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Abstract. Measurements of oscillation frequencies of the Sun and stars can provide impor-
tant independent constraints on their internal structure and dynamics. Seismic models of these
oscillations are used to connect structure and rotation of the star to its resonant frequencies,
which are then compared with observations, the goal being that of minimizing the difference
between the two. Even in the case of the Sun, for which structure models are highly tuned,
observed frequencies show systematic deviations from modeled frequencies, a phenomenon re-
ferred to as the “surface term.” The dominant source of this systematic effect is thought to
be vigorous near-surface convection, which is not well accounted for in both stellar modeling
and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable
in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convec-
tion), to characterize the effect of small-scale surface convection on resonant-mode frequencies
in the Sun. We show that the full oscillation equations, in the presence of temporally stationary
3D flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed,
Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations
for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of
this effective medium. Using flows obtained from 3D numerical simulations of near-surface con-
vection, we quantify their effect on solar oscillation frequencies and find that they are shifted
systematically and substantially. We argue therefore that consistent interpretations of resonant
frequencies must include modifications to the wave equation that effectively capture the impact
of vigorous hydrodynamic convection.

1. Introduction
Measurements of oscillation frequencies of stars provide some of the strongest con-

straints on stellar structure models. Recent missions Kepler (Borucki et al. 2010) and
CoRoT (Auvergne et al. 2009) have provided us with high-quality asteroseismic data,
which have revealed structural features of Sun-like stars in unprecedented detail. Despite
the high precision in measured frequencies, the modeled frequencies display systematic
deviations from the observed ones. There are various reasons why these shifts are ob-
served, which were categorized as model and modal effects by (Rosenthal et al. 1999) .
Some of the possible sources for this bias are as follows:

(a) Errors in physics that go into the modeling, including turbulent-pressure contri-
butions (model effect).

(b) Non-adiabaticity prevalent in the outer layers of the Sun (model+modal effect).
(c) Imprecise modeling of propagation of waves through convective flows near the

surface of the Sun (modal effect).
(d) Nonlinearity in the wave equation (modal effect).

In this paper, we show that advection of traveling waves by these flows can have a
significant impact on the resonant-mode frequencies, and it is therefore important to
account for this effect in order to extract the correct physics from measurements.
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An early attempt at mitigating the frequency differences was by Gough (1990), whose
prescription was in the form of a power-law corrections. Kjeldsen et al. (2008) had studied
the shifts in the Sun, and with an empirical power law model δν = a (ν/ν0)

b , were able
to correct for the shifts in α Cen A, α Cen B and β Hyi. Ball & Gizon (2014) have shown
that a combination of the two effects studied by Gough — the cubic shift and the inverse
shift — is able to fit the deviations better than Kjeldsen’s power law. These corrections are
satisfactory from a model-fitting viewpoint, but by eliminating the frequency differences
altogether, we lose information about their origin.

Several authors such as Murawski & Roberts (1993); Duvall et al. (1998) had studied
the effect of random scatterings by convective flows on surface gravity waves (f-modes),
thereby correcting the dispersion relation. Brown (1984) had suggested a correction of the
form

(
1 − 〈v2

z 〉/c2
)

to p-mode speeds, by carrying out a horizontal average over the wave
equation. An asymptotic analysis of p-mode frequency shifts for small Mach numbers
had been carried out by Stix & Zhugzhda (2004), but whether the analysis extends to
transonic flows near the solar surface remains unclear.

Despite the high flow speeds, there still exists a small parameter in the wave equation
— the granulation length scales are usually much smaller than horizontal wavelengths
of low-� modes, which are of the order of the solar radius. Hanasoge et al. (2013) had
described a perturbative approach by expanding the wave equation in terms of the ratio of
the two length scales, followed by averaging over small scales. In this paper, we employ a
similar technique to reduce the spatially varying flows to a set of equivalent homogeneous
parameters, thereby computing the shifted frequencies and resulting differences.

