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Abstract
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and
Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear
relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence,
we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur
which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
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1. Introduction

1.1. Classical setting

1.1.1. Multiple zeta values
Multiple zeta values of Euler (MZV’s for short) are real positive numbers given by

𝜁 (𝑛1, . . . , 𝑛𝑟 ) =
∑

0<𝑘1< · · ·<𝑘𝑟

1
𝑘𝑛1

1 . . . 𝑘𝑛𝑟𝑟
, where 𝑛𝑖 ≥ 1, 𝑛𝑟 ≥ 2.

Here, r is called the depth and 𝑤 = 𝑛1 + · · · + 𝑛𝑟 is called the weight of the presentation 𝜁 (𝑛1, . . . , 𝑛𝑟 ).
These values cover the special values 𝜁 (𝑛) for 𝑛 ≥ 2 of the Riemann zeta function and have been
studied intensively, especially in the last three decades with important and deep connections to different
branches of mathematics and physics, for example, arithmetic geometry, knot theory and higher energy
physics. We refer the reader to [7, 43] for more details.
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The main goal of this theory is to understand all Q-linear relations between MZV’s. Goncharov
[19, Conjecture 4.2] conjectures that all Q-linear relations between MZV’s can be derived from those
between MZV’s of the same weight. As the next step, precise conjectures formulated by Zagier [43] and
Hoffman [23] predict the dimension and an explicit basis for the Q-vector space Z𝑘 spanned by MZV’s
of weight k for 𝑘 ∈ N.

Conjecture 1.1 (Zagier’s conjecture). We define a Fibonacci-like sequence of integers 𝑑𝑘 as follows.
Letting 𝑑0 = 1, 𝑑1 = 0 and 𝑑2 = 1, we define 𝑑𝑘 = 𝑑𝑘−2 + 𝑑𝑘−3 for 𝑘 ≥ 3. Then for 𝑘 ∈ N, we have

dimQ Z𝑘 = 𝑑𝑘 .

Conjecture 1.2 (Hoffman’s conjecture). The Q-vector space Z𝑘 is generated by the basis consisting of
MZV’s of weight k of the form 𝜁 (𝑛1, . . . , 𝑛𝑟 ) with 𝑛𝑖 ∈ {2, 3}.

The algebraic part of these conjectures which concerns upper bounds for dimQZ𝑘 was solved by
Terasoma [34], Deligne–Goncharov [17] and Brown [5] using the theory of mixed Tate motives.

Theorem 1.3 (Deligne–Goncharov, Terasoma). For 𝑘 ∈ N, we have dimQZ𝑘 ≤ 𝑑𝑘 .

Theorem 1.4 (Brown). The Q-vector space Z𝑘 is generated by MZV’s of weight k of the form
𝜁 (𝑛1, . . . , 𝑛𝑟 ) with 𝑛𝑖 ∈ {2, 3}.

Unfortunately, the transcendental part which concerns lower bounds for dimQZ𝑘 is completely open.
We refer the reader to [7, 16, 43] for more details and more exhaustive references.

1.1.2. Alternating multiple zeta values
There exists a variant of MZV’s called the alternating multiple zeta values (AMZV’s for short), also
known as Euler sums. They are real numbers given by

𝜁

(
𝜖1 . . . 𝜖𝑟
𝑛1 . . . 𝑛𝑟

)
=

∑
0<𝑘1< · · ·<𝑘𝑟

𝜖 𝑘1
1 . . . 𝜖 𝑘𝑟𝑟

𝑘𝑛1
1 . . . 𝑘𝑛𝑟𝑟

,

where 𝜖𝑖 ∈ {±1}, 𝑛𝑖 ∈ N and (𝑛𝑟 , 𝜖𝑟 ) ≠ (1, 1). Similar to MZV’s, these values have been studied by
Broadhurst, Deligne—Goncharov, Hoffman, Kaneko—Tsumura and many others because of the many
connections in different contexts. We refer the reader to [21, 24, 44] for further references.

As before, it is expected that all Q-linear relations between AMZV’s can be derived from those
between AMZV’s of the same weight. In particular, it is natural to ask whether one could formulate
conjectures similar to those of Zagier and Hoffman for AMZV’s of fixed weight. By the work of
Deligne–Goncharov [17], the sharp upper bounds are achieved:

Theorem 1.5 (Deligne–Goncharov). For 𝑘 ∈ N, if we denote by A𝑘 the Q-vector space spanned by
AMZV’s of weight k, then dimQA𝑘 ≤ 𝐹𝑘+1. Here, 𝐹𝑛 is the n-th Fibonacci number defined by 𝐹1 = 𝐹2 = 1
and 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 for all 𝑛 ≥ 1.

The fact that the previous upper bounds would be sharp was also explained by Deligne in [15]
(see also [17]) using a variant of a conjecture of Grothendieck. In the direction of extending Brown’s
theorem for AMZV’s, there are several sets of generators for A𝑘 (see, for example, [12, 15]). However,
we mention that these generators are only linear combinations of AMZV’s.

Finally, we know nothing about nontrivial lower bounds for dimQA𝑘 .

1.2. Function field setting

1.2.1. MZV’s of Thakur and analogues of Zagier–Hoffman’s conjectures
By analogy between number fields and function fields, based on the pioneering work of Carlitz [8],
Thakur [35] defined analogues of multiple zeta values in positive characteristic. We now need to
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introduce some notations. Let 𝐴 = F𝑞 [𝜃] be the polynomial ring in the variable 𝜃 over a finite field F𝑞 of
q elements of characteristic 𝑝 > 0. We denote by 𝐴+ the set of monic polynomials in A. Let 𝐾 = F𝑞 (𝜃)
be the fraction field of A equipped with the rational point ∞. Let 𝐾∞ be the completion of K at ∞ and
C∞ be the completion of a fixed algebraic closure 𝐾 of K at ∞. We denote by 𝑣∞ the discrete valuation
on K corresponding to the place ∞ normalized such that 𝑣∞(𝜃) = −1, and by |·|∞ = 𝑞−𝑣∞ the associated
absolute value on K. The unique valuation of C∞ which extends 𝑣∞ will still be denoted by 𝑣∞. Finally,
we denote by F𝑞 the algebraic closure of F𝑞 in 𝐾 .

Let N = {1, 2, . . . } be the set of positive integers and Z≥0 = {0, 1, 2, . . . } be the set of nonnegative
integers. In [8], Carlitz introduced the Carlitz zeta values 𝜁𝐴(𝑛) for 𝑛 ∈ N given by

𝜁𝐴(𝑛) :=
∑
𝑎∈𝐴+

1
𝑎𝑛

∈ 𝐾∞

which are analogues of classical special zeta values in the function field setting. For any tuple of positive
integers 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N

𝑟 , Thakur [35] defined the characteristic p multiple zeta value (MZV for
short) 𝜁𝐴(𝔰) or 𝜁𝐴(𝑠1, . . . , 𝑠𝑟 ) by

𝜁𝐴(𝔰) :=
∑ 1

𝑎𝑠1
1 . . . 𝑎

𝑠𝑟
𝑟

∈ 𝐾∞,

where the sum runs through the set of tuples (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝐴
𝑟
+ with deg 𝑎1 > · · · > deg 𝑎𝑟 . We call r

the depth of 𝜁𝐴(𝔰) and 𝑤(𝔰) = 𝑠1 + · · · + 𝑠𝑟 the weight of 𝜁𝐴(𝔰). We note that Carlitz zeta values are
exactly depth one MZV’s. Thakur [36] showed that all the MZV’s do not vanish. We refer the reader to
[3, 4, 18, 28, 29, 33, 35, 37, 38, 39, 40, 42] for more details on these objects.

As in the classical setting, the main goal of the theory is to understand all linear relations over K
between MZV’s. We now state analogues of Zagier–Hoffman’s conjectures in positive characteristic
formulated by Thakur in [39, §8] and by Todd in [41]. For 𝑤 ∈ N, we denote by Z𝑤 the K-vector space
spanned by the MZV’s of weight w. We denote by T𝑤 the set of 𝜁𝐴(𝔰), where 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N

𝑟 of
weight w with 1 ≤ 𝑠𝑖 ≤ 𝑞 for 1 ≤ 𝑖 ≤ 𝑟 − 1 and 𝑠𝑟 < 𝑞.

Conjecture 1.6 (Zagier’s conjecture in positive characteristic). Letting

𝑑 (𝑤) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑤 = 0,
2𝑤−1 if 1 ≤ 𝑤 ≤ 𝑞 − 1,
2𝑤−1 − 1 if 𝑤 = 𝑞,

we put 𝑑 (𝑤) =
∑𝑞
𝑖=1 𝑑 (𝑤 − 𝑖) for 𝑤 > 𝑞. Then for any 𝑤 ∈ N, we have

dim𝐾 Z𝑤 = 𝑑 (𝑤).

Conjecture 1.7 (Hoffman’s conjecture in positive characteristic). A K-basis for Z𝑤 is given by T𝑤
consisting of 𝜁𝐴(𝑠1, . . . , 𝑠𝑟 ) of weight w with 𝑠𝑖 ≤ 𝑞 for 1 ≤ 𝑖 < 𝑟 , and 𝑠𝑟 < 𝑞.

In [31], one of the authors succeeded in proving the algebraic part of these conjectures (see [31,
Theorem A]): For all 𝑤 ∈ N, we have

dim𝐾 Z𝑤 ≤ 𝑑 (𝑤).

This part is based on shuffle relations for MZV’s due to Chen and Thakur and some operations introduced
by Todd. For the transcendental part, he used the Anderson–Brownawell–Papanikolas criterion in [2]
and proved sharp lower bounds for small weights 𝑤 ≤ 2𝑞−2 (see [31, Theorem D]). It has already been
noted that it is very difficult to extend his method to general weights (see [31] for more details).
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1.2.2. AMZV’s in positive characteristic
Recently, Harada [21] introduced the alternating multiple zeta values in positive characteristic (AMZV’s)
as follows. Letting 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N

𝑛 and 𝜺 = (𝜀1, . . . , 𝜀𝑟 ) ∈ (F×𝑞)
𝑛, we define

𝜁𝐴

(
𝜺
𝔰

)
:=

∑ 𝜀
deg 𝑎1
1 . . . 𝜀

deg 𝑎𝑟
𝑟

𝑎𝑠1
1 . . . 𝑎

𝑠𝑟
𝑟

∈ 𝐾∞,

where the sum runs through the set of tuples (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝐴𝑟+ with deg 𝑎1 > · · · > deg 𝑎𝑟 . The

numbers r and 𝑤(𝔰) = 𝑠1 + · · · + 𝑠𝑟 are called the depth and the weight of 𝜁𝐴
(
𝜺
𝔰

)
, respectively. We

set 𝜁𝐴
(
∅

∅

)
= 1. Harada [21] extended basic properties of MZV’s to AMZV’s, that is, nonvanishing,

shuffle relations, period interpretation and linear independence. Again, the main goal of this theory is
to determine all linear relations over K between AMZV’s. It is natural to ask whether the previous work
on analogues of the Zagier–Hoffman conjectures can be extended to this setting. More precisely, if for
𝑤 ∈ N we denote by AZ𝑤 the K vector space spanned by the AMZV’s of weight w, then we would like
to determine the dimensions of AZ𝑤 and show some nice bases of these vector spaces.

1.3. Main results

1.3.1. Statements of the main results
In this manuscript, we present complete answers to all the previous conjectures and problems raised in
§1.2.

First, for all w we calculate the dimension of AZ𝑤 and give an explicit basis in the spirit of Hoffman.

Theorem A. We define a Fibonacci-like sequence 𝑠(𝑤) as follows. We put

𝑠(𝑤) =

{
(𝑞 − 1)𝑞𝑤−1 if 1 ≤ 𝑤 < 𝑞,

(𝑞 − 1) (𝑞𝑤−1 − 1) if 𝑤 = 𝑞,

and for 𝑤 > 𝑞, 𝑠(𝑤) = (𝑞 − 1)
𝑞−1∑
𝑖=1
𝑠(𝑤 − 𝑖) + 𝑠(𝑤 − 𝑞). Then for all 𝑤 ∈ N,

dim𝐾 AZ𝑤 = 𝑠(𝑤).

Further, we can exhibit a Hoffman-like basis of AZ𝑤 .

Second, we give a proof of both Conjectures 1.6 and 1.7 which generalizes the previous work of the
fourth author [31].

Theorem B. For all 𝑤 ∈ N, T𝑤 is a K-basis for Z𝑤 . In particular,

dim𝐾 Z𝑤 = 𝑑 (𝑤).

We recall that analogues of Goncharov’s conjectures in positive characteristic were proved in [9]. As
a consequence, we give a framework for understanding all linear relations over K between MZV’s and
AMZV’s and settle the main goals of these theories.

1.3.2. Ingredients of the proofs
Let us emphasize here that Theorem A is much harder than Theorem B and that it is not enough to work
within the setting of AMZV’s. On the one hand, although it is straightforward to extend the algebraic
part for AMZV’s following the same line in [31, §2 and §3], we only obtain a weak version of Brown’s
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theorem in this setting. More precisely, we get a set of generators for AZ𝑤 but it is too large to be
a basis of this vector space. For small weights, we find ad hoc arguments to produce a smaller set of
generators but it does not work for arbitrary weights (see §5.4). Roughly speaking, in [31, §2 and §3] we
have an algorithm which moves forward so that we can express any AMZV as a linear combination of
generators. But we lack some precise controls on the coefficients in these expressions so that we cannot
go backward and change bases. On the other hand, the transcendental part for AMZV’s shares the same
difficulties with the case of MZV’s as noted above.

In this paper, we use a completely new approach which is based on the study of alternating Carlitz
multiple polylogarithms (ACMPL’s for short) defined as follows. We put ℓ0 := 1 and ℓ𝑑 :=

∏𝑑
𝑖=1(𝜃−𝜃

𝑞𝑖 )

for all 𝑑 ∈ N. For any tuple 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N𝑟 and 𝜺 = (𝜀1, . . . , 𝜀𝑟 ) ∈ (F×𝑞)
𝑟 , we introduce the

corresponding alternating Carlitz multiple polylogarithm by

Li
(
𝜺
𝔰

)
:=

∑
𝑑1> · · ·>𝑑𝑟 ≥0

𝜀𝑑1
1 . . . 𝜀𝑑𝑟𝑟

ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑟𝑑𝑟

∈ 𝐾∞.

We also set Li
(
∅

∅

)
= 1.

The key result is to establish a nontrivial connection between AMZV’s and ACMPL’s which allows
us to go back and forth between these objects (see Theorem 5.9). To do this, following [31, §2 and §3] we
use stuffle relations to develop an algebraic theory for ACMPL’s and obtain a weak version of Brown’s
theorem, that is, a set of generators for the K-vector space AL𝑤 spanned by ACMPL’s of weight w. We
observe that this set of generators is exactly the same as that for AMZV’s. Thus, AL𝑤 = AZ𝑤 , which
provides a dictionary between AMZV’s and ACMPL’s.

We then determine all K-linear relations between ACMPL’s (see Theorem 4.6). The proof we give
here, while using similar tools as in [31], differs in some crucial points and requires three new ingredients.

The first new ingredient is the construction of an appropriate Hoffman-like basis AS𝑤 of AL𝑤 . In
fact, our transcendental method dictates that we must find a complete system of bases AS𝑤 of AL𝑤
indexed by weights w with strong constraints as given in Theorem 3.4. The failure to find such a system
of bases is the main obstacle to generalizing [31, Theorem D] (see §5.1 and [31, Remark 6.3] for more
details).

