
T H E N O N - L I N E A R E Q U A T I O N S F O R T H E G R E E N F U N C T I O N 

A N D C A L C U L A T I O N O F T H E M A G N E T I C F I E L D T U R B U L E N T 

D I F F U S I V I T I E S A N D a - E F F E C T 

N.A. SILANT'EV 
The Central Astronomical Observatory of the Russian Academy of Sciences, 196140, St. 

Petersburg, Pulkovo, Russia 

A b s t r a c t . The exact numerical solution of the simplest non-linear equation from the hierarchy of 
non-linear equations for the averaged Green function shows that such solution allows to calculate 
the diffusivity and α-effect coefficient with a good accuracy for an arbitrary spectra of turbulence 
for all values of the characteristic parameter. It is derived also the improved equation describing the 
evolution of admixture fluctuations in a turbulent medium which takes into account the non-linear 
equation for the averaged Green function. 

1. Tu rbu l en t t r a n s p o r t coefficients 

The process of the transport of some admixture fields (number density n(r,£), 
magnetic field B(r, J) etc.) in a given turbulent medium is studied. Usually one is 
interested in averaged values, e.g. mean number density (η) and mean magnetic 
field (B). From the exact equations for η = (η) + η' and Β = (Β) + Β ' one derives 
the equations for (η) and (B): 

(d/dt-(Dm+DT)V2) {n) = 0 

(d/dt - (Dm + DT)V2) (B) = aT rot (B) - ßT^ rot (Β) (1) 

which contain the turbulent diffusivity DT and other transport coefficients α τ and 
βτ describing the generation of magnetic fields by motions with helicity. Dm is 
the molecular diffusivity. To calculate the coefficients aT,DT and βτ we need the 
knowledge of the Green function G( 1,2) = G(ri,$i;r2,^2) of the non-averaged 
equations ((d/dt - DmV · V) = L0): 

Lon = Ln 

and 
L 0 B = LB (2) 

where Ln = - V ( n u ) and LB = (B · V)u - (u · V)B - Β div u. Here u(r , t) 
is the turbulent velocity considered as a known stochastic function. We assume 
that the medium is infinite with a homogeneous, isotropic and stationary ensemble 
of u(r ,J) . The general theory is presented in Silant'ev, 1992, resp. Dolginov and 
Silant'ev, 1992. It was shown there that the integral equation for G( l ,2) may be 
written in an renormalized form in such a way that the free term coincides with the 
averaged Green function (G(l, 2)) = g(l - 2) = g(R, r ) ( R = η - r 2 , r = U - t2). 
It was derived also the hierarchy of non-linear equations for (G(l, 2)). The simplest 
non-linear equation has the form (dj = drjdtj): 

245 
F. Krause et al. (eds.), The Cosmic Dynamo, 245-229. 
© 1993 I A U. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900174200 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900174200


246 

<7(1 - 2) = G m ( 1 - 2) + J dZ J d4Gm(l - 3) {L(3)g(3 - 4)L(4)> g(4 - 2) (3) 

The function Gm is the Green function of the operator Lo and describes the 
molecular diffusion. Eq. (3) may be easily solved numerically for the case of incom-
pressible medium. It was shown that,if one uses g( 1 — 2) instead of G(l ,2) , then 
the simple formula for D t has the error ft* 10% for turbulent spectra with ξ > 1 
and this error monotonically tends to zero with decreasing Using the simple 
asymptotic approximation of g it may be written (χ = UQTOP/VS) 

oo 

DT = ( τ 0 / 3 π 2 ) J dPP4f(P)(2 + χ ) ( 2 + χ + χ 2 )" 1 (4) 
0 

for the case of incompressible turbulence without helicity. Here /(p, r ) = 
f(p) exp(—|r|/ro) describes the two-point correlation of the velocity field 

oo 

(uinih)'U(r2)t2)) = ir~2 J dpp4f(p,T) exp(.ip · R) . (5) 
ο 

Formula (4) is valid for turbulence with arbitrary spectrum and has its maximum 
error « 10% for ξ 1. If helicity is absent then D t is the same for the number 
density and for the magnetic field. Helicity is described by the correlator 

oo 

(u(ri , i i ) rot u(r2,*2)) = -π*"2 J e/pp4D(p, r ) exp( ip -R) (6) 
ο 

For turbulence with Î > 1 we have 

oo 

0 
oo 

α Τ = ( / /o /2 \ /3 u0ir2) j dpp3 ( 2 H ^ D { p , 0) + «ö2 / (p, 0)) (7) 
0 

oo 

βτ = ( ΐ / τ 2 « ο ) f dpp2(D(p,0) + f(p,0)) 
0 

where = (u 2 ) and H0 = ( u · rot u). For ξ < 1 Dt & ulr/Z, aT « 
Horo/3, βτ « Η0τ2 

The values DT/ {U$TO/$) , ατ/(Ηοτ0/3), βτ/ (B0T$/3>) monotonically decrease with 
increasing For large ξ the first two of them decrease as and the third as ξ"2. 
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2. Improvement of equations describing the evolution of admixture 
fluctuations 

