indexability over [- R, I'c , Ry ! (I —b—C)]for
the project under given conditions. We shall see that this in turn implies strict indexability for the
project over R, and so will be sufficient for our purposes. See Remark 3 following Definition 1.
We begin by the elucidation of indexability of the project over [—R;lc, R;l (I—-b—-0)].

Theorem 3. Project P with resource function (33) and costs given by (40) and (41) is indexable
over [-R;'C, Ry (I —b— O)].

Proof. 1t is easy to show that, under the conditions of the theorem, Condition 1 is satisfied
over the range W € [—R, ''c, R%_ ! (I — b — C)]. It then follows from Lemma 2 that over this
range there exists some policy x** which is optimal for P(W). We thus have

CW)y= min (C" +WR™), Wel-R'C.R;'(-b—0O)]. (42
—1<x<M+N
From Lemma 3, R is increasing in x over the range —1 < x < M + N. An appropriate
variant of the argument in the proof of Theorem 1 now establishes the existence of a minimising
xw in (42) which decreases as W increases through the interval [- R, lC, Ry 1(l —b—-0)].
This establishes indexability for P over [-R, ! C,R, ! (I — b — C)] and concludes the proof.

We now focus on strict indexability and on the specification of the index function. It will
simplify calculations if we introduce the quantities

X

A E{M+N—Y+(T?)}
o mA(x)

and

0<x<M+N. (43)

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

76 K. D. GLAZEBROOK ET AL.
Note that p"A is the long-run average rate at which stock is consumed under policy x*. From
Theorem 2, key quantities for strict indexability are

C()cfl)A _ CxA pr _ p(xfl)A

A _ _ A
W (X) - RxA _R()C—I)A =w (X){

m}, 0<x<M+N. 44)

Lemma 4. Under the hypotheses of Theorem 3, W™ (x) is strictly decreasing over the range
0<x <M+ Nwhen K >bN andl > C + b.

Proof. 1t is straightforward that, for the cost model in (40) and (41), we have
" = (K + CE{M + N — y*t(z? YA — Y (eA
= T+ PE{{M — Y ()} — Y (7))}
+IEY~@HH{m )}, 0<x <M+N. (45)
Note that C=D* = [x. The expression in (45) may be simplified by observing that
YD) =Y @h -y @),
from which it follows via (36) that

amA(x) —B(M +N - Y @M} =EM+N - Y2} —EM + N — Y+ (h)
=E{Y (M)}

Using this identity in (45), we infer that
C" = Al —b)+ (C+b—Dp*" +[K +bE{M — Y (T m ()} ™. (46)
It follows from (43) and (46) that

o*(x)=(1—-C—b)
mA()[K +bE{M — Y (2 )}T1—m®(x — D[K + bE{M — Y (t2)}T]

47
mA(x — DE{M + N — Y+ ()} — mA(x)E{M + N — Y+(rf_1)} “7)

for0 < x < M + N. In order to simplify the expression in (47), we recall from (38) that
mh @) —m*x = 1) = —q(x) (48)

and from the material around (39) that
mA(x — DE{M + N — YT @M} —=m 0)E{M + N — YT (2 )
=2"'m = D Ofa(x — 1) — a(x))
=2"1g)Bx). (49)
‘We further observe that
M—YEHY =M -Y(}), 0<x<M,
and, hence, from (36) that

E{M — Y (M) =am®(x) = N, 0<x<M. (50)
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It follows from (50) and the material around (39) that

mAOEM — Y (@2 D} —mA(x — DE{M — Y (z)} AN

mA(x — DE{M + N — Y+ (2} —mAE{M + N — Y+ (2 )} - B(x) 6D

for 0 < x < M. We now consider the range M < x < M + N and introduce the quantity

Bu(x) = <Z ypx_M+y)[M +N=EY @O -1 ygc— M +y | x).