2. Spatial Homogenization
Low-degree resonant modes on the sun have horizontal wavelengths (λ) comparable

to the solar radius, which is much larger than the typical length scales of granulation
on the Sun (L). The ratio of scales ε = L/λ allows us to isolate the dynamics at each
scale. To study the dynamics in the asymptotic limit ε � 1, we introduce two spatial
coordinates that are scale separated: a slow coordinate x = (x, y, z) and a horizontal
fast coordinate x′

h = (x/ε, y/ε). Note that the vertical component of mode wavelength
can be comparable to the scale of flows, so the advection terms might not be scale
separable vertically. Bearing this in mind, scale separation is being carried out strictly in
the horizontal directions, labeled by x − y or equivalently by x′

h . In terms of these new
coordinates, the spatial gradient can be rewritten as

∇ = ∇x + 1/ε∇h . (2.1)

We assume a static background medium characterized by its pressure p (x), density ρ (x)
and sound speed c (x). In presence of a flow field u (x), the material derivative of a
displacement ξ (x, t) is defined as

ξ̇ = ∂tξ + u · ∇ξ. (2.2)

The acoustic wave equation, to linear order in the perturbations, is given by

∂t

(
ρξ̇

)
+ ∇ ·

{
ρuξ̇ + I

(
p − ρc2) ∇ · ξ − p (∇ξ)T

}
+ ρξ · ∇∇φ = 0, (2.3)

where T in the exponent denotes the transpose operator (Webb et al. 2005) We expand
the wave field ξ as a perturbative series as

ξ (x,x′
h , t) = ξ0 (x,x′

h , t) + εξ1 (x,x′
h , t) + ε2ξ2 (x,x′

h , t) + O
(
ε3) . (2.4)
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We substitute Eq. (2.4) in Eq. (2.3) and use Eq. (2.2) to write down the equations order
by order in ε. We introduce the following tensors and tensorial relations:
• The double-dot product of two tensors A and B defined as A : B = A···ijBij ···,

where repeated indices are summed over.
• A fourth-order tensor T̃ defined as T̃ijkl = δilδjk .
• A fourth-rank tensor Ĩ4 , defined as Ĩ4 ijkl = δik δj l

• A fourth-rank tensor Γ̃, defined as

Γ̃ = ρ
(
uu · Ĩ4 − c2II

)
+ p

(
II − T̃

)
(2.5)

At order ε−2 we obtain
L(−2)ξ0 + ρξ0 · ∇h∇hφ = 0, (2.6)

where
L(−2)ξ = ∇h ·

(
Γ̃ : ∇h ξ

)
. (2.7)

We shall assume henceforth that the gravitational potential φ is independent of the fast
coordinate x′

h , and drop any term like ∇hφ or ∇h∇xφ. Under this assumption, Eq. (2.6)
becomes

L(−2)ξ0 = 0. (2.8)
A particular solution to Eq. (2.8) is a zeroth-order field ξ0 that is independent of the
fast coordinate x′

h . This assumption fits into our picture of perturbations about a homo-
geneous background, and we shall proceed under it.

Collecting terms of the order ε−1 , we obtain

L(−2)ξ1 + L(−1)ξ0 = 0, (2.9)

where
L(−1)ξ = ∇h ·

(
Γ̃ : ∇x ξ

)
, (2.10)

Following Bensoussan et al. (1978), we substitute

ξ1 = J̃ (x′
h , z) : ∇x ξ0 (2.11)

where J̃ (x′
h , z) is a third-rank tensor, and demand that J̃ satisfies

L(−2) J̃ = −∇h · Γ̃. (2.12)

At order ε0 we get the equation of motion for the zeroth-order field ξ0

ρ ∂2
t ξ0 + ρu · ∂t (∇x ξ0 + ∇h ξ1) + L(0)ξ0 + L(1)ξ1

+L(−1)ξ1 + L(−2)ξ2 + ρ ξ0 · ∇x∇xφ = 0, (2.13)

where
L(0)ξ = ∇x ·

{
Γ̃ : ∇x ξ

}
, L(1)ξ = ∇x ·

{
Γ̃ : ∇h ξ

}
.