The approximate equations which describe the evolution of the two-point corre-
lators ViR.tuh) = (n(l)n(2)) and T(R,tut2) = (Β(1) ·Β(2)) firstly have been 
described by R.C. Bourret (1962). For Fourier transforms of V and Τ on R these 
equations are: 

(d/dti + p*Dm) V{pMM) = (2Try3 J dq j dt'p2q2f{|p - q|, - t') 
ο 

•(1 - μ2) [g(p, t2 - t')V{q, h, t') - K(q, u - t')V(p, t\ t2)] Ξ φ{ρ, tx , t2) (8) 

The equation for T(p) t\,t2) differs from (8) only by the additional factor (p2 + q2 — 
pqß)/q2 in the first term in brackets. Here ρ · q = pqp and g(p) r ) is the Fourier 
transform of the mean Green function ( G ( L , 2 ) ) Ξ g(R,r). Formally the equation 
for g(p, τ) may be written in the form: 

oo oo 
9(ρ,τ) = 0,η(ρ,τ)-(2π)-3 J dq j dt j dt'Gm{PM - t')p2q2(l - μ2) 

— OO — OO 

•/( |p - q|,< - t')K(q,t - f)g(p,f - <2) (9) 

The kernel K(p, r) is an infinite series of terms depending on g(p, r ) and correlators 
of the turbulent velocity. The truncations of this series gives us the hierarchy of non-
linear equations mentioned above. The simplest non-linear equation (3) results if 
K(p,r) = g(p,r). Because of V{p,t2,h) = V(p,tut2) and f(p,t2,ti) = f(p,tut2) 
the action of ( d / d t 2 + p2Dm) gives rise to equations with its right hand sides equal 
to <p(p}t2,t\). Usually one is interested in the evolution of (n2(r , t)) and (B2(r,tf)) 
described by V(p>t,t) and f(p,t,t). 

From (2) one easily derives the exact relation 

^<n2(r,<)> = - 2 D m ( 2 T ) - 3 / d P P
2 V ( P > t , t ) (10) 

It shows that the full intensity of the scalar field fluctuations decreases only due 
to molecular diffusion. Hence this relation plays to a certain extent the role of an 
energy conservation law. The integral term in (8) is the difference of two large terms 
in comparison with the molecular dissipation term. It is important that relation 
(10) can be derived also from (8). This needs the choice A'(p, r ) = g(p, r ) , i.e. the 
approximate equation (8) is more accurate if one uses g(p, r ) as a solution of the 
non-linear equation (3). This consideration shows that any new possible equation 
for V and Τ must be consistent with some new equation for ( G ( L , 2 ) ) . It seems 
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therefore that in the case of magnetic field diffusion the choice K(p, τ) = g(p) r ) is 
also more accurate then any another one. 

Kasantsev (1967) studied equation (8) for short-correlated turbulence f(p) τ) = 
το/(ρ)δ(τ). He proved that for this turbulence (8) is an exact equation and that the 
exact equation for (G(l,2)) is the usual diffusion equation (1] with the diffusivity 
An + i î q t / 3 . Further, Kasantsev et al. (1983) used (8) with K(p, r ) = Gm(p, r ) in 
order to study the small-scale magnetic dynamo for an arbitrary correlator /(p, r) . 
As we have seen the choice K ( p , r ) = Gm(p, r is not satisfactory and may give 
the results far from reality. The use of a short-correlated turbulence model is also 
unsatisfactory for the consideration of phenomena in small-scale space intervals (so-
called inertial interval of turbulence). The analysis of the hierarchy of non-linear 
equations shows that in the inertial interval of turbulence the Green function has 
the form g(p, r) « exp(—wopr/>/3), i.e. it describes the averaged inertial motion 
of the basis gas. Kasantsev (1967) and Kasantsev et al. (1983) used the Green 
function g(p) r ) = exp(—(An -f DT)P2T), which leads from (8) to the Schrödinger 
type equation for the calculation of the increments of the small-scale magnetic 
dynamo. If one uses the more approciate non-linear equation (3) it may be derived 
an improved equation which is not of Schrödinger type. It seems that a short-
correlated model of turbulence gives over-estimated increments of the magnetic 
dynamo. Even for t = 0 (the beginning of the evolution) this model gives rise to an 
increasing derivative 

oo 

s < * < * · « > Η „ = - / w?tM0) 2 i W - Β J*•««> > 0 (11) 

instead of the true expression which follows directly from (8) 

± 0 ,0X0 (12) 

It should be noted that the exact relation (10) is valid automatically for short-
correlated models of turbulence because any kernel K(py τ) and the Green function 
obey the relation K(p, 0) = 1, 5(p>0) = 1· Even this feature of a short-correlated 
turbulence shows its artificial character. 

Our considerations result in the criticism that the problem of a small-scale 
magnetic dynamo needs further investigation. 
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