y=1 y=l1

Compare with the expression for (x) in (39). By calculations similar to those around (39) we
can show that 8y (x) is strictly decreasing in x over the range M < x < M + N. Furthermore,
straightforward algebra utilising (35) yields

mA(OE{M — Y (2 DT —mA(x — DE{M — Y(z)}T _ Bux)
mAGx — DE{M + N — Y+(2)} —mAWE{M + N —Y+(2 )} B&)

(52)

for M < x < M + N. Compare with (51) and note that it is easy to check that 8y (M) = AN.
Combining (47)—(52) yields

WA = | (- C=D —AE BN, 0= M, -
(—C—=b)— {xK —bpu N} ™!, M <x<M+N.
It is straightforward from earlier calculations in and around (34) and (39) that
A x=DA
P P _ B(x)
R RGO~ Rt Raply’ S =MAN
and, hence, from (44) and (53) we have
WAG) = | (= C = D@) = (K —bN) Rk + Rap )", 0<x<M,
W= C =)&) — (KA — BB OD{RIA+ RyB(x)} ™!, M <x <M+N.
(54)

The two expressions in (54) are indeed in agreement at x = M. The strictly decreasing nature
of Ba(x) over the range M < x < M + N together with the condition K > bN guarantees
that

KX >bNXA > bBy(x), M+1<x<M+N.

That WA (x) is strictly decreasing in x over the range 0 < x < M + N under the hypotheses of
the lemma then follows easily from (54). This concludes the proof.

The following result is now an immediate consequence of the above lemma.

Theorem 4. Under the hypotheses of Lemma 4, project P is strictly indexable over [— R, 'c,
Ry ! (I — b — C)] with related index function given by

W(x) = max{WA(x), =R, 'C}, 0<x<M+N,

where WA(x) is as in (54).
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Proof. We define x* by

*:= min S WAx) < —R;'C),
X osxs}wﬂv{x (x) < —R, C}
and note from Lemma 4 that the index introduced in the statement of the theorem satisfies
W(y) > —R, IC, 0 <y < x™ — 1, and is strictly decreasing over this range. Note also from
(54), together with the argument following, that

W) <R\ 1 —b—0), 0<x<M+N.

Furthermore, following the statement and proof of Theorem 3, we can easily infer that, under
the condltlons of the theorem, there exists a collection of policies {7 (W), W € [-R; I'c,
(l — b — C)]} such that w (W) is optimal for P(W) and is given by

= DA, —RIIC<W < Wt -1,
(W) = { x4, Wrx+1)<W<Wkx),0<x<x*—2,
(—DA, W) <W <R;'(—b-0).

The strict indexability of P over the range [R5 'c Ry ! (I — b — C)] with W the related index
function now follows easily. This concludes the proof.

The following is the central result of this section and follows straightforwardly from the
foregoing analysis.

Theorem 5. Under the hypotheses of Lemma 4, project P is strictly indexable over RT. The
value of the related index function at x is given by W(x) = {(WAx)}t,0 <x < M + N,
where WA (x) is as in (54).

Proof. From the proof of Theorem 4 we note that the policy (—1)* which never
replemshes stock is optimal for P(W) over the range max{W?(0), — _IC } < W <
Ry (l — b — C). It follows that the associated optimal cost rate is C(W) I\, over
this W-range. However, C(W) is plainly nondecreasing in W and, hence, it must follow
that C(W) = IA, maX{WA(O) —R_1C} < W < oo, with the idling policy (—1)* optimal
whenever W exceeds max{W* (0), — _1C }. The result now follows by a simple modification
of the argument in the proof of Theorem 4.

Remark 5. Asexplained in Remark 3 following Definition 1, Theorem 5 enables us to construct
index heuristics for our inventory control problems after the fashion described in Remark 4. Our
numerical experience, some of which is reported below, is that the resulting policies perform
strongly, especially when penalties from lost sales are a major concern, as is usually the case.
The form of WA given in (54), together with the fact that S(M + N) = 0, implies that
wA (M + N) < 0 and, hence, that the related index for state M 4+ N given in Theorem 5 is
zero. It then follows that our index heuristics never replenish a stock-holding location when its
stock level is maximal. For all other states x, it is clear from (54) that the value of WA (x) is
strictly increasing in the lost sales rate / and so (in particular) the location index in Theorem 5
can be forced positive for large enough / and will be dominated by a measure of the additional
costs incurred by lost sales in the absence of any stock replenishment.

