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PARTIALLY BOUNDED SOLUTIONS OF LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

DAVID LOWELL LOVELADY

1. Introduction. Let R, Rt, and R~ be the intervals (—o0, ), [0, ),
and (—o0, 0] respectively. Let 7 be a positive integer, and let .27 be the algebra
of all m X m matrices. Let 4 be a locally integrable function from R to ..
We propose to study the problems

(NH) o' (t) = f(t) + A()u(?)
and
(H) (1) = 4@)o(t)

in R™. (H) and (NH) will denote whole-line problems, whereas (H)*, (NH)*,
(H)—, and (NH)~ will denote corresponding semi-axis problems.

n [1] (see also [2, Theorem 1, p. 131]), W. A. Coppel obtained necessary and
sufficient conditions for each bounded continuous f on R* to yield at least one
bounded solution # of (NH)*. The present author [3] has determined that an
analogous result holds for (NH).

If one attempts to apply these results to a higher order problem

(NH), ™ (t) = f(t) + A(u(?)

by converting to a first order problem over R™, one discovers that the results
best fit the more general problem

u(t) = i 1z,

k=1

+3 ) “‘1),fk(s)d s + f 4= 5)1)_. A(s)u(s)ds

and yield boundedness not only of u but also of the intermediate derivatives
w',u”, ..., u™ V. There is, however, a generalization of the original problem
which includes (NH), in a natural way.

Let each of S; and S be a linear subspace of R™, and consider the problem of
finding conditions which ensure that if f is a bounded S;-valued continuous
function on R* then (NH)* has a solution the projection of which into S is
bounded. It is clear that this problem not only includes the original problem,
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but also includes the aforementioned higher order problem. In § 2, we shall
solve this problem for (NH)*. In § 3, we shall use these results to obtain infor-
mation on the solution space of (H), thus extending [4, Theorem 1]. We shall
indicate in § 4 how this includes many of the results of [5], and how § 3 yields
information on solution space structure for

H)w o™ () = 41)o().

2. The semi-axis problem. Let {z, ..., 2,} be a basis for R™, and if x is
in R™ and x = Y jo1 a3, let |x| = max {|ai|, ..., |an|}. Let || ||o be the
induced norm on.%Z. Let each of a and 8 be a continuous function from R to
(0, 00). Let Z.,% be the space of all continuous functions f from R to R™ such
that there is a number b with | f(£)| < ba(¢t) whenever tisin R. If fisin Z,% let

[ flle = sup {[ f(8)]/a(t) : ¢ is in R}.

Let .4+ and #,%~ be the corresponding semi-axis function spaces with
norms || ||t and || |la~ respectively. Define %3¢, Hs€+, H:%-,
[l lle || Ilgty and || ||s~ analogously. Let S; and S. be as in § 1, and if
iisin {1, 2} let Q; be a projection from R™ to S;. Let M, be the subspace of R™
to which x belongs if and only if Quw is in Z,%*, where v is that solution of
(H)* such thatv(0) = x. Let M, be a subspace of R™ such that R™ = M; ® M.,
and let P, and P, be supplementary projections with ranges M; and M,
respectively. Let ® be the fundamental matrix for (H), i.e., ® is that locally
absolutely continuous function from R to % such that

@) =1+ j;tA(s)fb(s)ds

whenever ¢ is in R. Recall that each value of ® is invertible. The following
theorem is our main result.

THEOREM 1. The following are equivalent:
(i) If fis in BE+ and Q.f = f then there is a solution u of (NH)* such
that Qqu is in B.E+.