We substitute (2.11) in Eq. (2.13) and average over the fast coordinate x′
h to obtain

〈ρ〉∂2
t ξ0 + 2〈ρu〉 · ∇x ∂t ξ0 − ∇x ·

[
〈ρC̃〉 : ∇xξ0

]
+ ξ0 · 〈ρ∇x∇xφ〉 = 0, (2.14)

where

C̃ = −1
ρ
Γ̃ :

(
Ĩ4 + ∇hJ̃

)
(2.15)

resembles a wave speed squared term that governs wave propagation on large scales.
Further assuming that the flow is antisymmetric about the cell center, we set 〈ρu〉 = 0
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and obtain
〈ρ〉∂2

t ξ0 − ∇x ·
[
〈ρC̃〉 : ∇x ξ0

]
+ ξ0 · 〈ρ∇x∇xφ〉 = 0. (2.16)

Eq. (2.16) is the homogenized wave equation, wherein we have replaced the spatially
fluctuating background medium by an effective homogeneous, anisotropic one.

3. Impact on solar frequencies
In this section, we start from Model S (Christensen-Dalsgaard et al. 1996) which uses

the mixing-length formulation of convective flux. We correct wave speeds using flow pro-
files obtained from simulations by Schüssler (private communication) using the MURaM
code (Vögler et al. 2005). The flow-speed profiles have been plotted in Figure 1. We
start from Eq. (2.16) and work with low-degree modes (� � 3), which are predominantly
radial. We assume that the Mach number is low enough, and retain only the dominant
component of C̃ which goes roughly as c2 − u2 . The exact form of u that goes into
the correction depends on the direction of advection at every depth; for our purposes
we shall restrict ourselves to the special cases of radial flow

(
u = u‖

)
and tangential

flow (u = u⊥). We refer to this modified model as Model Hom, and we compute the
eigenfrequencies corresponding to this model assuming the same boundary conditions as
Model S. We compare these frequencies with observed solar frequencies obtained by the
Birmingham Solar Oscillation Network (BiSON, Chaplin et al. 2007). We find that the
presence of flow advection in the wave equation leads to a reduction in mode frequencies,
which reduces the observed difference between observed and Model S frequencies.

To study the impact of modal versus model corrections on frequencies, we compare
the Model Hom frequencies with another hydrostatic model (Basu & Antia 1994, hence-
forth called Model BA), which uses the Canuto-Mazzitelli formulation of convective flux
(Canuto & Mazzitelli 1991). The frequency differences between these models and the
observations by BiSON have been plotted in Figure 2. We find that the modal frequency
shifts due to the presence of advective flows are comparable to those obtained from mod-
eling differences. Both the effects need to be looked into while fitting solar frequencies.

4. Conclusion
Observed solar oscillation frequencies can differ from modeled frequencies because of

an inaccurate background model, as well as incomplete description of mode physics. The
presence of near-surface convective flows on the Sun results in mode frequencies that
are different from ones computed starting from a quiet background. Three-dimensional
convection simulations generally result in an increased size of the acoustic cavity, thereby
reducing the frequencies (Rosenthal et al. 1999; Piau et al. 2014). In this paper, we have
shown that the impact of advection on waves might result in frequency shifts of similar
magnitudes. In the presence of flows, the appropriate wave speed is not the horizontally
averaged sound speed; rather, it is a combination of sound speed and an appropriate
projection of the flow speed in the direction of propagation.

The impact of time evolution of flows, missing in the present analysis, needs to be
studied in detail. The spatial scales of waves and background flows are significantly
different, thereby allowing a two-scale analysis. The timescales of granule evolution are,
however, not very different from time periods of the wave. Overlap of scales generally
results in strong scattering and forcing; thus, a picture of flows evolving in time might
be necessary to capture frequency shifts and damping. Added to this are the impacts of
super-adiabaticity and magnetic fields, which have been ignored in the present analysis
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Figure 1. Root-mean-square flow speeds obtained from three-dimensional simulation of the
near-surface layers of the Sun (Vögler et al. 2005).

Figure 2. Eigenfrequencies corresponding to Model S (Christensen-Dalsgaard et al. 1996, cir-
cles) compared with the modified models. The squares indicate a model where advection is
predominantly radial and the stars indicate a model where advection is predominantly tangen-
tial. The dotted line represents eigenfrequencies corresponding to Model BA (Basu & Antia
1994). We find that the modified models display frequency shifts comparable to Model BA,
which shows that modal effects can be significant near the surface and need to be taken into
account.

but might be important in governing the spectrum. Nevertheless, the present analysis
provides a useful starting point to model wave propagation through convective flows and
resultant frequency shifts.
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