We now consider a generalisation of the piecewise-linear inventory costs in (41) to

Px) =)0 <x <M)+ (¢(0) —Ix)I(x <0), xe(—oo,M+NINZ, (55)
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with ¢ decreasing and convex such that ¢ (M) = 0. Hence, we have a general convex model
for backorder costs (which are notoriously difficult to quantify) while retaining a linear model
for the costs from lost sales. To achieve indexability, we restrict to the class of stationary
policies Sy for which 7(x) = a, 0 < x < M. Namely, a replenishment is mandated as soon
as a stockout occurs. We shall refer to Sjs-indexability, Sys-strict indexability, etc. in what
follows. This restriction of policies to Sy can be thought of as reducing the state space of P to
M+1,M+2,...,M+ N}.
The analysis of this case rests on the fact that ® may be expressed as

M
DO(x) =Y {p(M —m) =20 (M —m + 1)+ $(M —m +2)}
m=1
XM—-x)I0<x=<M-m+1)
+(@0) = Ix)I(x <0), x € (—oo, M + NINZ, (56)

where we take ¢ (M + 1) = 0. The superposition of linear terms in (56) permits an analysis
akin to that in Theorem 3/Lemma 4/Theorem 4/Theorem 5. The proof of Theorem 6 below is
available from the authors.

Theorem 6. Project P with resource function (33) and costs given by (40) and (56) is
Sy-indexable over RT. It is also Sy-strictly indexable over RT when K > {¢(0) — ¢ (1)}N
andl > C + ¢(0) — ¢ (1) with related index function given by

W) = {WA))", M+1<x<M+N,

where

WA ) = ({l —C =90 +¢o(D)}B(x)

M
- [K?» - Z{¢(M —m)=20(M —m+1)+¢M—m +2)}/3Mm+1(X)D

m=1

x {RiA+RB(x)})™", M4+1<x<M+N.

4.3. Numerical study

We explore the performance of the greedy index heuristic GI in a two-phase numerical
study. In the design of GI, we use the indices given in Theorem 5 throughout. In the first
phase we explore its performance in 640 problems, each involving three inventory-holding
locations. These problems are sufficiently small that direct comparisons with the optimal of the
cost performance of GI and other natural heuristics for the problems is possible. In the second
phase of the study, the cost performance of GI is compared with a range of natural heuristics
for networks consisting of between 10 and 100 inventory-holding locations. These problems
are sufficiently large that direct application of DP to obtain optimal costs is out of the question.

We take R(x) = M+ N —x throughout the study and so the resource used in replenishment is
always identified with the items supplied. The heuristics which we place in competition with GI
utilise, for some choice of state x*, an index of the form Index(x) = (A/x)I (x* > x > 0), with
the resulting heuristic denoted by H (x*). In words, H (x*) is a policy which (i) only replenishes
locations whose state is no more than x*, and (ii) among qualifying locations, greedily allocates
resource to locations according to (small values of) the index x /A, namely the mean number

https://doi.org/10.1239/aap/1363354103 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1363354103

80 K.D. GLAZEBROOK ET AL.

of days remaining at the location before lost sales will occur in the absence of an intervening
replenishment. In the tables below, we consider the cost rate performances of an optimal policy
(for J = 3 only) and GI along with policies H (x*) for x* = 0.25M, 0.5M,0.75M, M, M + X,
M 42X, M + N. These latter choices reflect a wide range from x* = 0.25M when 75% of the
available backorders must be used before replenishment is sought, through to x* = M + N in
which the index x /X is used without qualification. The cost model in (40) and (41) is applied
throughout. In what follows, optimal cost rates are computed via DP value iteration and average
costs for the heuristics are estimated by means of Monte Carlo simulation.