The second new ingredient is formulating and proving (a strong version of) Brown’s theorem
for AMCPLs (see Theorem 2.11). As mentioned before, the method in [31] only gives a weak ver-
sion of Brown’s theorem for ACMPL’s as the set of generators is not a basis. Roughly speaking,
given any ACMPL’s we can express it as a linear combination of generators. The fact that stuffle
relations for ACMPL’s are ‘simpler’ than shuffle relations for AMZV’s gives more precise informa-
tion about the coefficients of these expressions. Consequently, we show that a certain transition ma-
trix is invertible and obtain Brown’s theorem for ACMPL’s. This completes the algebraic part for
ACMPL’s.

The last new ingredient is proving the transcendental part for ACMPL’s in full generality, that is,
the ACMPL’s in AS𝑤 are linearly independent over K (see Theorem 4.4). We emphasize that we do
need the full strength of the algebraic part to prove the transcendental part. The proof follows the same
line in [31, §4 and §5] which is formulated in a more general setting in §3. First, we have to consider
not only linear relations between ACMPL’s in AS𝑤 but also those between ACMPL’s in AS𝑤 and the
suitable power �̃�𝑤 of the Carlitz period �̃�. Second, starting from such a nontrivial relation we apply the
Anderson–Brownawell–Papanikolas criterion in [2] and reduce to solve a system of 𝜎-linear equations.
While in [31, §4 and §5] this system does not have a nontrivial solution which allows us to conclude, our
system has a unique solution for even w (i.e., 𝑞 − 1 divides w). This means that for such w up to a scalar
there is a unique linear relation between ACMPL’s in AS𝑤 and �̃�𝑤 . The last step consists of showing
that in this unique relation, the coefficient of �̃�𝑤 is nonzero. Unexpectedly, this is a consequence of
Brown’s theorem for AMCPLs mentioned above.
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1.3.3. Plan of the paper
We will briefly explain the organization of the manuscript.

• In §2, we recall the definition and basic properties of ACMPL’s. We then develop an algebraic
theory for these objects and obtain weak and strong Brown’s theorems (see Proposition 2.10 and
Theorem 2.11).

• In §3, we generalize some transcendental results in [31] and give statements in a more general setting
(see Theorem 3.4).

• In §4, we prove transcendental results for ACMPL’s and completely determine all linear relations
between ACMPL’s (see Theorems 4.4 and 4.6).

• Finally, in §5 we present two applications and prove the main results, that is, Theorems A and B.
The first application is to prove the above connection between ACMPL’s and AMZV’s and then
to determine all linear relations between AMZV’s in positive characteristic (see §5.1). The second
application is a proof of Zagier–Hoffman’s conjectures in positive characteristic which generalizes
the main results of [31] (see §5.3).

1.4. Remark

When our work was released in arXiv:2205.07165, Chieh-Yu Chang informed us that Chen, Mishiba
and he were working towards a proof of Theorem B (e.g., the MZV version) by using a similar method,
and their paper [10] is now available at arXiv:2205.09929.

2. Weak and strong Brown’s theorems for ACMPL’s

In this section, we first extend the work of [31] and develop an algebraic theory for ACMPL’s. Then
we prove a weak version of Brown’s theorem for ACMPL’s (see Theorem 2.10) which gives a set of
generators for the K-vector space spanned by ACMPL’s of weight w. The techniques of Sections 2.1–2.3
are similar to those of [31], and the reader may wish to skip the details.

Contrary to what happens in [31], it turns out that the previous set of generators is too large to be
a basis. Consequently, in §2.4 we introduce another set of generators and prove a strong version of
Brown’s theorem for ACMPL’s (see Theorem 2.11).

2.1. Analogues of power sums

2.1.1.
We recall and introduce some notation in [31]. A tuple 𝔰 is a sequence of the form 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ N

𝑛.
We call depth(𝔰) = 𝑛 the depth and 𝑤(𝔰) = 𝑠1 + · · · + 𝑠𝑛 the weight of 𝔰. If 𝔰 is nonempty, we put
𝔰− := (𝑠2, . . . , 𝑠𝑛).

Let 𝔰 and 𝔱 be two tuples of positive integers. We set 𝑠𝑖 = 0 (resp. 𝑡𝑖 = 0) for all 𝑖 > depth(𝔰) (resp.
𝑖 > depth(𝔱)). We say that 𝔰 ≤ 𝔱 if 𝑠1 + · · · + 𝑠𝑖 ≤ 𝑡1 + · · · + 𝑡𝑖 for all 𝑖 ∈ N, and 𝑤(𝔰) = 𝑤(𝔱). This defines
a partial order on tuples of positive integers.

For 𝑖 ∈ N, we define𝑇𝑖 (𝔰) to be the tuple (𝑠1+· · ·+𝑠𝑖 , 𝑠𝑖+1, . . . , 𝑠𝑛). Further, for 𝑖 ∈ N, if𝑇𝑖 (𝔰) ≤ 𝑇𝑖 (𝔱),
then 𝑇𝑘 (𝔰) ≤ 𝑇𝑘 (𝔱) for all 𝑘 ≥ 𝑖.

Let 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ N
𝑛 be a tuple of positive integers. We denote by 0 ≤ 𝑖 ≤ 𝑛 the largest integer

such that 𝑠 𝑗 ≤ 𝑞 for all 1 ≤ 𝑗 ≤ 𝑖 and define the initial tuple Init(𝔰) of 𝔰 to be the tuple

Init(𝔰) := (𝑠1, . . . , 𝑠𝑖).

In particular, if 𝑠1 > 𝑞, then 𝑖 = 0 and Init(𝔰) is the empty tuple.
For two different tuples 𝔰 and 𝔱, we consider the lexicographic order for initial tuples and write

Init(𝔱) � Init(𝔰) (resp. Init(𝔱) ≺ Init(𝔰), Init(𝔱) 
 Init(𝔰) and Init(𝔱) � Init(𝔰)).
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2.1.2.
Letting 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 and 𝜺 = (𝜀1, . . . , 𝜀𝑛) ∈ (F×𝑞)

𝑛, we set 𝔰− := (𝑠2, . . . , 𝑠𝑛) and 𝜺− :=

(𝜀2, . . . , 𝜀𝑛). By definition, an array
(
𝜺
𝔰

)
is an array of the form

(
𝜺
𝔰

)
=

(
𝜀1 · · · 𝜀𝑛
𝑠1 · · · 𝑠𝑛

)
.

We call depth(𝔰) = 𝑛 the depth, 𝑤(𝔰) = 𝑠1+· · ·+𝑠𝑛 the weight and 𝜒(𝜺) = 𝜀1 . . . 𝜀𝑛 the character of
(
𝜺
𝔰

)
.

We say that
(
𝜺
𝔰

)
≤

(
𝝐
𝔱

)
if the following conditions are satisfied:

1. 𝜒(𝜺) = 𝜒(𝝐),
2. 𝑤(𝔰) = 𝑤(𝔱),
3. 𝑠1 + · · · + 𝑠𝑖 ≤ 𝑡1 + · · · + 𝑡𝑖 for all 𝑖 ∈ N.

We note that this only defines a preorder on arrays.

Remark 2.1. We claim that if
(
𝜺
𝔰

)
≤

(
𝝐
𝔱

)
, then depth(𝔰) ≥ depth(𝔱). In fact, assume that depth(𝔰) <

depth(𝔱). Thus,

𝑤(𝔰) = 𝑠1 + · · · + 𝑠depth(𝔰) ≤ 𝑡1 + · · · + 𝑡depth(𝔰) < 𝑡1 + · · · + 𝑡depth(𝔱) = 𝑤(𝔱),

which contradicts the condition 𝑤(𝔰) = 𝑤(𝔱).

2.1.3.
We recall the power sums and MZV’s studied by Thakur [38]. For 𝑑 ∈ Z and for 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ N

𝑛,
we introduce

𝑆𝑑 (𝔰) :=
∑

𝑎1 ,...,𝑎𝑛∈𝐴+
𝑑=deg 𝑎1> · · ·>deg 𝑎𝑛≥0

1
𝑎𝑠1

1 . . . 𝑎
𝑠𝑛
𝑛

∈ 𝐾

and

𝑆<𝑑 (𝔰) :=
∑

𝑎1 ,...,𝑎𝑛∈𝐴+
𝑑>deg 𝑎1> · · ·>deg 𝑎𝑛≥0

1
𝑎𝑠1

1 . . . 𝑎
𝑠𝑛
𝑛

∈ 𝐾.

We define the multiple zeta value (MZV) by

𝜁𝐴(𝔰) :=
∑
𝑑≥0

𝑆𝑑 (𝔰) =
∑
𝑑≥0

∑
𝑎1 ,...,𝑎𝑛∈𝐴+

𝑑=deg 𝑎1> · · ·>deg 𝑎𝑛≥0

1
𝑎𝑠1

1 . . . 𝑎
𝑠𝑛
𝑛

∈ 𝐾∞.

We put 𝜁𝐴(∅) = 1. We call depth(𝔰) = 𝑛 the depth and 𝑤(𝔰) = 𝑠1 + · · · + 𝑠𝑛 the weight of 𝜁𝐴(𝔰).
We also recall that ℓ0 := 1 and ℓ𝑑 :=

∏𝑑
𝑖=1(𝜃 − 𝜃

𝑞𝑖 ) for all 𝑑 ∈ N. Letting 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ N
𝑛, for

𝑑 ∈ Z, we define analogues of power sums by

Si𝑑 (𝔰) :=
∑

𝑑=𝑑1> · · ·>𝑑𝑛≥0

1
ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑛𝑑𝑛

∈ 𝐾,
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and

Si<𝑑 (𝔰) :=
∑

𝑑>𝑑1> · · ·>𝑑𝑛≥0

1
ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑛𝑑𝑛

∈ 𝐾.

We introduce the Carlitz multiple polylogarithm (CMPL for short) by

Li(𝔰) :=
∑
𝑑≥0

Si𝑑 (𝔰) =
∑
𝑑≥0

∑
𝑑=𝑑1> · · ·>𝑑𝑛≥0

1
ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑛𝑑𝑛

∈ 𝐾∞.

We set Li(∅) = 1. We call depth(𝔰) = 𝑛 the depth and 𝑤(𝔰) = 𝑠1 + · · · + 𝑠𝑛 the weight of Li(𝔰).

2.1.4.
Let

(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
be an array. For 𝑑 ∈ Z, we define

𝑆𝑑

(
𝜺
𝔰

)
:=

∑
𝑎1 ,...,𝑎𝑛∈𝐴+

𝑑=deg 𝑎1> · · ·>deg 𝑎𝑛≥0

𝜀
deg 𝑎1
1 . . . 𝜀

deg 𝑎𝑛
𝑛

𝑎𝑠1
1 . . . 𝑎

𝑠𝑛
𝑛

∈ 𝐾

and

𝑆<𝑑

(
𝜺
𝔰

)
:=

∑
𝑎1 ,...,𝑎𝑛∈𝐴+

𝑑>deg 𝑎1> · · ·>deg 𝑎𝑛≥0

𝜀
deg 𝑎1
1 . . . 𝜀

deg 𝑎𝑛
𝑛

𝑎𝑠1
1 . . . 𝑎

𝑠𝑛
𝑛

∈ 𝐾.

We also introduce

Si𝑑
(
𝜺
𝔰

)
:=

∑
𝑑=𝑑1> · · ·>𝑑𝑛≥0

𝜀𝑑1
1 . . . 𝜀𝑑𝑛𝑛

ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑛𝑑𝑛

∈ 𝐾,

and

Si<𝑑
(
𝜺
𝔰

)
:=

∑
𝑑>𝑑1> · · ·>𝑑𝑛≥0

𝜀𝑑1
1 . . . 𝜀𝑑𝑛𝑛

ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑛𝑑𝑛

∈ 𝐾.

One verifies easily the following formulas:

Si𝑑
(
𝜀
𝑠

)
= 𝜀𝑑 Si𝑑 (𝑠), (2.1)

Si𝑑
(

1 . . . 1
𝑠1 . . . 𝑠𝑛

)
= Si𝑑 (𝑠1, . . . , 𝑠𝑛), (2.2)

Si<𝑑
(

1 . . . 1
𝑠1 . . . 𝑠𝑛

)
= Si<𝑑 (𝑠1, . . . , 𝑠𝑛), (2.3)

Si𝑑
(
𝜺
𝔰

)
= Si𝑑

(
𝜀1
𝑠1

)
Si<𝑑

(
𝜺−
𝔰−

)
. (2.4)

Then we define the alternating Carlitz multiple polylogarithm (ACMPL for short) by

Li
(
𝜺
𝔰

)
:=

∑
𝑑≥0

Si𝑑
(
𝜺
𝔰

)
=

∑
𝑑1> · · ·>𝑑𝑛≥0

𝜀𝑑1
1 . . . 𝜀𝑑𝑛𝑛

ℓ𝑠1
𝑑1
. . . ℓ𝑠𝑛𝑑𝑛

∈ 𝐾∞.
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Recall that Li
(
∅

∅

)
= 1. We call depth(𝔰) = 𝑛 the depth, 𝑤(𝔰) = 𝑠1 + · · · + 𝑠𝑛 the weight and 𝜒(𝜺) =

𝜀1 . . . 𝜀𝑛 the character of Li
(
𝜺
𝔰

)
.

Lemma 2.2. For all
(
𝜺
𝔰

)
as above such that 𝑠𝑖 ≤ 𝑞 for all i, we have

𝑆𝑑

(
𝜺
𝔰

)
= Si𝑑

(
𝜺
𝔰

)
for all 𝑑 ∈ Z.

Therefore,

𝜁𝐴

(
𝜺
𝔰

)
= Li

(
𝜺
𝔰

)
.

Proof. We denote by J the set of all arrays
(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
for some n such that 𝑠1, . . . , 𝑠𝑛 ≤ 𝑞.

The second statement follows at once from the first statement. We prove the first statement by

induction on depth(𝔰). For depth(𝔰) = 1, we let
(
𝜺
𝔰

)
=

(
𝜀
𝑠

)
with 𝑠 ≤ 𝑞. It follows from special cases of

power sums in [37, §3.3] that for all 𝑑 ∈ Z, 𝑆𝑑
(
𝜀
𝑠

)
=
𝜀𝑑

ℓ𝑠𝑑
= Si𝑑

(
𝜀
𝑠

)
. Suppose that the first statement

holds for all arrays
(
𝜺
𝔰

)
∈ Jwith depth(𝔰) = 𝑛 − 1 and for all 𝑑 ∈ Z. Let

(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
be an

element of J . Note that if
(
𝜺
𝔰

)
∈ J , then

(
𝜺−
𝔰−

)
∈ J . It follows from induction hypothesis and the fact

𝑠1 ≤ 𝑞 that for all 𝑑 ∈ Z

𝑆𝑑

(
𝜺
𝔰

)
= 𝑆𝑑

(
𝜀1
𝑠1

)
𝑆<𝑑

(
𝜺−
𝔰−

)
= Si𝑑

(
𝜀1
𝑠1

)
Si<𝑑

(
𝜺−
𝔰−

)
= Si𝑑

(
𝜺
𝔰

)
.