2) @) f:o [[(I = Q)P:®(s)”'Qul[B(s)ds < o0

and there 1s a number K such that

[ os0rs 0

3) .
+ f: [|Q:® () P2 (s) "' Q1]|B(s)ds < Ka(t)

whenever t 1s in R+,
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Note that statement (ii) holds with respect to one norm on .2/ if and only if
it holds with respect to every norm on .27. Thus we see that our a priori specifi-
cation of the norm on R™, and hence on .7, is more a matter of convenience than
of necessity. In the case Q, = I, inequality (2) is trivially satisfied and hence
does not appear in [2, Theorem 1, p. 131]. When auxiliary conditions similar
to (2) were given in [5, Theorems 1 and 5], it appeared that there was an
essential difference between first order cases and higher order cases. Theorem 1
now makes it clear that all of these cases are part of a common phenomenon.
This will be explored more fully in § 4.

Proof of Theorem 1. First suppose that (ii) is true. Now (3) says that

[7 lep s lseis < Ka(0)

so (2) and (3) together say

f: [|P2®(s) ™' Qul|B(s)ds < 0.

Conclusion (i) is clearly equivalent to showing that if f is any member of
X €+ then there is a solution u of

(4) w'@) = Quf(t) + A()u(®)
such that Qqu is in Z3% +. Let f be in Zs%+. Let u from R* to R™ be given by

u(t) = fo ®(t)P1®(s) " Quf (s)ds — f, ’ ®(t)P2®(s) " Quf (s)ds.

The above remarks assure us that the improper integrals exist and that u is
differentiable. Clearly u satisfies (4) on R*. Also, if ¢ is in R™,

leu(t)] = L qu)(t)qu)(S)_lQlf(S)dS —_ j;w qu)(l)qu)(S)_lQlf(S)dS

< 1l f lewoPweeullsc)ds

w1 [ leore o 0lss

= [Iflls"Ka (@),
so Qqu is in Z,%+, and (i) is proved.

Now suppose that (i) is true. Let & be the linear space to which « belongs if
and only if u is locally absolutely continuous, Q.u is in Z,%€+, u(0) is in M.,
and there is an Si-valued member 4 of Hs€+ such that 4(t) = ' (t) —
A (t)u(t) for almost all ¢ in R*. If u is in D, let ||u||lp = ||Q:u|lat + | (0)| +
||#||s*. Suppose that {u,}m is a Z-valued sequence, and is a Cauchy sequence
with respect to || ||p. Find that z in M, and that S;-valued member w of
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B 5%+ such that [u,(0) — z| — 0 and ||4, — w|[st — 0asn — 0. Now, if ¢ is
in Rt and = is a positive integer,

un(t) = ®()un(0) + fot ® () B(s) ' la(s)ds,

so there is a continuous function u, from R* to R™ such that u,(t) — u.(¢)
uniformly on compact subsets of R+. Since {Q.u,}5-1 has pointwise limit Qau,,

and is a Cauchy sequence with respect to || ||*, we see that Qauy is in Z,€+.
Thus, u is in & and ||u, — uo||p — 0 as n — . Clearly now, & is a Banach
space with respect to || ||p.

Let & be that closed linear subspace of Z3%+ consisting of all S;-valued
members of Zs%+. Let T be the linear transformation from 9 to & given by
Tu = 4. Clearly T is continuous, and T is onto by hypothesis. Suppose that
uisin & and Tu = 0. Now Qqu is in £, %+, u satisfies (H)*, and «(0) is in M.
Thus # = 0, so 7 is one-to-one. Hence [6, Theorem 4.1, p. 63], 7' is continuous
and there is a number L such that

(5) Nlullo = Li[u|ls*
whenever « is in I.

If fisin & let u, be that solution of (NH)* such that Qu, is in Z,%* and
Piu,(0) = 0. Now (5) says that

[luglp = LI f|l6*
whenever f is in &. But |u,(0)] < ||u,||p and ||Qauty|la™ < ||uy]|p, sO
(6) |u 0)] = LJ| £ |ls*
and

(M) NQuusllat = LI[f lls*

whenever f is in & .
If fis in & and has compact support; let w, be given by

wy(t) = fot ®(t)P1®(s) ' Quf (s)ds — ftm @(t)Pg@(s)_lQlf(s)ds.