The 640 three-location problems studied in the first phase are chosen as five blocks containing
128 problems each. The choices C = 10, b = 5 are made throughout. In block 1, N =
(N1, N2, N3), the maximum stock levels at the three locations, M = (M, M2, M3), the maxi-
mum number of backorders, and R, the amount available resource, are set at N = (20, 20, 20),
M = (10,10, 10), and R = 60, respectively. For block 2, we set N = (10, 15,20), M =
(10, 15,20), R = 70; for block 3, we set N = (15, 15,15), M = (10, 15,20), R = 65;
for block 4, we set N = (20,20,20), M = (10, 15,20), R = 75; and, for block 5, we
set N = (10, 15,20), M = (15,15, 15), R = 65. Within each block, further parameter
choices are made as follows: demand rates A € (M /4, M/3, M/2,2M/3), order costs
K € ((500, 500, 500), (100, 500, 900), (2000, 2000, 2000), (1500, 2000, 2500)), and lost
sales penalties [ € ((100, 100, 100), (300, 300, 300), (500, 500, 500), (700, 700, 700), (900,
900, 900), (100, 300, 500), (300, 500, 700), (500, 700, 900)). This makes 4 x 4 x 8 = 128
parameter combinations for the problems in each block. For each of the 128 problems within
each block, the optimal cost rate was computed along with that of GI and the seven H (x*)
heuristics. Furthermore, for each problem, the strongest performing of the H (x*) policies
was noted along with its cost rate. Call this cost minimising heuristic H. In Table 4 find,
for each block of problems and each GI, the seven heuristics H (x*) and H, and the median
(MED) and maximum (MAX) percentages suboptimality across the 128 problems. The median
suboptimality of GI was well below 1% for all five blocks and among all 640 problems it was
never more than 8% suboptimal.

We now proceed to describe the second phase of the numerical study involving larger
problems. Table 5 contains estimates of the average costs incurred by collections of J
locations, each of which has N = 20, M = 10,2 = 5,C = 10,b = 5, and [ = 500, but
which have widely differing fixed delivery costs K. We suppose that each K lies in the set
{200, 450, 700, 950, 1200} with J/5 locations taking each candidate K-value. The amount of
available resource R is scaled with J. For the results given in Table 6, we repeated the numerical
experiments but with a reduced lost sales cost of / = 100. The strongest competition to GI in
cost performance comes from H (0.75M) in Table 5 and from H (0.5M) in Table 6. Hence,
unsurprisingly, good policies become more conservative (replenish earlier) when lost sales are
more costly. To give the reader a greater feel for the greedy index heuristic, a set of location
indices W(x), 0 < x <9, for a Table 5 location with K = 200 is as follows.

X 0 1 2 3 4 5 6 7 8 9
W(x) 481.67 480.70 479.14 47647 471.62 46220 442.77 39991 298.88 44.24

For this location, we have W(x) = 0, 10 < x < 30. We see that index values for this
location are close to the maximum value (W (0)) when there is a good chance of lost sales in the
coming day. Table 7 contains the average costs incurred by collections of J locations which
may differ markedly in the scale of their operations. We now suppose that all locations have
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*® TABLE 4: Median and maximum percentage suboptimalities for nine replenishment heuristics for five blocks of 128 small (three-location) problems. See the

text for details.
Block  GI H(0.25M) H(0.50M) H0.75M) HM) HM+1) HM+21) H(M+N) H

MED
1 0.26 9.84 2.28 4.00 11.38 31.85 61.65 399.96 0.93
2 0.48 12.01 4.39 9.37 25.42 78.43 133.54 231.03 2.05
3 0.48 12.15 422 10.38 26.93 83.89 149.08 219.90 2.05
4 0.42 12.54 3.59 7.65 19.12 61.41 115.48 262.18 1.61
5 0.58 13.07 4.41 9.30 24.74 78.77 130.71 227.94 1.96
MAX
1 1.73 146.59 41.74 18.29 32.29 57.66 160.18 842.82 3.02
2 391 185.64 61.47 38.22 66.95 155.90 253.86 576.62 8.69
3 6.57 191.05 58.83 36.31 66.08 148.67 266.71 563.29 8.29
4 591 186.54 58.98 27.77 48.76 115.75 241.00 653.46 5.40
5 7.98 213.99 74.61 36.86 68.37 138.07 251.81 567.06 5.96