This proves the lemma. �

2.1.5.
Let

(
𝜺
𝔰

)
,

(
𝝐
𝔱

)
be two arrays. We recall 𝑠𝑖 = 0 and 𝜀𝑖 = 1 for all 𝑖 > depth(𝔰); 𝑡𝑖 = 0 and 𝜖𝑖 = 1 for all

𝑖 > depth(𝔱). We define the following operation(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
:=

(
𝜺𝝐
𝔰 + 𝔱

)
,

where 𝜺𝝐 and 𝔰 + 𝔱 are defined by component multiplication and component addition, respectively.
We now consider some formulas related to analogues of power sums. It is easily seen that

Si𝑑
(
𝜀
𝑠

)
Si𝑑

(
𝜖
𝑡

)
= Si𝑑

(
𝜀𝜖
𝑠 + 𝑡

)
, (2.5)

hence, for 𝔱 = (𝑡1, . . . , 𝑡𝑛),

Si𝑑
(
𝜀
𝑠

)
Si𝑑

(
𝝐
𝔱

)
= Si𝑑

(
𝜀𝜖1 𝝐−
𝑠 + 𝑡1 𝔱−

)
. (2.6)

More generally, we deduce the following proposition which will be used frequently later.
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Proposition 2.3. Let
(
𝜺
𝔰

)
,
(
𝝐
𝔱

)
be two arrays. Then we have the following:

1. There exist 𝑓𝑖 ∈ F𝑞 and arrays
(
𝝁𝑖
𝔲𝑖

)
with

(
𝝁𝑖
𝔲𝑖

)
≤

(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
and depth(𝔲𝑖) ≤ depth(𝔰) + depth(𝔱) for

all i such that

Si𝑑
(
𝜺
𝔰

)
Si𝑑

(
𝝐
𝔱

)
=

∑
𝑖

𝑓𝑖 Si𝑑
(
𝝁𝑖
𝔲𝑖

)
for all 𝑑 ∈ Z.

2. There exist 𝑓 ′𝑖 ∈ F𝑞 and arrays
(
𝝁′
𝑖

𝔲′
𝑖

)
with

(
𝝁′
𝑖

𝔲′
𝑖

)
≤

(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
and depth(𝔲′

𝑖 ) ≤ depth(𝔰) + depth(𝔱)

for all i such that

Si<𝑑
(
𝜺
𝔰

)
Si<𝑑

(
𝝐
𝔱

)
=

∑
𝑖

𝑓 ′𝑖 Si<𝑑
(
𝝁′
𝑖

𝔲′
𝑖

)
for all 𝑑 ∈ Z.

3. There exist 𝑓 ′′𝑖 ∈ F𝑞 and arrays
(
𝝁′′
𝑖

𝔲′′
𝑖

)
with

(
𝝁′′
𝑖

𝔲′′
𝑖

)
≤

(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
and depth(𝔲′′

𝑖 ) ≤ depth(𝔰) + depth(𝔱)

for all i such that

Si𝑑
(
𝜺
𝔰

)
Si<𝑑

(
𝝐
𝔱

)
=

∑
𝑖

𝑓 ′′𝑖 Si𝑑
(
𝝁′′
𝑖

𝔲′′
𝑖

)
for all 𝑑 ∈ Z.

Proof. The proof follows the same line as in [31, Proposition 2.1]. We omit the proof here and refer the
reader to [25, Proposition 1.3] for more details. �

We denote by AL (resp. L) the K-vector space generated by the ACMPL’s (resp. by the CMPL’s) and
by AL𝑤 (resp. L𝑤 ) the K-vector space generated by the ACMPL’s of weight w (resp. by the CMPL’s
of weight w). It follows from Proposition 2.3 that AL is a K-algebra. By considering only arrays with
trivial characters, Proposition 2.3 implies that L is also a K-algebra.

2.2. Operators B∗, C and BC
In this section, we extend operators B∗ and C of Todd [41] and the operator BC of Ngo Dac [31] in the
case of ACMPL’s.

Definition 2.4. A binary relation is a K-linear combination of the form∑
𝑖

𝑎𝑖 Si𝑑
(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
= 0 for all 𝑑 ∈ Z,

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays of the same weight.

A binary relation is called a fixed relation if 𝑏𝑖 = 0 for all i.

We denote by 𝔅ℜ𝑤 the set of all binary relations of weight w. One verifies at once that 𝔅ℜ𝑤 is a
K-vector space. It follows from the fundamental relation in [37, §3.4.6] and Lemma 2.2, an important
example of binary relations

𝑅𝜀 : Si𝑑
(
𝜀
𝑞

)
+ 𝜀−1𝐷1 Si𝑑+1

(
𝜀 1
1 𝑞 − 1

)
= 0,

where 𝐷1 = 𝜃𝑞 − 𝜃 ∈ 𝐴.
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For later definitions, let 𝑅 ∈ 𝔅ℜ𝑤 be a binary relation of the form

𝑅(𝑑) :
∑
𝑖

𝑎𝑖 Si𝑑
(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
= 0, (2.7)

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays of the same weight. We now define some operators on

K-vector spaces of binary relations.

2.2.1. Operators B∗

Let
(
𝜎
𝑣

)
be an array. We define an operator

B∗
𝜎,𝑣 : 𝔅ℜ𝑤 −→ 𝔅ℜ𝑤+𝑣

as follows: For each 𝑅 ∈ 𝔅ℜ𝑤 given as in Equation (2.7), the image B∗
𝜎,𝑣 (𝑅) = Si𝑑

(
𝜎
𝑣

) ∑
𝑗<𝑑 𝑅( 𝑗) is

a fixed relation of the form

0 = Si𝑑
(
𝜎
𝑣

) (∑
𝑖

𝑎𝑖 Si<𝑑
(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si<𝑑+1

(
𝝐 𝑖
𝔱𝑖

))
=

∑
𝑖

𝑎𝑖 Si𝑑
(
𝜎
𝑣

)
Si<𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎
𝑣

)
Si<𝑑

(
𝝐 𝑖
𝔱𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎
𝑣

)
Si𝑑

(
𝝐 𝑖
𝔱𝑖

)
=

∑
𝑖

𝑎𝑖 Si𝑑
(
𝜎 𝜺𝑖
𝑣 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎 𝝐 𝑖
𝑣 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎𝜖𝑖1 𝝐 𝑖−
𝑣 + 𝑡𝑖1 𝔱𝑖−

)
.

The last equality follows from Equation (2.6).

Let
(
Σ
𝑉

)
=

(
𝜎1 . . . 𝜎𝑛
𝑣1 . . . 𝑣𝑛

)
be an array. We define an operator B∗

Σ,𝑉 (𝑅) by

B∗
Σ,𝑉 (𝑅) := B∗

𝜎1 ,𝑣1 ◦ · · · ◦ B
∗
𝜎𝑛 ,𝑣𝑛 (𝑅).

Lemma 2.5. Let
(
Σ
𝑉

)
=

(
𝜎1 . . . 𝜎𝑛
𝑣1 . . . 𝑣𝑛

)
be an array. Then B∗

Σ,𝑉 (𝑅) is of the form

∑
𝑖

𝑎𝑖 Si𝑑
(
Σ 𝜺𝑖
𝑉 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
Σ 𝝐 𝑖
𝑉 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎1 . . . 𝜎𝑛−1 𝜎𝑛𝜖𝑖1 𝝐 𝑖−
𝑣1 . . . 𝑣𝑛−1 𝑣𝑛 + 𝑡𝑖1 𝔱𝑖−

)
= 0.

Proof. From the definition and Equation (2.6), we have B∗
𝜎𝑛 ,𝑣𝑛 (𝑅) is of the form∑

𝑖

𝑎𝑖 Si𝑑
(
𝜎𝑛 𝜺𝑖
𝑣𝑛 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎𝑛 𝝐 𝑖
𝑣𝑛 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜎𝑛𝜖𝑖1 𝝐 𝑖−
𝑣𝑛 + 𝑡𝑖1 𝔱𝑖−

)
= 0.

Apply the operator B∗
𝜎1 ,𝑣1 ◦ · · · ◦B∗

𝜎𝑛−1 ,𝑣𝑛−1 to B∗
𝜎𝑛 ,𝑣𝑛 (𝑅), the result then follows from the definition. �

2.2.2. Operators C

Let
(
Σ
𝑉

)
be an array of weight v. We define an operator

CΣ,𝑉 (𝑅) : 𝔅ℜ𝑤 −→ 𝔅ℜ𝑤+𝑣
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as follows: For each 𝑅 ∈ 𝔅ℜ𝑤 given as in Equation (2.7), the image CΣ,𝑉 (𝑅) = 𝑅(𝑑) Si<𝑑+1

(
Σ
𝑉

)
is a

binary relation of the form

0 =

(∑
𝑖

𝑎𝑖 Si𝑑
(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝝐 𝑖
𝔱𝑖

))
Si<𝑑+1

(
Σ
𝑉

)
=

∑
𝑖

𝑎𝑖 Si𝑑
(
𝜺𝑖
𝔰𝑖

)
Si𝑑

(
Σ
𝑉

)
+

∑
𝑖

𝑎𝑖 Si𝑑
(
𝜺𝑖
𝔰𝑖

)
Si<𝑑

(
Σ
𝑉

)
+

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
Si<𝑑+1

(
Σ
𝑉

)
=

∑
𝑖

𝑐𝑖 Si𝑑
(
𝝁𝑖
𝔲𝑖

)
+

∑
𝑖

𝑐′𝑖 Si𝑑+1

(
𝝁′
𝑖

𝔲′
𝑖

)
.

The last equality follows from Proposition 2.3.
In particular, the following proposition gives the form of CΣ,𝑉 (𝑅𝜀).

Proposition 2.6. Let
(
Σ
𝑉

)
be an array with𝑉 = (𝑣1, 𝑉−) and Σ = (𝜎1, Σ−). Then CΣ,𝑉 (𝑅𝜀) is of the form

Si𝑑
(
𝜀𝜎1 Σ−

𝑞 + 𝑣1 𝑉−

)
+ Si𝑑

(
𝜀 Σ
𝑞 𝑉

)
+

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝜀 𝝐 𝑖
1 𝔱𝑖

)
= 0,

where 𝑏𝑖 ∈ 𝐴 are divisible by 𝐷1 and
(
𝝐 𝑖
𝔱𝑖

)
are arrays satisfying

(
𝝐 𝑖
𝔱𝑖

)
≤

(
1

𝑞 − 1

)
+

(
Σ
𝑉

)
for all i.

Proof. We see that CΣ,𝑉 (𝑅𝜀) is of the form

Si𝑑
(
𝜀
𝑞

)
Si𝑑

(
Σ
𝑉

)
+ Si𝑑

(
𝜀
𝑞

)
Si<𝑑

(
Σ
𝑉

)
+ 𝜀−1𝐷1 Si𝑑+1

(
𝜀 1
1 𝑞 − 1

)
Si<𝑑+1

(
Σ
𝑉

)
= 0.

It follows from Equation (2.6) and Proposition 2.3 that

Si𝑑
(
𝜀
𝑞

)
Si𝑑

(
Σ
𝑉

)
+ Si𝑑

(
𝜀
𝑞

)
Si<𝑑

(
Σ
𝑉

)
= Si𝑑

(
𝜀𝜎1 Σ−

𝑞 + 𝑣1 𝑉−

)
+ Si𝑑

(
𝜀 Σ
𝑞 𝑉

)
,

𝜀−1𝐷1 Si𝑑+1

(
𝜀 1
1 𝑞 − 1

)
Si<𝑑+1

(
Σ
𝑉

)
=

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝜀 𝝐 𝑖
1 𝔱𝑖

)
,

where 𝑏𝑖 ∈ 𝐴 are divisible by 𝐷1 and
(
𝝐 𝑖
𝔱𝑖

)
are arrays satisfying

(
𝝐 𝑖
𝔱𝑖

)
≤

(
1

𝑞 − 1

)
+

(
Σ
𝑉

)
for all i. This

proves the proposition. �

2.2.3. Operators BC
Let 𝜀 ∈ F×𝑞 . We define an operator

BC 𝜀,𝑞 : 𝔅ℜ𝑤 −→ 𝔅ℜ𝑤+𝑞

as follows: For each 𝑅 ∈ 𝔅ℜ𝑤 given as in Equation (2.7), the image BC 𝜀,𝑞 (𝑅) is a binary relation given
by

BC 𝜀,𝑞 (𝑅) = B∗
𝜀,𝑞 (𝑅) −

∑
𝑖

𝑏𝑖C𝝐 𝑖 ,𝔱𝑖 (𝑅𝜀).
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Let us clarify the definition of BC 𝜀,𝑞 . We know that B∗
𝜀,𝑞 (𝑅) is of the form∑

𝑖

𝑎𝑖 Si𝑑
(
𝜀 𝜺𝑖
𝑞 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜀 𝝐 𝑖
𝑞 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖 Si𝑑
(
𝜀𝜖𝑖1 𝝐 𝑖−
𝑞 + 𝑡𝑖1 𝔱𝑖−

)
= 0.

Moreover, C𝝐 𝑖 ,𝔱𝑖 (𝑅𝜀) is of the form

Si𝑑
(
𝜀 𝝐 𝑖
𝑞 𝔱𝑖

)
+ Si𝑑

(
𝜀𝜖𝑖1 𝝐 𝑖−
𝑞 + 𝑡𝑖1 𝔱𝑖−

)
+ 𝜀−1𝐷1 Si𝑑+1

(
𝜀
1

)
Si<𝑑+1

(
1

𝑞 − 1

)
Si<𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
= 0.

Combining with Proposition 2.3, Part 2, we have that BC 𝜀,𝑞 (𝑅) is of the form∑
𝑖

𝑎𝑖 Si𝑑
(
𝜀 𝜺𝑖
𝑞 𝔰𝑖

)
+

∑
𝑖, 𝑗

𝑏𝑖 𝑗 Si𝑑+1

(
𝜀 𝝐 𝑖 𝑗
1 𝔱𝑖 𝑗

)
= 0,

where 𝑏𝑖 𝑗 ∈ 𝐾 and
(
𝝐 𝑖 𝑗
𝔱𝑖 𝑗

)
are arrays satisfying

(
𝝐 𝑖 𝑗
𝔱𝑖 𝑗

)
≤

(
1

𝑞 − 1

)
+

(
𝝐 𝑖
𝔱𝑖

)
for all j.

2.3. A weak version of Brown’s theorem for ACMPL’s

2.3.1. Preparatory results

Proposition 2.7. 1) Let
(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
be an array such that Init(𝔰) = (𝑠1, . . . , 𝑠𝑘−1) for some

1 ≤ 𝑘 ≤ 𝑛, and let 𝜀 be an element in F×𝑞 . Then Li
(
𝜺
𝔰

)
can be decomposed as follows:

Li
(
𝜺
𝔰

)
= −Li

(
𝜺′

𝔰′

)
︸����︷︷����︸

type 1

+
∑
𝑖

𝑏𝑖 Li
(
𝝐 ′𝑖
𝔱′𝑖

)
︸����������︷︷����������︸

type 2

+
∑
𝑖

𝑐𝑖 Li
(
𝝁𝑖
𝔲𝑖

)
︸����������︷︷����������︸

type 3

,

where 𝑏𝑖 , 𝑐𝑖 ∈ 𝐴 are divisible by 𝐷1 such that for all i, the following properties are satisfied:

• For all arrays
(
𝝐
𝔱

)
appearing on the right-hand side,

depth(𝔱) ≥ depth(𝔰) and 𝑇𝑘 (𝔱) ≤ 𝑇𝑘 (𝔰).