Routine computations show that w, = u,. Now the formula given for w,, the
inequalities (6) and (7), and an argument similar to that of [2, pp. 133—-134],
show that

(8) fo i [|P2®(s) Q4|8 (s)ds < o0

and that (3) holds with K = mL. If s is in R then
[[(I = Q2)P22(s)7'Qul| < [|P2®(s)7'Qul| + [|Q2P2®(s)7'Qull,
so (8) and (3) imply (2). This completes the proof.
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3. Solution space structure on the whole line. In [4, Theorem 1] it
was shown that if (NH) has a bounded solution on R whenever f is a bounded
continuous function on R, then every solution v of (H) is if the formv = v_; 4
9o + v1, where each of v_;, vy, and v; satisfies (H), v_; is bounded on R*, v, is
bounded on R, and »; is bounded on R~. The corresponding result in our
present situation is not quite so tidy, but it does give additional understanding
of [4, Theorem 1].

We take Sy, .S2, Q1, and Q; as before. Let M, be the subspace of R™ to which
x belongs if and only if Qu is in #,%, where v satisfies (H) and »(0) = x.
Let M_, be determined by the requirement that M_; @ M, is the subspace of
initial points for solutions v of (H)* with Qw in Z,%+. Let M, be similarly
determined by problem (H)~. (Note that M here is not as in § 2.) Let M, be
determined by the requirement that

R”‘=1110®M_1(-BM1 BMm

Let Py, Py, P_y, and P_ be supplementary projections with ranges M,, M,,
M_;, and M, respectively.

THEOREM 2. Suppose that if f is an Si-valued member of BsE then there is a
solution u of (NH) such that Qau is in B,€ . Then

SIS N @) [M® My ® M.
(t€R)
Note thatif S; = R™ then P, = 0 and we get an analogue of (4, Theorem 1].
Also, the extent to which “P, = 0" may fail is determined by the size of .S;
and is independent of the size of S.

Indication of proof. It can be shown, using techniques almost identical to
those of [4, Proof of Theorem 1], that our hypotheses imply that

f_m PLd(s) " Quf (s)ds = 0

whenever f is in Z3% . Thus P, ®(¢t)~1Q; = 0 whenever tisin R. Now if (¢, x, y)
isin R X R" X R™"andy = ®(¢)~'Qwx, then P,y = 0,so0yisin M_; ® M, ®
M,. Thus Qux is in ®()[M_1 & M, ® M,], the conclusion follows, and the
proof is complete.

4. Higher order equations. Let # be a positive integer and consider the
problems (NH),, (H),, (NH),*, and (H),*. If we write (NH),* as a first order
problem over R™, then Theorem 1 includes [5, Theorem 5] with Q; and Q.
given by Qi(xe, ..., %p—1, %,) = (0, ..., 0, x,) and Q2(x1, X9, ..., X,) =
(x1, 0, ..., 0). In this case, (2) implies that if % is an integer in [1, n — 1]
then the mapping described by f — u,® is continuous considered as a function
from #s€+ to € [R+, R™] with compact-open topology. Thus we see another
point of view from which (2) can be considered superfluous in the case n = 1,
Sl = Sz = Rm
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I't does not follow from Theorem 2 that the hypothesis “if f is in Z3% then
there is a solution # of (NH), in Z,%” gives a decomposition of the solution
space of (H),. The comments following Theorem 2, however, indicate that a
stronger hypothesis will yield such a decomposition. We state our result with-
out proof.

THEOREM 3. Suppose that if (fi, ..., fu) is in BE™ then there is a subset
{21, . .+, 24} of R™ such that the solution u of (1) is in BE . Then, if v satisfies
(H),, v is of the form v_; + v, + v1 where each of v_1, vy, and v, satisfies (H),,
v 15 1n BoE, the restriction of v_y to R+ is in B.E+, and the restriction of v, to

R—is in B,
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