TaBLE 5: Cost rate estimates for eight replenishment heuristics for a collection of problems with / = 500 comprising identical locations that differ only in the
fixed delivery cost K. See the text for details.

J R GI H(0.25M) H(0.50M) H(O0.J5M) HM) HM+x HM+21) HM+N)
10 125 195674  2624.12 2022.29 1968.13  2084.12  2502.00 3297.94 7452.90
20 250  3907.18  5205.66 4022.78 3934.04  4173.03  5006.44 6598.20  14906.34
30 375 586129  7799.77 6031.83 590235 626071 751047 9898.53  22358.98

40 500 7810.54  10400.45 8042.54 7867.72 8345.36 10012.32 13194.30 29813.12
50 625 9763.47  13005.74 10051.91 9833.48 1043127 12513.26 16493.46 37262.62
60 750  11717.10  15601.78 12064.84 11801.56  12517.49  15016.75 19793.28 44717.31
70 875 13668.02 18192.83 14070.93 13766.21  14603.26  17518.08 23092.64 52169.89
80 1000 15621.09 20794.41 16079.43 15732.08 16688.73  20021.70 26391.47 59 624.83
90 1125 17575.08  23402.95 18092.18 17698.85  18776.62 2252427 29 689.29 67074.70
100 1250 19532.63  26004.86 20109.98 19671.32 20864.75  25030.50 32993.10 74528.59

Monotone policies and indexability for bidirectional restless bandits
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TaBLE 6: Cost rate estimates for eight replenishment heuristics for a collection of problems with / = 100 comprising identical locations that differ only in the

fixed delivery cost K. See the text for details.

J R Gl H0.25M) H(O0.50M) H©.75M) HM) HWM+x HM+2%) HM+N)
10 125  1844.71 1888.04 1870.32 1930.78  2081.82  2501.98 3297.94 7452.90
20 250 368743  3771.79 3741.72 3867.25 416840  5006.42 6598.29  14906.34
30 375 553225  5657.54 5613.47 580239  6253.81 751043 9898.53  22358.98
40 500  7374.06  7542.02 7482.84 773475 833608 1001228 1319430  29813.12
50 625  9217.08  9427.80 9353.11 9667.66  10419.55 1251322 1649346  37262.62
60 750 11061.60 1131297  11223.60 1160142 12503.63 1501670 1979328 4471731
70 875 12904.07 13197.05  13094.01  13534.64 14587.00 17518.03  23092.64  52169.89
80 1000 14747.42 1508291 1496455 1546790 16670.81 20021.67 2639147  59624.83
90 1125 16591.00 16969.61 1683537 1740139 18755.83 2252420  29689.29  67074.70
100 1250 18438.86 18857.95  18709.91 1933854 20841.85 2503045  32993.10  74528.59

TaBLE 7: Cost rate estimates for eight replenishment heuristics for a collection of problems comprising locations that differ markedly in the scale of their

operations. See the text for details.