• For the array
(
𝜺′

𝔰′

)
of type 1 with respect to

(
𝜺
𝔰

)
, we have(

𝜺′

𝔰′

)
=

(
𝜀1 . . . 𝜀𝑘−1 𝜀 𝜀

−1𝜀𝑘 𝜀𝑘+1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑘−1 𝑞 𝑠𝑘 − 𝑞 𝑠𝑘+1 . . . 𝑠𝑛

)
.

Moreover, for all 𝑘 ≤ ℓ ≤ 𝑛,

𝑠′1 + · · · + 𝑠′ℓ < 𝑠1 + · · · + 𝑠ℓ .

• For the array
(
𝝐 ′

𝔱′

)
of type 2 with respect to

(
𝜺
𝔰

)
, for all 𝑘 ≤ ℓ ≤ 𝑛,

𝑡 ′1 + · · · + 𝑡 ′ℓ < 𝑠1 + · · · + 𝑠ℓ .
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• For the array
(
𝝁
𝔲

)
of type 3 with respect to

(
𝜺
𝔰

)
, we have Init(𝔰) ≺ Init(𝔲).

2) Let
(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑘
𝑠1 . . . 𝑠𝑘

)
be an array such that Init(𝔰) = 𝔰 and 𝑠𝑘 = 𝑞. Then Li

(
𝜺
𝔰

)
can be

decomposed as follows:

Li
(
𝜺
𝔰

)
=

∑
𝑖

𝑏𝑖 Li
(
𝝐 ′𝑖
𝔱′𝑖

)
︸����������︷︷����������︸

type 2

+
∑
𝑖

𝑐𝑖 Li
(
𝝁𝑖
𝔲𝑖

)
︸����������︷︷����������︸

type 3

,

where 𝑏𝑖 , 𝑐𝑖 ∈ 𝐴 divisible by 𝐷1 such that for all i, the following properties are satisfied:

• For all arrays
(
𝝐
𝔱

)
appearing on the right-hand side,

depth(𝔱) ≥ depth(𝔰) and 𝑇𝑘 (𝔱) ≤ 𝑇𝑘 (𝔰).

• For the array
(
𝝐 ′

𝔱′

)
of type 2 with respect to

(
𝜺
𝔰

)
,

𝑡 ′1 + · · · + 𝑡 ′𝑘 < 𝑠1 + · · · + 𝑠𝑘 .

• For the array
(
𝝁
𝔲

)
of type 3 with respect to

(
𝜺
𝔰

)
, we have Init(𝔰) ≺ Init(𝔲).

Proof. The proof follows the same line as in [31, Proposition 2.12 and 2.13]. We outline the proof here
and refer the reader to [25] for more details. For Part 1, since Init(𝔰) = (𝑠1, . . . , 𝑠𝑘−1), we get 𝑠𝑘 > 𝑞.

Set
(
Σ
𝑉

)
=

(
𝜀−1𝜀𝑘 𝜀𝑘+1 . . . 𝜀𝑛
𝑠𝑘 − 𝑞 𝑠𝑘+1 . . . 𝑠𝑛

)
. By Proposition 2.6, CΣ,𝑉 (𝑅𝜀) is of the form

Si𝑑
(
𝜀𝑘 . . . 𝜀𝑛
𝑠𝑘 . . . 𝑠𝑛

)
+ Si𝑑

(
𝜀 𝜀−1𝜀𝑘 𝜀𝑘+1 . . . 𝜀𝑛
𝑞 𝑠𝑘 − 𝑞 𝑠𝑘+1 . . . 𝑠𝑛

)
+

∑
𝑖

𝑏𝑖 Si𝑑+1

(
𝜀 𝝐 𝑖
1 𝔱𝑖

)
= 0, (2.8)

where 𝑏𝑖 ∈ 𝐴 divisible by 𝐷1 and
(
𝝐 𝑖
𝔱𝑖

)
are arrays satisfying for all i,

(
𝝐 𝑖
𝔱𝑖

)
≤

(
1

𝑞 − 1

)
+

(
Σ
𝑉

)
=

(
𝜀−1𝜀𝑘 𝜀𝑘+1 . . . 𝜀𝑛
𝑠𝑘 − 1 𝑠𝑘+1 . . . 𝑠𝑛

)
.

For 𝑚 ∈ N, we denote by 𝑞 {𝑚} the sequence of length m with all terms equal to q. We agree by
convention that 𝑞 {0} is the empty sequence. Setting 𝑠0 = 0, we may assume that there exists a maximal
index j with 0 ≤ 𝑗 ≤ 𝑘 − 1 such that 𝑠 𝑗 < 𝑞, hence Init(𝔰) = (𝑠1, . . . , 𝑠 𝑗 , 𝑞

{𝑘− 𝑗−1}). Then the operator
BC 𝜀 𝑗+1 ,𝑞 ◦ · · · ◦ BC 𝜀𝑘−1 ,𝑞 applied to the relation (2.8) gives

Si𝑑
(
𝜀 𝑗+1 . . . 𝜀𝑘−1 𝜀𝑘 . . . 𝜀𝑛
𝑞 . . . 𝑞 𝑠𝑘 . . . 𝑠𝑛

)
+ Si𝑑

(
𝜀 𝑗+1 . . . 𝜀𝑘−1 𝜀 𝜀

−1𝜀𝑘 𝜖𝑘+1 . . . 𝜖𝑛
𝑞 . . . 𝑞 𝑞 𝑠𝑘 − 𝑞 𝑠𝑘+1 . . . 𝑠𝑛

)
+

∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 Si𝑑+1

(
𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

1 𝔱𝑖1...𝑖𝑘− 𝑗

)
= 0,
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where 𝑏𝑖1...𝑖𝑘− 𝑗 ∈ 𝐴 are divisible by 𝐷1 and(
𝝐 𝑖1...𝑖𝑘− 𝑗

𝔱𝑖1...𝑖𝑘− 𝑗

)
≤

(
𝜀 𝑗+2 . . . 𝜀𝑘−1 𝜀 𝜀

−1𝜀𝑘 𝜀𝑘+1 . . . 𝜀𝑛
𝑞 . . . 𝑞 𝑞 𝑠𝑘 − 1 𝑠𝑘+1 . . . 𝑠𝑛

)
. (2.9)

Set
(
Σ′

𝑉 ′

)
=

(
𝜀1 . . . 𝜀 𝑗
𝑠1 . . . 𝑠 𝑗

)
. Applying B∗

Σ′,𝑉 ′ to the above relation and using Lemma 2.5, we can deduce

that

Li
(
𝜺
𝔰

)
= − Li

(
𝜀1 . . . 𝜀𝑘−1 𝜀 𝜀

−1𝜀𝑘 𝜀𝑘+1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑘−1 𝑞 𝑠𝑘 − 𝑞 𝑠𝑘+1 . . . 𝑠𝑛

)
(2.10)

−
∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 Li
(
𝜀1 . . . 𝜀 𝑗 𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

𝑠1 . . . 𝑠 𝑗 1 𝔱𝑖1...𝑖𝑘− 𝑗

)
−

∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 Li
(
𝜀1 . . . 𝜀 𝑗−1 𝜀 𝑗𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

𝑠1 . . . 𝑠 𝑗−1 𝑠 𝑗 + 1 𝔱𝑖1...𝑖𝑘− 𝑗

)
.

The first term, the second term and the third term on the right-hand side of Equation (2.10) are referred
to as type 1, type 2 and type 3, respectively. From Equation (2.9) and Remark 2.1, one verifies that the
arrays of type 1, type 2 and type 3 satisfy the desired conditions. We have proved Part 1.

The proof of Part 2 follows the same arguments as that of Part 1. We first begin with the relation
𝑅𝜀𝑘 . Next, we apply BC 𝜀 𝑗+1 ,𝑞 ◦ · · · ◦ BC 𝜀𝑘−1 ,𝑞 to 𝑅𝜀𝑘 and then apply B∗

Σ′,𝑉 ′ . We can deduce that

Li
(
𝜺
𝔰

)
= −

∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 Li
(
𝜀1 . . . 𝜀 𝑗 𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

𝑠1 . . . 𝑠 𝑗 1 𝔱𝑖1...𝑖𝑘− 𝑗

)
(2.11)

−
∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 Li
(
𝜀1 . . . 𝜀 𝑗−1 𝜀 𝑗𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

𝑠1 . . . 𝑠 𝑗−1 𝑠 𝑗 + 1 𝔱𝑖1...𝑖𝑘− 𝑗

)
,

where 𝑏𝑖1...𝑖𝑘− 𝑗 ∈ 𝐴 are divisible by 𝐷1 and(
𝝐 𝑖1...𝑖𝑘− 𝑗

𝔱𝑖1...𝑖𝑘− 𝑗

)
≤

(
𝜀 𝑗+2 . . . 𝜀𝑘 1
𝑞 . . . 𝑞 𝑞 − 1

)
. (2.12)

The first term and the second term on the right-hand side of Equation (2.11) are referred to as type 2
and type 3, respectively. From Equation (2.12) and Remark 2.1, one verifies that the arrays of type 2
and type 3 satisfy the desired conditions. We finish the proof. �

We recall the following definition of [31] (see [31, Definition 3.1]):

Definition 2.8. Let 𝑘 ∈ N and 𝔰 be a tuple of positive integers. We say that 𝔰 is k-admissible if it satisfies
the following two conditions:

1) 𝑠1, . . . , 𝑠𝑘 ≤ 𝑞.
2) 𝔰 is not of the form (𝑠1, . . . , 𝑠𝑟 ) with 𝑟 ≤ 𝑘 , 𝑠1, . . . , 𝑠𝑟−1 ≤ 𝑞, and 𝑠𝑟 = 𝑞.

Here, we recall 𝑠𝑖 = 0 for 𝑖 > depth(𝔰). By convention the empty array
(
∅

∅

)
is always k-admissible.

An array is k-admissible if the corresponding tuple is k-admissible.

Proposition 2.9. For all 𝑘 ∈ N and for all arrays
(
𝜺
𝔰

)
, Li

(
𝜺
𝔰

)
can be expressed as a K-linear combination

of Li
(
𝝐
𝔱

)
’s of the same weight such that 𝔱 is k-admissible.
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Proof. The proof follows the same line as that of [31, Proposition 3.2]. We outline the proof here and
refer the reader to [25] for more details. We consider the following statement: (𝐻𝑘 ) For all arrays(
𝜺
𝔰

)
, we can express Li

(
𝜺
𝔰

)
as a K-linear combination of Li

(
𝝐
𝔱

)
’s of the same weight such that 𝔱 is

k-admissible.
We will show that (𝐻𝑘 ) holds for all 𝑘 ∈ N by induction on k. For 𝑘 = 1, we consider all the cases for

the first component 𝑠1 of 𝔰. If 𝑠1 ≤ 𝑞, then either 𝔰 is 1-admissible, or
(
𝜺
𝔰

)
=

(
𝜀
𝑞

)
. We deduce from the

relation 𝑅𝜀 that (𝐻1) holds for the case
(
𝜺
𝔰

)
=

(
𝜀
𝑞

)
. If 𝑠1 > 𝑞, we assume that

(
𝜺
𝔰

)
=

(
𝜀1 · · · 𝜀𝑛
𝑠1 · · · 𝑠𝑛

)
. Set(

Σ
𝑉

)
=

(
𝜀1 𝜀2 · · · 𝜀𝑛

𝑠1 − 𝑞 𝑠2 · · · 𝑠𝑛

)
. Applying 𝐶Σ,𝑉 to the relation 𝑅1 and using Proposition 2.6, we can deduce

that

Li
(
𝜺
𝔰

)
= −Li

(
1 𝜀1 𝜀2 · · · 𝜀𝑛
𝑞 𝑠1 − 𝑞 𝑠2 · · · 𝑠𝑛

)
−

∑
𝑖

𝑏𝑖 Li
(
1 𝝐 𝑖
1 𝔱𝑖

)
,

where 𝑏𝑖 ∈ 𝐾 for all i. It proves that (𝐻1) holds.
We next assume that (𝐻𝑘−1) holds. We need to show that (𝐻𝑘 ) holds. By using the induction

hypothesis of (𝐻𝑘−1), we can restrict our attention to the array
(
𝜺
𝔰

)
=

(
𝜀1 · · · 𝜀𝑛
𝑠1 · · · 𝑠𝑛

)
, where 𝔰 is not k-

admissible and depth(𝔰) ≥ 𝑘 . We will prove that (𝐻𝑘 ) holds for the array
(
𝜺
𝔰

)
by induction on 𝑠1+· · ·+𝑠𝑘 .

The case 𝑠1 + · · · + 𝑠𝑘 = 1 is a simple check. Assume that (𝐻𝑘 ) holds when 𝑠1 + · · · + 𝑠𝑘 < 𝑠. We need
to show that (𝐻𝑘 ) holds when 𝑠1 + · · · + 𝑠𝑘 = 𝑠. To do so, we give the following algorithm:

Algorithm: We begin with an array
(
𝜺
𝔰

)
where 𝔰 is not k-admissible, depth(𝔰) ≥ 𝑘 and 𝑠1+· · ·+𝑠𝑘 = 𝑠.

Step 1: From Proposition 2.7, we can decompose Li
(
𝜺
𝔰

)
as follows:

Li
(
𝜺
𝔰

)
= −Li

(
𝜺′

𝔰′

)
︸����︷︷����︸

type 1

+
∑
𝑖

𝑏𝑖 Li
(
𝝐 ′𝑖
𝔱′𝑖

)
︸����������︷︷����������︸

type 2

+
∑
𝑖

𝑐𝑖 Li
(
𝝁𝑖
𝔲𝑖

)
︸����������︷︷����������︸

type 3

, (2.13)

where 𝑏𝑖 , 𝑐𝑖 ∈ 𝐴. The term of type 1 disappears when Init(𝔰) = 𝔰 and 𝑠𝑛 = 𝑞.

Step 2: For all arrays
(
𝝐
𝔱

)
appearing on the right-hand side of Equation (2.13), if 𝔱 is either k-admissible

or 𝔱 satisfies the condition 𝑡1+· · ·+ 𝑡𝑘 < 𝑠, then we deduce from the induction hypothesis that (𝐻𝑘 ) holds

for the array
(
𝜺
𝔰

)
, and hence we stop the algorithm. Otherwise, there exists an array

(
𝜺1
𝔰1

)
where 𝔰1 is not

k-admissible, depth(𝔰1) ≥ 𝑘 and 𝑠11 + · · · + 𝑠1𝑘 = 𝑠. For such an array, we repeat the algorithm for
(
𝜺1
𝔰1

)
.

It remains to show that the above algorithm stops after a finite number of steps. Indeed, assume that the

above algorithm does not stop. Then there exists a sequence of arrays
(
𝜺
𝔰

)
=

(
𝜺0
𝔰0

)
,

(
𝜺1
𝔰1

)
,

(
𝜺2
𝔰2

)
, . . . such

that 𝔰𝑖 is not k-admissible and depth(𝔰𝑖) ≥ 𝑘 for all 𝑖 ≥ 0. Using Proposition 2.7, one verifies

that
(
𝜺𝑖+1
𝔰𝑖+1

)
is of type 3 with respect to

(
𝜺𝑖
𝔰𝑖

)
for all 𝑖 ≥ 0, hence we obtain an infinite sequence

Init(𝔰0) ≺ Init(𝔰1) ≺ Init(𝔰2) ≺ · · · . For all 𝑖 ≥ 0, since 𝔰𝑖 is not k-admissible and depth(𝔰𝑖) ≥ 𝑘 , we
have depth(Init(𝔰𝑖)) ≤ 𝑘 , hence Init(𝔰𝑖) � 𝑞 {𝑘 }. This shows that Init(𝔰𝑖) = Init(𝔰𝑖+1) for all i sufficiently
large, which is a contradiction. �
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2.3.2. A set of generators AT𝒘 for ACMPL’s
We recall that AL𝑤 is the K-vector space generated by ACMPL’s of weight w. We denote by AT 𝑤 the

set of all ACMPL’s Li
(
𝜺
𝔰

)
= Li

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
of weight w such that 𝑠1, . . . , 𝑠𝑛−1 ≤ 𝑞 and 𝑠𝑛 < 𝑞.

We put 𝑡 (𝑤) = |AT 𝑤 |. Then one verifies that

𝑡 (𝑤) =

{
(𝑞 − 1)𝑞𝑤−1 if 1 ≤ 𝑤 < 𝑞,

(𝑞 − 1) (𝑞𝑤−1 − 1) if 𝑤 = 𝑞,

and for 𝑤 > 𝑞, 𝑡 (𝑤) = (𝑞 − 1)
𝑞∑
𝑖=1
𝑡 (𝑤 − 𝑖).

We are ready to state a weak version of Brown’s theorem for ACMPL’s.

Proposition 2.10. The set of all elements Li
(
𝜺
𝔰

)
such that Li

(
𝜺
𝔰

)
∈ AT 𝑤 forms a set of generators for

AL𝑤 .

Proof. The result follows immediately from Proposition 2.9 in the case of 𝑘 = 𝑤. �

2.4. A strong version of Brown’s theorem for ACMPL’s

2.4.1. Another set of generators AS𝒘 for ACMPL’s
We consider the set J𝑤 consisting of positive tuples 𝔰 = (𝑠1, . . . , 𝑠𝑛) of weight w such that
𝑠1, . . . , 𝑠𝑛−1 ≤ 𝑞 and 𝑠𝑛 < 𝑞, together with the set J ′

𝑤 consisting of positive tuples 𝔰 = (𝑠1, . . . , 𝑠𝑛) of
weight w such that 𝑞 � 𝑠𝑖 for all i. Then there is a bijection

𝜄 : J ′
𝑤 −→ J𝑤

given as follows: For each tuple 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ J ′
𝑤 , since 𝑞 � 𝑠𝑖 , we can write 𝑠𝑖 = ℎ𝑖𝑞 + 𝑟𝑖 , where

0 < 𝑟𝑖 < 𝑞 and ℎ𝑖 ∈ Z≥0. The image 𝜄(𝔰) is the tuple

𝜄(𝔰) = (𝑞, . . . , 𝑞︸���︷︷���︸
ℎ1 times

, 𝑟1, . . . , 𝑞, . . . , 𝑞︸���︷︷���︸
ℎ𝑛 times

, 𝑟𝑛).

Let AS𝑤 denote the set of ACMPL’s Li
(
𝜺
𝔰

)
such that 𝔰 ∈ J ′

𝑤 . We note that in general, AS𝑤 is strictly

smaller than AT 𝑤 . The only exceptions are when 𝑞 = 2 or 𝑤 ≤ 𝑞.

2.4.2. Cardinality of AS𝒘 .

We now compute 𝑠(𝑤) = |AS𝑤 |. To do so, we denote by AJ 𝑤 the set consisting of arrays
(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
of weight w such that 𝑞 � 𝑠𝑖 for all i and by AJ 1

𝑤 the set consisting of arrays
(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
of weight w

such that 𝑠1, . . . , 𝑠𝑛−1 ≤ 𝑞, 𝑠𝑛 < 𝑞 and 𝜀𝑖 = 1 whenever 𝑠𝑖 = 𝑞 for 1 ≤ 𝑖 ≤ 𝑛. We construct a map

𝜑 : AJ 𝑤 −→ AJ 1
𝑤
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as follows: For each array
(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
∈ AJ 𝑤 , since 𝑞 � 𝑠𝑖 , we can write 𝑠𝑖 = (ℎ𝑖 − 1)𝑞 + 𝑟𝑖 ,

where 0 < 𝑟𝑖 < 𝑞 and ℎ𝑖 ∈ N. The image 𝜑
(
𝜺
𝔰

)
is the array

𝜑

(
𝜺
𝔰

)
=

( (
1 . . . 1
𝑞 . . . 𝑞

)
︸������︷︷������︸
ℎ1−1 times

(
𝜀1
𝑟1

)
. . .

(
1 . . . 1
𝑞 . . . 𝑞

)
︸������︷︷������︸
ℎ𝑛−1 times

(
𝜀𝑛
𝑟𝑛

) )
.

It is easily seen that 𝜑 is a bijection, hence |AS𝑤 | = |AJ 𝑤 | = |AJ 1
𝑤 |. Thus, 𝑠(𝑤) = |AJ 1

𝑤 |. One
verifies that

𝑠(𝑤) =

{
(𝑞 − 1)𝑞𝑤−1 if 1 ≤ 𝑤 < 𝑞,

(𝑞 − 1) (𝑞𝑤−1 − 1) if 𝑤 = 𝑞,

and for 𝑤 > 𝑞,

𝑠(𝑤) = (𝑞 − 1)
𝑞−1∑
𝑖=1
𝑠(𝑤 − 𝑖) + 𝑠(𝑤 − 𝑞).

2.4.3.
We state a strong version of Brown’s theorem for ACMPL’s.

Theorem 2.11. The set AS𝑤 forms a set of generators for AL𝑤 . In particular,

dim𝐾 AL𝑤 ≤ 𝑠(𝑤).

Proof. We recall that AT 𝑤 is the set of all ACMPL’s Li
(
𝜺
𝔰

)
with

(
𝜺
𝔰

)
∈ AJ 𝑤 .

Let Li
(
𝜺
𝔰

)
= Li

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
∈ AT 𝑤 . Then

(
𝜺
𝔰

)
∈ AJ 𝑤 , which implies 𝑠1, . . . , 𝑠𝑛−1 ≤ 𝑞 and 𝑠𝑛 < 𝑞.

We express
(
𝜺
𝔰

)
in the following form

( (
𝜀1 . . . 𝜀ℎ1−1
𝑞 . . . 𝑞

)
︸������������︷︷������������︸

ℎ1−1 times

(
𝜀ℎ1

𝑟1

)
. . .

(
𝜀ℎ1+···+ℎℓ−1+1 . . . 𝜀ℎ1+···+ℎℓ−1+(ℎℓ−1)

𝑞 . . . 𝑞

)
︸�������������������������������������������︷︷�������������������������������������������︸

ℎℓ−1 times

(
𝜀ℎ1+···+ℎℓ−1+ℎℓ

𝑟ℓ

) )
,

where ℎ1, . . . , ℎℓ ≥ 1, ℎ1 + · · · + ℎℓ = 𝑛 and 0 < 𝑟1, . . . , 𝑟ℓ < 𝑞. Then we set(
𝜺′

𝔰′

)
=

(
𝜀′1 . . . 𝜀

′
ℓ

𝑠′1 . . . 𝑠
′
ℓ

)
,

where 𝜀′𝑖 = 𝜀ℎ1+···+ℎ𝑖−1+1 · · · 𝜀ℎ1+···+ℎ𝑖−1+ℎ𝑖 and 𝑠′𝑖 = (ℎ𝑖 − 1)𝑞 + 𝑟𝑖 for 1 ≤ 𝑖 ≤ ℓ. We note that 𝜄(𝔰′) = 𝔰.

From Proposition 2.7 and Proposition 2.10, we can decompose Li
(
𝜺′

𝔰′

)
as follows:

Li
(
𝜺′

𝔰′

)
=

∑
𝑎𝜺

′,𝔰′

𝝐 ,𝔱 Li
(
𝝐
𝔱

)
,
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where
(
𝝐
𝔱

)
ranges over all elements of AJ 𝑤 and 𝑎𝜺

′,𝔰′

𝝐 ,𝔱 ∈ 𝐴 satisfying

𝑎𝜺
′,𝔰′

𝝐 ,𝔱 ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
±1 (mod 𝐷1) if

(
𝝐

𝔱

)
=

(
𝜺

𝔰

)
,

0 (mod 𝐷1) otherwise.

Note that Li
(
𝜺′

𝔰′

)
∈ AS𝑤 . Thus, the transition matrix from the set consisting of such Li

(
𝜺′

𝔰′

)
as above

(we allow repeated elements) to the set consisting of Li
(
𝜺
𝔰

)
with

(
𝜺
𝔰

)
∈ AJ 𝑤 is invertible. It then follows

again from Proposition 2.10 that AS𝑤 is a set of generators for AL𝑤 , as desired. �

3. Dual t-motives and linear independence

We continue with the notation given in the Introduction. Further, letting t be another independent
variable, we denote by T the Tate algebra in the variable t with coefficients in C∞ equipped with the
Gauss norm ‖.‖∞ and by L the fraction field of T.

We denote by E the ring of series
∑
𝑛≥0 𝑎𝑛𝑡

𝑛 ∈ 𝐾 [[𝑡]] such that lim𝑛→+∞
𝑛
√
|𝑎𝑛 |∞ = 0 and

[𝐾∞(𝑎0, 𝑎1, . . .) : 𝐾∞] < ∞. Then any 𝑓 ∈ E is an entire function.
For 𝑎 ∈ 𝐴 = F𝑞 [𝜃], we set 𝑎(𝑡) := 𝑎 |𝜃=𝑡 ∈ F𝑞 [𝑡].

3.1. Dual t-motives

We recall the notion of dual t-motives due to Anderson (see [6, §4] and [22, §5] for more details). We
refer the reader to [1] for the related notion of t-motives.

For 𝑖 ∈ Z, we consider the i-fold twisting of C∞((𝑡)) defined by

C∞((𝑡)) → C∞((𝑡))

𝑓 =
∑
𝑗

𝑎 𝑗 𝑡
𝑗 ↦→ 𝑓 (𝑖) :=

∑
𝑗

𝑎𝑞
𝑖

𝑗 𝑡
𝑗 .

We extend i-fold twisting to matrices with entries in C∞((𝑡)) by twisting entrywise.
Let 𝐾 [𝑡, 𝜎] be the noncommutative 𝐾 [𝑡]-algebra generated by the new variable 𝜎 subject to the

relation 𝜎 𝑓 = 𝑓 (−1)𝜎 for all 𝑓 ∈ 𝐾 [𝑡].

Definition 3.1. An effective dual t-motive is a 𝐾 [𝑡, 𝜎]-module M′ which is free and finitely generated
over 𝐾 [𝑡] such that for ℓ � 0 we have

(𝑡 − 𝜃)ℓ (M′/𝜎M′) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [11, 14, 21, 27]. Note that
Hartl and Juschka [22, §4] introduced a more general notion of dual t-motives. In particular, effective
dual t-motives are always dual t-motives.

Throughout this paper, we will always work with effective dual t-motives. Therefore, we will some-
times drop the word ‘effective’ where there is no confusion.

Let M and M′ be two effective dual t-motives. Then a morphism of effective dual t-motives
M → M′ is just a homomorphism of left 𝐾 [𝑡, 𝜎]-modules. We denote by F the category of effective
dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix Φ ∈ Mat𝑟 (𝐾 [𝑡]) if M is a 𝐾 [𝑡]-module free
of rank r and the action of 𝜎 is represented by the matrix Φ on a given 𝐾 [𝑡]-basis for M. We say that
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an object M of F is uniformizable or rigid analytically trivial if there exists a matrix Ψ ∈ GL𝑟 (T)
satisfying Ψ (−1) = ΦΨ. The matrix Ψ is called a rigid analytic trivialization of M.

We now recall the Anderson–Brownawell–Papanikolas criterion which is crucial in the sequel (see
[2, Theorem 3.1.1]).

Theorem 3.2 (Anderson–Brownawell–Papanikolas). Let Φ ∈ Matℓ (𝐾 [𝑡]) be a matrix such that detΦ =
𝑐(𝑡 − 𝜃)𝑠 for some 𝑐 ∈ 𝐾

× and 𝑠 ∈ Z≥0. Let 𝜓 ∈ Matℓ×1(E) be a vector satisfying 𝜓 (−1) = Φ𝜓 and
𝜌 ∈ Mat1×ℓ (𝐾) such that 𝜌𝜓(𝜃) = 0. Then there exists a vector 𝑃 ∈ Mat1×ℓ (𝐾 [𝑡]) such that

𝑃𝜓 = 0 and 𝑃(𝜃) = 𝜌.

3.2. Some constructions of dual t-motives

3.2.1. General case
We briefly review some constructions of dual t-motives introduced in [11] (see also [9, 14, 21]). Let
𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N𝑟 be a tuple of positive integers and 𝔔 = (𝑄1, . . . , 𝑄𝑟 ) ∈ 𝐾 [𝑡]𝑟 satisfying the
condition

(‖𝑄1‖∞/|𝜃 |
𝑞𝑠1
𝑞−1
∞ )𝑞

𝑖1
. . . (‖𝑄𝑟 ‖∞/|𝜃 |

𝑞𝑠𝑟
𝑞−1
∞ )𝑞

𝑖𝑟
→ 0 (3.1)

as 0 ≤ 𝑖𝑟 < · · · < 𝑖1 and 𝑖1 → ∞.
We consider the dual t-motives M𝔰,𝔔 and M′

𝔰,𝔔 attached to (𝔰,𝔔) given by the matrices

Φ𝔰,𝔔 =

����������

(𝑡 − 𝜃)𝑠1+···+𝑠𝑟 0 0 . . . 0
𝑄 (−1)

1 (𝑡 − 𝜃)𝑠1+···+𝑠𝑟 (𝑡 − 𝜃)𝑠2+···+𝑠𝑟 0 . . . 0

0 𝑄 (−1)
2 (𝑡 − 𝜃)𝑠2+···+𝑠𝑟

. . .
...

...
. . . (𝑡 − 𝜃)𝑠𝑟 0

0 . . . 0 𝑄 (−1)
𝑟 (𝑡 − 𝜃)𝑠𝑟 1

����������
∈ Mat𝑟+1(𝐾 [𝑡]),

and Φ′
𝔰,𝔔 ∈ Mat𝑟 (𝐾 [𝑡]) is the upper left 𝑟 × 𝑟 submatrix of Φ𝔰,𝔔 .

Throughout this paper, we work with the Carlitz period �̃� which is a fundamental period of the Carlitz
module (see [20, 35]). We fix a choice of (𝑞 − 1)st root of (−𝜃) and set

Ω(𝑡) := (−𝜃)−𝑞/(𝑞−1)
∏
𝑖≥1

(
1 −

𝑡

𝜃𝑞
𝑖

)
∈ T×

so that

Ω(−1) = (𝑡 − 𝜃)Ω and
1

Ω(𝜃)
= �̃�.