J R Gl H(0.25M) H@O.50M) H(.75M) HM) HM+r) HM+2)) HM+N)
10 600 616487  13301.02  9677.42 7701.31 6541.14  6317.01 7275.42 17999.49
20 1200 11957.00 2474545 18109.56  14339.94 1228579 12673.07  14588.32 35999.25
30 1800 17884.58  36620.81 26841.16 2123589 1827440 1901599  21888.06 53998.58
40 2400 23836.13  48640.82 35683.36  28210.77 2432842 25361.82  29188.84 71998.97
50 3000 2979172  60740.57 44560.81  35220.11 30397.49 3170340  36485.46 89998.91
60 3600 35753.77 7287299 5345630 4226290 36469.48 38047.16  43784.89  107999.53
70 4200 4170498  84968.92 6232554 4929049 4253504 44383.08  51078.53  125997.63
80 4800 47667.18  97151.92 7122199 5632658 48617.43 5072726  58379.19  143999.24
90 5400 5362257 109286.00 80144.49  63367.59 54699.34 5706857  65677.01  161998.75
100 6000 59588.28 12139755 89043.23  70428.64 60773.08 63412.63 7297491  179999.08
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K =1500,C =10,b =5, and/ = 500, but the triple (N, M, 1) lies in the set {(100, 10, 10),
(150, 20, 20), (200, 30, 30), (250, 40, 40), (300, 50, 50)}, with J /5 locations assigned to each.
Hence, each location can accommodate around one week’s worth of demand, but have widely
varying demand rates.

The numerical results presented in Tables 4-7 provide powerful evidence of the value
to the decision-maker of the indices W(x), 0 < x < M + N, in the design of strongly
performing replenishment policies in a wide range of problems. The index heuristic GI has
strong performance in comparison to optimal in small problems, and in comparison to a class
of natural replenishment heuristics for both small and large problems whose size leaves them
well beyond the reach of conventional DP approaches.

4.4. Projects living on N

A natural generalisation of the above material is to descendant projects with state space N.
We now give a brief account and omit all proofs. These are available from the authors. In such
cases, the stochastic dynamics in (26) and (27) are replaced by

Pl y) =pP e x ) =py, (x,y) e N2

We continue to use D for an integer-valued random variable with PMF {p,, y € N}. Hence,
under the active action, the project is returned to pristine state 0 before further deterioration
takes place. A natural application area for such models is to machine maintenance problems
where we wish to abandon an assumption of skip-free evolution under the passive action in
the interests of modelling sudden rapid deterioration in machine condition. Machine costs are
captured by the increasing and convex function ®: N — R™, where ®(0) = 0. Expected costs
incurred when actions a and b are taken in state x are given by

C%(x) = E{®(D)}, x €N,
and
C’(x) = E{®(x + D) — ®(x)}, x €N,

which are positive and increasing in x. The function R: N — R yields resource consumption
under the active action. We need the following condition.

Condition 2. The function Wy : N — RT given by
Uy = WR(x) + &(x), x €N,

is increasing and convex.

Remark 6. If R is affine and increasing then Condition 2 will be satisfied at all positive W.
More generally, if R is increasing and concave then Condition 2 may be satisfied over some
finite range of positive W.

The proof of Lemma 5 below is along the lines of Lemma 3.

Lemma 5. Under Condition 2 there exists some monotone policy xP which is optimal for
P(W).

To achieve indexability requires R*" to be decreasing in x. See Theorem 1. Condition 3
below is sufficient.
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Condition 3. The resource function R: N — R is increasing and concave such that, for all

x €N,
E{R(D+r)| D>=x—r]

E{D+r|D=>x—r}

is decreasing in r over the range 0 <r < x.

Remark 7. Cases which satisfy Condition 3 include

e D has a geometric distribution with support N and R is any increasing and concave
function;

e R is affine and increasing and the hazard rate of D, namely,
P(D=x|D>x),

is increasing in x. This includes, inter alia, the classical case in which D is Poisson.
.. D . ..
Lemma 6. Under Condition 3, R*" is decreasing in x.

In Corollary 1 we write [0, W] for the range of positive W (assumed nonempty) for which
Condition 2 holds. Its proof is via Lemmas 5 and 6 and (a minor extension of) Theorem 1.

Corollary 1. Under Conditions 2 and 3, project P, with resource function R and costs
determined by ®, is indexable over [0, W1].

Index values for P may be obtained by suitable application of Algorithm 1.
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