Given (𝔰,𝔔) as above, Chang introduced the following series (see [9, Lemma 5.3.1] and also [11, Eq.
(2.3.2)])

𝔏(𝔰;𝔔) = 𝔏(𝑠1, . . . , 𝑠𝑟 ;𝑄1, . . . , 𝑄𝑟 ) :=
∑

𝑖1> · · ·>𝑖𝑟 ≥0
(Ω𝑠𝑟𝑄𝑟 )

(𝑖𝑟 ) . . . (Ω𝑠1𝑄1)
(𝑖1) . (3.2)

It is proved that 𝔏(𝔰,𝔔) ∈ E (see [9, Lemma 5.3.1]). Here, we recall that E denotes the ring of series∑
𝑛≥0 𝑎𝑛𝑡

𝑛 ∈ 𝐾 [[𝑡]] such that lim𝑛→+∞
𝑛
√
|𝑎𝑛 |∞ = 0 and [𝐾∞(𝑎0, 𝑎1, . . .) : 𝐾∞] < ∞. In the sequel, we
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will use the following crucial property of this series (see [9, Lemma 5.3.5] and [11, Proposition 2.3.3]):
For all 𝑗 ∈ Z≥0, we have

𝔏(𝔰;𝔔)
(
𝜃𝑞

𝑗
)
= (𝔏(𝔰;𝔔) (𝜃))𝑞

𝑗

. (3.3)

Then the matrix given by

Ψ𝔰,𝔔 =

�����������

Ω𝑠1+···+𝑠𝑟 0 0 . . . 0
𝔏(𝑠1;𝑄1)Ω𝑠2+···+𝑠𝑟 Ω𝑠2+···+𝑠𝑟 0 . . . 0

... 𝔏(𝑠2;𝑄2)Ω𝑠3+···+𝑠𝑟
. . .

...
...

. . .
. . .

...
𝔏(𝑠1, . . . , 𝑠𝑟−1;𝑄1, . . . , 𝑄𝑟−1)Ω𝑠𝑟 𝔏(𝑠2, . . . , 𝑠𝑟−1;𝑄2, . . . , 𝑄𝑟−1)Ω𝑠𝑟 . . . Ω𝑠𝑟 0

𝔏(𝑠1, . . . , 𝑠𝑟 ;𝑄1, . . . , 𝑄𝑟 ) 𝔏(𝑠2, . . . , 𝑠𝑟 ;𝑄2, . . . , 𝑄𝑟 ) . . . 𝔏(𝑠𝑟 ;𝑄𝑟 ) 1

�����������
∈ GL𝑟+1(T)

satisfies

Ψ (−1)
𝔰,𝔔 = Φ𝔰,𝔔Ψ𝔰,𝔔 .

Thus, Ψ𝔰,𝔔 is a rigid analytic trivialization associated to the dual t-motive M𝔰,𝔔 .
We also denote by Ψ′

𝔰,𝔔 the upper 𝑟 × 𝑟 submatrix of Ψ𝔰,𝔔 . It is clear that Ψ′
𝔰 is a rigid analytic

trivialization associated to the dual t-motive M′
𝔰,𝔔 .

Further, combined with Equation (3.3), the above construction of dual t-motives implies that
�̃�𝑤𝔏(𝔰;𝔔) (𝜃), where 𝑤 = 𝑠1 + · · · + 𝑠𝑟 has the MZ (multizeta) property in the sense of [9, Definition
3.4.1]. By [9, Proposition 4.3.1], we get
Proposition 3.3. Let (𝔰𝑖;𝔔𝑖) as before for 1 ≤ 𝑖 ≤ 𝑚. We suppose that all the tuples of positive integers
𝔰𝑖 have the same weight, say w. Then the following assertions are equivalent:
i) 𝔏(𝔰1;𝔔1) (𝜃), . . . ,𝔏(𝔰𝑚;𝔔𝑚) (𝜃) are K-linearly independent.

ii) 𝔏(𝔰1;𝔔1) (𝜃), . . . ,𝔏(𝔰𝑚;𝔔𝑚) (𝜃) are 𝐾-linearly independent.
We end this section by mentioning that Chang [9] also proved analogue of Goncharov’s conjecture

in this setting.

3.2.2. Dual t-motives connected to MZV’s and AMZV’s
Following Anderson and Thakur [4], we introduce dual t-motives connected to MZV’s and AMZV’s.
We briefly review Anderson–Thakur polynomials introduced in [3]. For 𝑘 ≥ 0, we set [𝑘] := 𝜃𝑞𝑘

− 𝜃

and 𝐷𝑘 :=
∏𝑘
ℓ=1 [ℓ]

𝑞𝑘−ℓ . For 𝑛 ∈ N, we write 𝑛 − 1 =
∑
𝑗≥0 𝑛 𝑗𝑞

𝑗 with 0 ≤ 𝑛 𝑗 ≤ 𝑞 − 1 and define

Γ𝑛 :=
∏
𝑗≥0
𝐷
𝑛 𝑗

𝑗 .

We set 𝛾0 (𝑡) := 1 and 𝛾 𝑗 (𝑡) :=
∏ 𝑗
ℓ=1 (𝜃

𝑞 𝑗
− 𝑡𝑞

ℓ
) for 𝑗 ≥ 1. Then Anderson–Thakur polynomials

𝛼𝑛 (𝑡) ∈ 𝐴[𝑡] are given by the generating series

∑
𝑛≥1

𝛼𝑛 (𝑡)

Γ𝑛
𝑥𝑛 := 𝑥 ���1 −

∑
𝑗≥0

𝛾 𝑗 (𝑡)

𝐷 𝑗
𝑥𝑞

𝑗 ���
−1

.

Finally, we define 𝐻𝑛 (𝑡) by switching 𝜃 and t

𝐻𝑛 (𝑡) = 𝛼𝑛 (𝑡)
��
𝑡=𝜃, 𝜃=𝑡 .
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By [3, Eq. (3.7.3)], we get

deg𝜃 𝐻𝑛 ≤
(𝑛 − 1)𝑞
𝑞 − 1

<
𝑛𝑞

𝑞 − 1
. (3.4)

Let 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N𝑟 be a tuple and 𝜖 = (𝜖1, . . . , 𝜖𝑟 ) ∈ (F×𝑞)
𝑟 . Recall that F𝑞 denotes the

algebraic closure of F𝑞 in 𝐾 . For all 1 ≤ 𝑖 ≤ 𝑟 , we fix a fixed (𝑞 − 1)-th root 𝛾𝑖 ∈ F𝑞 of 𝜖𝑖 ∈ F×𝑞
and set 𝑄𝑠𝑖 , 𝜖𝑖 := 𝛾𝑖𝐻𝑠𝑖 . Then we set 𝔔𝔰,𝝐 := (𝑄𝑠1 , 𝜖1 , . . . , 𝑄𝑠𝑟 , 𝜖𝑟 ) and put 𝔏(𝔰; 𝝐) := 𝔏(𝔰;𝔔𝔰,𝝐 ). By

Equation (3.4), we know that ‖𝐻𝑛‖∞ < |𝜃 |

𝑛𝑞
𝑞−1
∞ for all 𝑛 ∈ N, thus 𝔔𝔰,𝝐 satisfies condition (3.1). Thus,w

e can define the dual t-motives M𝔰,𝝐 = M𝔰,𝔔𝔰,𝝐 and M′
𝔰,𝝐 = M′

𝔰,𝔔𝔰,𝝐
attached to 𝔰 whose matrices and

rigid analytic trivializations will be denoted by (Φ𝔰,𝝐 ,Ψ𝔰,𝝐 ) and (Φ′
𝔰,𝝐 ,Ψ

′
𝔰,𝝐 ), respectively. These dual

t-motives are connected to MZV’s and AMZV’s by the following result (see [14, Proposition 2.12] for
more details):

𝔏(𝔰; 𝝐) (𝜃) =
𝛾1 . . . 𝛾𝑟Γ𝑠1 . . . Γ𝑠𝑟 𝜁𝐴

(
𝝐
𝔰

)
�̃�𝑤 (𝔰)

. (3.5)

By a result of Thakur [37], one can show (see [21, Theorem 2.1]) that 𝜁𝐴
(
𝝐
𝔰

)
≠ 0. Thus, 𝔏(𝔰; 𝝐) (𝜃) ≠ 0.

3.2.3. Dual t-motives connected to CMPL’s and ACMPL’s
We keep the notation as above. Let 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N𝑟 be a tuple and 𝝐 = (𝜖1, . . . , 𝜖𝑟 ) ∈ (F×𝑞)

𝑟 .
For all 1 ≤ 𝑖 ≤ 𝑟 , we have a fixed (𝑞 − 1)-th root 𝛾𝑖 of 𝜖𝑖 ∈ F×𝑞 and set 𝑄 ′

𝑠𝑖 , 𝜖𝑖 := 𝛾𝑖 . Then we set
𝔔 ′

𝔰,𝝐 := (𝑄 ′
𝑠1 , 𝜖1 , . . . , 𝑄

′
𝑠𝑟 , 𝜖𝑟 ) and put

𝔏𝔦(𝔰; 𝝐) = 𝔏(𝔰;𝔔 ′
𝔰,𝝐 ) =

∑
𝑖1> · · ·>𝑖𝑟 ≥0

(𝛾𝑖𝑟Ω
𝑠𝑟 ) (𝑖𝑟 ) . . . (𝛾𝑖1Ω

𝑠1) (𝑖1) . (3.6)

Thus, we can define the dual t-motives N𝔰,𝝐 = N𝔰,𝔔′
𝔰,𝝐

and N ′
𝔰,𝝐 = N ′

𝔰,𝔔′
𝔰,𝝐

attached to (𝔰, 𝝐). These
dual t-motives are connected to CMPL’s and ACMPL’s by the following result (see [9, Lemma 5.3.5]
and [11, Prop. 2.3.3]):

𝔏𝔦(𝔰; 𝝐) (𝜃) =
𝛾1 . . . 𝛾𝑟 Li

(
𝝐
𝔰

)
�̃�𝑤 (𝔰)

. (3.7)

3.3. A result for linear independence

3.3.1. Setup
Let 𝑤 ∈ N be a positive integer. Let {(𝔰𝑖;𝔔𝑖)}1≤𝑖≤𝑛 be a collection of pairs satisfying condition (3.1)
such that 𝔰𝑖 always has weight w. We write 𝔰𝑖 = (𝑠𝑖1, . . . , 𝑠𝑖ℓ𝑖 ) ∈ N

ℓ𝑖 and 𝔔𝑖 = (𝑄𝑖1, . . . , 𝑄𝑖ℓ𝑖 ) ∈ (F×𝑞)
ℓ𝑖

so that 𝑠𝑖1 + · · · + 𝑠𝑖ℓ𝑖 = 𝑤. We introduce the set of tuples

𝐼 (𝔰𝑖;𝔔𝑖) := {∅, (𝑠𝑖1;𝑄𝑖1), . . . , (𝑠𝑖1, . . . , 𝑠𝑖 (ℓ𝑖−1) ;𝑄𝑖1, . . . , 𝑄𝑖 (ℓ𝑖−1) )},

and set

𝐼 := ∪𝑖 𝐼 (𝔰𝑖;𝔔𝑖).
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3.3.2. Linear independence
We are now ready to state the main result of this section.

Theorem 3.4. We keep the above notation. We suppose further that {(𝔰𝑖 ;𝔔𝑖)}1≤𝑖≤𝑛 satisfies the following
conditions:

(LW) For any weight 𝑤′ < 𝑤, the values 𝔏(𝔱;𝔔) (𝜃) with (𝔱;𝔔) ∈ 𝐼 and 𝑤(𝔱) = 𝑤′ are all K-linearly
independent. In particular, 𝔏(𝔱;𝔔) (𝜃) is always nonzero.

(LD) There exist 𝑎 ∈ 𝐴 and 𝑎𝑖 ∈ 𝐴 for 1 ≤ 𝑖 ≤ 𝑛 which are not all zero such that

𝑎 +
𝑛∑
𝑖=1
𝑎𝑖𝔏(𝔰𝑖;𝔔𝑖) (𝜃) = 0.

For all (𝔱;𝔔) ∈ 𝐼, we set the following series in t

𝑓𝔱;𝔔 :=
∑
𝑖

𝑎𝑖 (𝑡)𝔏(𝑠𝑖 (𝑘+1) , . . . , 𝑠𝑖ℓ𝑖 ;𝑄𝑖 (𝑘+1) , . . . , 𝑄𝑖ℓ𝑖 ), (3.8)

where the sum runs through the set of indices i such that (𝔱;𝔔) = (𝑠𝑖1, . . . , 𝑠𝑖𝑘 ;𝑄𝑖1, . . . , 𝑄𝑖𝑘 ) for some
0 ≤ 𝑘 ≤ ℓ𝑖 − 1.

Then for all (𝔱;𝔔) ∈ 𝐼, 𝑓𝔱;𝔔 (𝜃) belongs to K.

Remark 3.5. 1) Here, we note that LW stands for Lower Weights and LD for Linear Dependence.
2) With the above notation, we have

𝑓∅ =
∑
𝑖

𝑎𝑖 (𝑡)𝔏(𝔰𝑖;𝔔𝑖).

2) In fact, we improve [31, Theorem B] in two directions. First, we remove the restriction to Anderson–
Thakur polynomials and tuples 𝔰𝑖 . Second, and more importantly, we allow an additional term a, which
is crucial in the sequel. More precisely, in the case of MZV’s, while [31, Theorem B] investigates linear
relations between MZV’s of weight w, Theorem 3.4 investigates linear relations between MZV’s of
weight w and suitable powers �̃�𝑤 of the Carlitz period.

Proof. The proof will be divided into two steps.

Step 1. We first construct a dual t-motive to which we will apply the Anderson–Brownawell–Papanikolas
criterion. We recall 𝑎𝑖 (𝑡) := 𝑎𝑖 |𝜃=𝑡 ∈ F𝑞 [𝑡].

For each pair (𝔰𝑖;𝔔𝑖), we have attached to it a matrix Φ𝔰𝑖 ,𝔔𝑖 . For 𝔰𝑖 = (𝑠𝑖1, . . . , 𝑠𝑖ℓ𝑖 ) ∈ Nℓ𝑖 and
𝔔𝑖 = (𝑄𝑖1, . . . , 𝑄𝑖ℓ𝑖 ) ∈ (F×𝑞)

ℓ𝑖 we recall

𝐼 (𝔰𝑖;𝔔𝑖) = {∅, (𝑠𝑖1;𝑄𝑖1), . . . , (𝑠𝑖1, . . . , 𝑠𝑖 (ℓ𝑖−1) ;𝑄𝑖1, . . . , 𝑄 (ℓ𝑖−1) )},

and 𝐼 := ∪𝑖 𝐼 (𝔰𝑖;𝔔𝑖).
We now construct a new matrix Φ′ indexed by elements of I, say

Φ′ =
(
Φ′

(𝔱;𝔔) , (𝔱′;𝔔′)

)
(𝔱;𝔔) , (𝔱′;𝔔′) ∈𝐼

∈ Mat |𝐼 | (𝐾 [𝑡]).

For the row which corresponds to the empty pair ∅, we put

Φ′
∅, (𝔱′;𝔔′) =

{
(𝑡 − 𝜃)𝑤 if (𝔱′;𝔔 ′) = ∅,

0 otherwise.
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For the row indexed by (𝔱;𝔔) = (𝑠𝑖1, . . . , 𝑠𝑖 𝑗 ;𝑄𝑖1, . . . , 𝑄𝑖 𝑗 ) for some i and 1 ≤ 𝑗 ≤ ℓ𝑖 − 1, we put

Φ′
(𝔱;𝔔) , (𝔱′;𝔔′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑡 − 𝜃)𝑤−𝑤 (𝔱′) if (𝔱′;𝔔 ′) = (𝔱;𝔔),

𝑄 (−1)
𝑖 𝑗 (𝑡 − 𝜃)𝑤−𝑤 (𝔱′) if (𝔱′;𝔔 ′) = (𝑠𝑖1, . . . , 𝑠𝑖 ( 𝑗−1) ;𝑄𝑖1, . . . , 𝑄𝑖 ( 𝑗−1) ),

0 otherwise.

Note that Φ′
𝔰𝑖 ,𝔔𝑖

=
(
Φ′

(𝔱;𝔔) , (𝔱′;𝔔′)

)
(𝔱;𝔔) , (𝔱′;𝔔′) ∈𝐼 (𝔰𝑖 ;𝔔𝑖)

for all i.

We define Φ ∈ Mat |𝐼 |+1(𝐾 [𝑡]) by

Φ =

(
Φ′ 0
v 1

)
∈ Mat |𝐼 |+1(𝐾 [𝑡]), v = (𝑣𝔱,𝔔)(𝔱;𝔔) ∈𝐼 ∈ Mat1×|𝐼 | (𝐾 [𝑡]),

where

𝑣𝔱;𝔔 =
∑
𝑖

𝑎𝑖 (𝑡)𝑄
(−1)
𝑖ℓ𝑖

(𝑡 − 𝜃)𝑤−𝑤 (𝔱) .

Here, the sum runs through the set of indices i such that (𝔱;𝔔) = (𝑠𝑖1, . . . , 𝑠𝑖 (ℓ𝑖−1) ;𝑄𝑖1, . . . , 𝑄𝑖 (ℓ𝑖−1) ),
and the empty sum is defined to be zero.

We now introduce a rigid analytic trivialization matrix Ψ for Φ. We define Ψ′ =(
Ψ′

(𝔱;𝔔) , (𝔱′;𝔔′)

)
(𝔱;𝔔) , (𝔱′;𝔔′) ∈𝐼

∈ GL |𝐼 | (T) as follows. For the row which corresponds to the empty pair ∅,
we define

Ψ′
∅, (𝔱′;𝔔′) =

{
Ω𝑤 if (𝔱′;𝔔 ′) = ∅,

0 otherwise.

For the row indexed by (𝔱;𝔔) = (𝑠𝑖1, . . . , 𝑠𝑖 𝑗 ;𝑄𝑖1, . . . , 𝑄𝑖 𝑗 ) for some i and 1 ≤ 𝑗 ≤ ℓ𝑖 − 1, we put

Ψ′
(𝔱;𝔔) , (𝔱′;𝔔′) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝔏(𝔱;𝔔)Ω𝑤−𝑤 (𝔱) if (𝔱′;𝔔 ′) = ∅,

𝔏(𝑠𝑖 (𝑘+1) , . . . , 𝑠𝑖 𝑗 ;
𝑄𝑖 (𝑘+1) , . . . , 𝑄𝑖 𝑗 )Ω𝑤−𝑤 (𝔱) if (𝔱′;𝔔 ′) = (𝑠𝑖1, . . . , 𝑠𝑖𝑘 ;𝑄𝑖1, . . . , 𝑄𝑖𝑘 ) for some 1 ≤ 𝑘 ≤ 𝑗 ,

0 otherwise.

Note that Ψ′
𝔰𝑖 ,𝔔𝑖

=
(
Ψ′

(𝔱;𝔔) , (𝔱′;𝔔′)

)
(𝔱;𝔔) , (𝔱′;𝔔′) ∈𝐼 (𝔰𝑖 ;𝔔𝑖)

for all i.
We define Ψ ∈ GL |𝐼 |+1(T) by

Ψ =

(
Ψ′ 0
f 1

)
∈ GL |𝐼 |+1(T), f = ( 𝑓𝔱;𝔔)𝔱∈𝐼 ∈ Mat1×|𝐼 | (T).

Here, we recall (see Equation (3.8))

𝑓𝔱;𝔔 =
∑
𝑖

𝑎𝑖 (𝑡)𝔏(𝑠𝑖 (𝑘+1) , . . . , 𝑠𝑖ℓ𝑖 ;𝑄𝑖 (𝑘+1) , . . . , 𝑄𝑖ℓ𝑖 ),

where the sum runs through the set of indices i such that (𝔱;𝔔) = (𝑠𝑖1, . . . , 𝑠𝑖𝑘 ;𝑄𝑖1, . . . , 𝑄𝑖𝑘 ) for some
0 ≤ 𝑘 ≤ ℓ𝑖 − 1. In particular, 𝑓∅ =

∑
𝑖 𝑎𝑖 (𝑡)𝔏(𝔰𝑖;𝔔𝑖).

By construction and by §3.2, we get Ψ (−1) = ΦΨ, that means Ψ is a rigid analytic trivialization for Φ.
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Step 2. Next, we apply the Anderson–Brownawell–Papanikolas criterion (see Theorem 3.2) to prove
Theorem 3.4.

In fact, we define

Φ̃ =

(
1 0
0 Φ

)
∈ Mat |𝐼 |+2(𝐾 [𝑡])

and consider the vector constructed from the first column vector of Ψ

𝜓 =
���

1
Ψ′

(𝔱;𝔔) ,∅

𝑓∅

���(𝔱;𝔔) ∈𝐼

.

Then we have 𝜓 (−1) = Φ̃𝜓.
We also observe that for all (𝔱;𝔔) ∈ 𝐼 we have Ψ′

(𝔱;𝔔) ,∅
= 𝔏(𝔱;𝔔)Ω𝑤−𝑤 (𝔱) . Further,

𝑎 + 𝑓∅ (𝜃) = 𝑎 +
∑
𝑖

𝑎𝑖𝔏(𝔰𝑖;𝔔𝑖) (𝜃) = 0.

By Theorem 3.2 with 𝜌 = (𝑎, 0, . . . , 0, 1), we deduce that there exists h = (𝑔0, 𝑔𝔱,𝔔 , 𝑔) ∈

Mat1×( |𝐼 |+2) (𝐾 [𝑡]) such that h𝜓 = 0 and that 𝑔𝔱,𝔔 (𝜃) = 0 for (𝔱,𝔔) ∈ 𝐼, 𝑔0 (𝜃) = 𝑎 and 𝑔(𝜃) = 1 ≠ 0.
If we put g := (1/𝑔)h ∈ Mat1×( |𝐼 |+2) (𝐾 (𝑡)), then all the entries of g are regular at 𝑡 = 𝜃.

Now, we have

(g − g(−1)Φ̃)𝜓 = g𝜓 − (g𝜓) (−1) = 0. (3.9)

We write g − g(−1)Φ̃ = (𝐵0, 𝐵𝔱,𝔔 , 0)𝔱∈𝐼 . We claim that 𝐵0 = 0 and 𝐵𝔱,𝔔 = 0 for all (𝔱;𝔔) ∈ 𝐼. In fact,
expanding Equation (3.9) we obtain

𝐵0 +
∑
𝔱∈𝐼

𝐵𝔱,𝔔𝔏(𝔱;𝔔)Ω𝑤−𝑤 (𝔱) = 0. (3.10)

By Equation (3.3), we see that for (𝔱;𝔔) ∈ 𝐼 and 𝑗 ∈ N,

𝔏(𝔱;𝔔) (𝜃𝑞
𝑗
) = (𝔏(𝔱;𝔔) (𝜃))𝑞

𝑗

which is nonzero by Condition (𝐿𝑊).
First, as the function Ω has a simple zero at 𝑡 = 𝜃𝑞𝑘 for 𝑘 ∈ N, specializing Equation (3.10) at 𝑡 = 𝜃𝑞 𝑗

yields 𝐵0(𝜃
𝑞 𝑗
) = 0 for 𝑗 ≥ 1. Since 𝐵0 belongs to 𝐾 (𝑡), it follows that 𝐵0 = 0.

Next, we put 𝑤0 := max(𝔱;𝔔) ∈𝐼 𝑤(𝔱) and denote by 𝐼 (𝑤0) the set of (𝔱;𝔔) ∈ 𝐼 such that 𝑤(𝔱) = 𝑤0.
Then dividing Equation (3.10) by Ω𝑤−𝑤0 yields∑

(𝔱;𝔔) ∈𝐼

𝐵𝔱,𝔔𝔏(𝔱;𝔔)Ω𝑤0−𝑤 (𝔱) =
∑

(𝔱;𝔔) ∈𝐼 (𝑤0)

𝐵𝔱,𝔔𝔏(𝔱;𝔔) +
∑

(𝔱;𝔔) ∈𝐼\𝐼 (𝑤0)

𝐵𝔱,𝔔𝔏(𝔱;𝔔)Ω𝑤0−𝑤 (𝔱) = 0.

(3.11)

Since each 𝐵𝔱,𝔔 belongs to 𝐾 (𝑡), they are defined at 𝑡 = 𝜃𝑞 𝑗 for 𝑗 � 1. Note that the function Ω has a
simple zero at 𝑡 = 𝜃𝑞𝑘 for 𝑘 ∈ N. Specializing Equation (3.11) at 𝑡 = 𝜃𝑞 𝑗 and using Equation (3.3) yields∑

(𝔱;𝔔) ∈𝐼 (𝑤0)

𝐵𝔱,𝔔 (𝜃𝑞
𝑗
) (𝔏(𝔱;𝔔) (𝜃))𝑞

𝑗
= 0

for 𝑗 � 1.
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We claim that 𝐵𝔱,𝔔 (𝜃𝑞
𝑗
) = 0 for 𝑗 � 1 and for all (𝔱;𝔔) ∈ 𝐼 (𝑤0). Otherwise, we get a nontrivial

𝐾-linear relation between 𝔏(𝔱;𝔔) (𝜃) with (𝔱;𝔔) ∈ 𝐼 of weight 𝑤0. By Proposition 3.3, we deduce a
nontrivial K-linear relation between 𝔏(𝔱;𝔔) (𝜃) with (𝔱;𝔔) ∈ 𝐼 (𝑤0), which contradicts with Condition
(𝐿𝑊). Now, we know that 𝐵𝔱,𝔔 (𝜃𝑞

𝑗
) = 0 for 𝑗 � 1 and for all (𝔱;𝔔) ∈ 𝐼 (𝑤0). Since each 𝐵𝔱,𝔔 belongs

to 𝐾 (𝑡), it follows that 𝐵𝔱,𝔔 = 0 for all (𝔱;𝔔) ∈ 𝐼 (𝑤0).
Next, we put 𝑤1 := max(𝔱;𝔔) ∈𝐼\𝐼 (𝑤0) 𝑤(𝔱) and denote by 𝐼 (𝑤1) the set of (𝔱;𝔔) ∈ 𝐼 such that

𝑤(𝔱) = 𝑤1. Dividing Equation (3.10) by Ω𝑤−𝑤1 and specializing at 𝑡 = 𝜃𝑞 𝑗 yields∑
(𝔱;𝔔) ∈𝐼 (𝑤1)

𝐵𝔱,𝔔 (𝜃𝑞
𝑗
) (𝔏(𝔱;𝔔) (𝜃))𝑞

𝑗
= 0

for 𝑗 � 1. Since 𝑤1 < 𝑤, by Proposition 3.3 and Condition (𝐿𝑊) again we deduce that 𝐵𝔱,𝔔 (𝜃𝑞
𝑗
) = 0

for 𝑗 � 1 and for all (𝔱;𝔔) ∈ 𝐼 (𝑤1). Since each 𝐵𝔱,𝔔 belongs to 𝐾 (𝑡), it follows that 𝐵𝔱,𝔔 = 0 for
all (𝔱;𝔔) ∈ 𝐼 (𝑤1). Repeating the previous arguments, we deduce that 𝐵𝔱,𝔔 = 0 for all (𝔱;𝔔) ∈ 𝐼 as
required.

We have proved that g − g(−1)Φ̃ = 0. Thus,

���
1 0 0
0 Id 0
𝑔0/𝑔 (𝑔𝔱,𝔔/𝑔)(𝔱;𝔔) ∈𝐼 1

���
(−1) (

1 0
0 Φ

)
=

���
1 0 0
0 Φ′ 0
0 0 1

��� ���
1 0 0
0 Id 0
𝑔0/𝑔 (𝑔𝔱,𝔔/𝑔)(𝔱;𝔔) ∈𝐼 1

��� .
By [11, Prop. 2.2.1], we see that the common denominator b of 𝑔0/𝑔 and 𝑔𝔱,𝔔/𝑔 for (𝔱,𝔔) ∈ 𝐼 belongs
to F𝑞 [𝑡] \ {0}. If we put 𝛿0 = 𝑏𝑔0/𝑔 and 𝛿𝔱,𝔔 = 𝑏𝑔𝔱,𝔔/𝑔 for (𝔱,𝔔) ∈ 𝐼 which belong to 𝐾 [𝑡] and
𝛿 := (𝛿𝔱,𝔔)𝔱∈𝐼 ∈ Mat1×|𝐼 | (𝐾 [𝑡]), then 𝛿 (−1)

0 = 𝛿0 and(
Id 0
𝛿 1

) (−1) (
Φ′ 0
𝑏v 1

)
=

(
Φ′ 0
0 1

) (
Id 0
𝛿 1

)
. (3.12)

If we put 𝑋 :=
(
Id 0
𝛿 1

) (
Ψ′ 0
𝑏f 1

)
, then 𝑋 (−1) =

(
Φ′ 0
0 1

)
𝑋 . By [32, §4.1.6], there exist 𝜈𝔱,𝔔 ∈ F𝑞 (𝑡) for

(𝔱,𝔔) ∈ 𝐼 such that if we set 𝜈 = (𝜈𝔱,𝔔)(𝔱,𝔔) ∈𝐼 ∈ Mat1×|𝐼 | (F𝑞 (𝑡)),

𝑋 =

(
Ψ′ 0
0 1

) (
Id 0
𝜈 1

)
.

Thus, the equation
(
Id 0
𝛿 1

) (
Ψ′ 0
𝑏f 1

)
=

(
Ψ′ 0
0 1

) (
Id 0
𝜈 1

)
implies

𝛿Ψ′ + 𝑏f = 𝜈. (3.13)

The left-hand side belongs to T, so does the right-hand side. Thus, 𝜈 = (𝜈𝔱,𝔔)(𝔱,𝔔) ∈𝐼 ∈ Mat1×|𝐼 | (F𝑞 [𝑡]).
For any 𝑗 ∈ N, by specializing Equation (3.13) at 𝑡 = 𝜃𝑞 𝑗 and using Equation (3.3) and the fact that Ω
has a simple zero at 𝑡 = 𝜃𝑞 𝑗 we deduce that

f (𝜃) = 𝜈(𝜃)/𝑏(𝜃).

Thus, for all (𝔱,𝔔) ∈ 𝐼, 𝑓𝔱;𝔔 (𝜃) given as in Equation (3.8) belongs to K. �

4. Linear relations between ACMPL’s

In this section, we use freely the notation of §2 and §3.2.3.
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4.1. Preliminaries

We begin this section by proving several auxiliary lemmas which will be useful in the sequel. We recall
that F𝑞 denotes the algebraic closure of F𝑞 in 𝐾 .

Lemma 4.1. Let 𝜖𝑖 ∈ F×𝑞 be different elements. We denote by 𝛾𝑖 ∈ F𝑞 a (𝑞 − 1)-th root of 𝜖𝑖 . Then 𝛾𝑖
are all F𝑞-linearly independent.
Proof. We know that F×𝑞 is cyclic as a multiplicative group. Let 𝜖 be a generating element of F×𝑞 so that
F×𝑞 = 〈𝜖〉. Let 𝛾 be the associated (𝑞 − 1)-th root of 𝜖 . Then for all 1 ≤ 𝑖 ≤ 𝑞 − 1 it follows that 𝛾𝑖 is
a (𝑞 − 1)-th root of 𝜖 𝑖 . Thus, it suffices to show that the polynomial 𝑃(𝑋) = 𝑋𝑞−1 − 𝜖 is irreducible
in F𝑞 [𝑋]. Suppose that this is not the case, write 𝑃(𝑋) = 𝑃1 (𝑋)𝑃2 (𝑋) with 1 ≤ deg 𝑃1 < 𝑞 − 1.
Since the roots of 𝑃(𝑋) are of the form 𝛼𝛾 with 𝛼 ∈ F×𝑞 , those of 𝑃1 (𝑋) are also of this form. Looking
at the constant term of 𝑃1 (𝑋), we deduce that 𝛾deg 𝑃1 ∈ F×𝑞 . If we put 𝑚 = gcd(deg 𝑃1, 𝑞 − 1), then
1 ≤ 𝑚 < 𝑞 − 1 and 𝛾𝑚 ∈ F×𝑞 . Letting 𝛽 := 𝛾𝑚 ∈ F×𝑞 , we get 𝛽

𝑞−1
𝑚 = 𝛾𝑞−1 = 𝜖 . Since 1 ≤ 𝑚 < 𝑞 − 1, we

get a contradiction with the fact that F×𝑞 = 〈𝜖〉. The proof is finished. �

Lemma 4.2. Let Li
(
𝝐 𝑖
𝔰𝑖

)
∈ AL𝑤 and 𝑎𝑖 ∈ 𝐾 satisfying∑

𝑖

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0.

For 𝜖 ∈ F×𝑞 , we denote by 𝐼 (𝜖) = {𝑖 : 𝜒(𝝐 𝑖) = 𝜖} the set of indices whose corresponding character
equals 𝜖 . Then for all 𝜖 ∈ F×𝑞 , ∑

𝑖∈𝐼 (𝜖 )

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0.

Proof. We keep the notation of Lemma 4.1. Suppose that we have a relation∑
𝑖

𝛾𝑖𝑎𝑖 = 0

with 𝑎𝑖 ∈ 𝐾∞. By Lemma 4.1 and the fact that 𝐾∞ = F𝑞 ((1/𝜃)), we deduce that 𝑎𝑖 = 0 for all i.
By Equation (3.7), the relation

∑
𝑖 𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0 is equivalent to the following one∑
𝑖

𝑎𝑖𝛾𝑖1 . . . 𝛾𝑖ℓ𝑖 Li
(
𝝐 𝑖
𝔰𝑖

)
= 0.

By the previous discussion, for all 𝜖 ∈ F×𝑞 ,∑
𝑖∈𝐼 (𝜖 )

𝑎𝑖𝛾𝑖1 . . . 𝛾𝑖ℓ𝑖 Li
(
𝝐 𝑖
𝔰𝑖

)
= 0.

By Equation (3.7), again we deduce the desired relation∑
𝑖∈𝐼 (𝜖 )

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0.

�

Lemma 4.3. Let 𝑚 ∈ N, 𝜀 ∈ F×𝑞 , 𝛿 ∈ 𝐾 [𝑡] and 𝐹 (𝑡, 𝜃) ∈ F𝑞 [𝑡, 𝜃] (resp. 𝐹 (𝑡, 𝜃) ∈ F𝑞 [𝑡, 𝜃]) satisfying

𝜀𝛿 = 𝛿 (−1) (𝑡 − 𝜃)𝑚 + 𝐹 (−1) (𝑡, 𝜃).
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Then 𝛿 ∈ F𝑞 [𝑡, 𝜃] (resp. 𝛿 ∈ F𝑞 [𝑡, 𝜃]) and

deg𝜃 𝛿 ≤ max
{
𝑞𝑚

𝑞 − 1
,

deg𝜃 𝐹 (𝑡, 𝜃)
𝑞

}
.

Proof. The proof follows the same line as that of [27, Theorem 2] where it is shown that if 𝐹 (𝑡, 𝜃) ∈
F𝑞 [𝑡, 𝜃] and 𝜀 = 1, then 𝛿 ∈ F𝑞 [𝑡, 𝜃]. We write down the proof for the case 𝐹 (𝑡, 𝜃) ∈ F𝑞 [𝑡, 𝜃] for the
convenience of the reader.

By twisting once the equality 𝜀𝛿 = 𝛿 (−1) (𝑡 − 𝜃)𝑚 + 𝐹 (−1) (𝑡, 𝜃) and the fact that 𝜀𝑞 = 𝜀, we get

𝜀𝛿 (1) = 𝛿(𝑡 − 𝜃𝑞)𝑚 + 𝐹 (𝑡, 𝜃).

We put 𝑛 = deg𝑡 𝛿 and express

𝛿 = 𝑎𝑛𝑡
𝑛 + · · · + 𝑎1𝑡 + 𝑎0 ∈ 𝐾 [𝑡]

with 𝑎0, . . . , 𝑎𝑛 ∈ 𝐾 . For 𝑖 < 0, we put 𝑎𝑖 = 0.
Since deg𝑡 𝛿 (1) = deg𝑡 𝛿 = 𝑛 < 𝛿(𝑡 − 𝜃𝑞)𝑚 = 𝑛 + 𝑚, it follows that deg𝑡 𝐹 (𝑡, 𝜃) = 𝑛 + 𝑚. Thus,

we write 𝐹 (𝑡, 𝜃) = 𝑏𝑛+𝑚𝑡𝑛+𝑚 + · · · + 𝑏1𝑡 + 𝑏0 with 𝑏0, . . . , 𝑏𝑛+𝑚 ∈ F𝑞 [𝜃]. Plugging into the previous
equation, we obtain

𝜀(𝑎𝑞𝑛𝑡
𝑛 + · · · + 𝑎𝑞0 ) = (𝑎𝑛𝑡

𝑛 + · · · + 𝑎0) (𝑡 − 𝜃
𝑞)𝑚 + 𝑏𝑛+𝑚𝑡

𝑛+𝑚 + · · · + 𝑏0.

Comparing the coefficients 𝑡 𝑗 for 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑚 yields

𝑎 𝑗−𝑚 +

𝑛∑
𝑖= 𝑗−𝑚+1

(
𝑚

𝑗 − 𝑖

)
(−𝜃𝑞)𝑚− 𝑗+𝑖𝑎𝑖 + 𝑏 𝑗 = 0.

Since 𝑏 𝑗 ∈ F𝑞 [𝜃] for all 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑚, we can show by descending induction that 𝑎 𝑗 ∈ F𝑞 [𝜃] for
all 𝑛 + 1 − 𝑚 ≤ 𝑗 ≤ 𝑛.

If 𝑛 + 1 − 𝑚 ≤ 0, then we are done. Otherwise, comparing the coefficients 𝑡 𝑗 for 𝑚 ≤ 𝑗 ≤ 𝑛 yields

𝑎 𝑗−𝑚 +

𝑛∑
𝑖= 𝑗−𝑚+1

(
𝑚

𝑗 − 𝑖

)
(−𝜃𝑞)𝑚− 𝑗+𝑖𝑎𝑖 + 𝑏 𝑗 − 𝜀𝑎

𝑞
𝑗 = 0.

Since 𝑏 𝑗 ∈ F𝑞 [𝜃] for all 𝑚 ≤ 𝑗 ≤ 𝑛 and 𝑎 𝑗 ∈ F𝑞 [𝜃] for all 𝑛 + 1 − 𝑚 ≤ 𝑗 ≤ 𝑛, we can show by
descending induction that 𝑎 𝑗 ∈ F𝑞 [𝜃] for all 0 ≤ 𝑗 ≤ 𝑛 − 𝑚. We conclude that 𝛿 ∈ F𝑞 [𝑡, 𝜃].

We now show that deg𝜃 𝛿 ≤ max{ 𝑞𝑚𝑞−1 ,
deg𝜃 𝐹 (𝑡 , 𝜃)

𝑞 }. Otherwise, suppose that deg𝜃 𝛿 >

max{ 𝑞𝑚𝑞−1 ,
deg𝜃 𝐹 (𝑡 , 𝜃)

𝑞 }. Then deg𝜃 𝛿 (1) = 𝑞 deg𝜃 𝛿. It implies that deg𝜃 𝛿 (1) > deg𝜃 (𝛿(𝑡 − 𝜃𝑞)𝑚) =

deg𝜃 𝛿 + 𝑞𝑚 and deg𝜃 𝛿 (1) > deg𝜃 𝐹 (𝑡, 𝜃). Hence, we get

deg𝜃 (𝜀𝛿 (1) ) = deg𝜃 𝛿 (1) > deg𝜃 (𝛿(𝑡 − 𝜃𝑞)𝑚 + 𝐹 (𝑡, 𝜃)),

which is a contradiction. �
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4.2. Linear relations: statement of the main result

Theorem 4.4. Let 𝑤 ∈ N. We recall that the set J ′
𝑤 consists of positive tuples 𝔰 = (𝑠1, . . . , 𝑠𝑛) of weight

w such that 𝑞 � 𝑠𝑖 for all i. Suppose that we have a nontrivial relation

𝑎 +
∑

𝔰𝑖 ∈J ′
𝑤

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0, for 𝑎, 𝑎𝑖 ∈ 𝐾.

Then 𝑞 − 1 | 𝑤 and 𝑎 ≠ 0.
Further, if 𝑞 − 1 | 𝑤, then there is a unique relation

1 +
∑

𝔰𝑖 ∈J ′
𝑤

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0, for 𝑎𝑖 ∈ 𝐾.

Also, for indices (𝔰𝑖; 𝝐 𝑖) with nontrivial coefficient 𝑎𝑖 , we have 𝝐 𝑖 = (1, . . . , 1).
In particular, the ACMPL’s in AS𝑤 are linearly independent over K.

Remark 4.5. We emphasize that although Theorem 4.4 is a purely transcendental result, it is crucial
that we need the full strength of algebraic theory for ACMPL’s (i.e., Theorem 2.11) to conclude (see the
last step of the proof).

As a direct consequence of Theorem 4.4, we obtain:

Theorem 4.6. Let 𝑤 ∈ N. Then the ACMPL’s in AS𝑤 form a basis for AL𝑤 . In particular,

dim𝐾 AL𝑤 = 𝑠(𝑤).

Proof. By Theorem 4.4, the ACMPL’s in AS𝑤 are all linearly independent over K. Then by Theo-
rem 2.11, we deduce that the ACMPL’s in AS𝑤 form a basis for AL𝑤 . Hence, dim𝐾 AL𝑤 = |AS𝑤 | =
𝑠(𝑤) as required. �

4.3. Proof of Theorem 4.4

We outline the ideas of the proof. Starting from such a nontrivial relation, we apply the Anderson–
Brownawell–Papanikolas criterion in [2] and reduce to the solution of a system of 𝜎-linear equations.
In contrast to [31, §4 and §5], this system has a unique solution when 𝑞−1 divides w. We first show that
for such a weight w up to a scalar in 𝐾× there is at most one linear relation between ACMPL’s in AS𝑤
and �̃�𝑤 . Second, we show a linear relation between ACMPL’s in AS𝑤 and �̃�𝑤 where the coefficient of
�̃�𝑤 is nonzero. For this, we use Brown’s theorem for AMCPLs, that is, Theorem 2.11.

We are back to the proof of Theorem 4.4. We claim that if 𝑞 − 1 � 𝑤, then any linear relation

𝑎 +
∑

𝔰𝑖 ∈J ′
𝑤

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0

with 𝑎, 𝑎𝑖 ∈ 𝐾 implies that 𝑎 = 0. In fact, if we recall that F𝑞 denotes the algebraic closure of F𝑞 in 𝐾 ,
then the claim follows from Equation (3.7) and that �̃�𝑤 ∉ F𝑞

((
1
𝜃

))
since 𝑞 − 1 � 𝑤.

The proof is by induction on the weight 𝑤 ∈ N. For 𝑤 = 1, we distinguish two cases:

• If 𝑞 > 2, then by the previous remark it suffices to show that if

𝑎 +
∑
𝑖

𝑎𝑖𝔏𝔦(1; 𝜖𝑖) (𝜃) = 0,

then 𝑎𝑖 = 0 for all i. In fact, it follows immediately from Lemma 4.2.
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• If 𝑞 = 2, then 𝑤 = 𝑞 − 1 = 1. Then the theorem holds from the facts that there is only one index
(𝔰1; 𝝐1) = (1, 1) and that Li(1) = 𝜁𝐴(1) = −𝐷−1

1 �̃�.

Suppose that Theorem 4.4 holds for all 𝑤′ < 𝑤. We now prove that it holds for w. Suppose that we
have a linear relation

𝑎 +
∑
𝑖

𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0. (4.1)

By Lemma 4.2 and its proof, we can suppose further that 𝝐 𝑖 has the same character, that is, there
exists 𝜖 ∈ F×𝑞 such that for all i,

𝜒(𝝐 𝑖) = 𝜖𝑖1 . . . 𝜖𝑖ℓ𝑖 = 𝜖 . (4.2)

We now apply Theorem 3.4 to our setting of ACMPL’s. We recall that by Equation (3.6),

𝔏𝔦(𝔰; 𝝐) = 𝔏(𝔰;𝔔 ′
𝔰,𝝐 ),

and also

𝐼 (𝔰𝑖; 𝝐 𝑖) = {∅, (𝑠𝑖1; 𝜖𝑖1), . . . , (𝑠𝑖1, . . . , 𝑠𝑖 (ℓ𝑖−1) ; 𝜖𝑖1, . . . , 𝜖𝑖 (ℓ𝑖−1) )},

𝐼 = ∪𝑖 𝐼 (𝔰𝑖; 𝝐 𝑖). (4.3)

We know that the hypothesis are verified:

(LW) By the induction hypothesis, for any weight 𝑤′ < 𝑤, the values 𝔏𝔦(𝔱; 𝝐) (𝜃) with (𝔱; 𝝐) ∈ 𝐼 and
𝑤(𝔱) = 𝑤′ are all K-linearly independent.

(LD) By Equation (4.1), there exist 𝑎 ∈ 𝐴 and 𝑎𝑖 ∈ 𝐴 for 1 ≤ 𝑖 ≤ 𝑛 which are not all zero such that

𝑎 +
𝑛∑
𝑖=1
𝑎𝑖𝔏𝔦(𝔰𝑖; 𝝐 𝑖) (𝜃) = 0.

Thus, Theorem 3.4 implies that for all (𝔱; 𝝐) ∈ 𝐼, 𝑓𝔱;𝝐 (𝜃) belongs to K where 𝑓𝔱;𝝐 is given by

𝑓𝔱;𝝐 :=
∑
𝑖

𝑎𝑖 (𝑡)𝔏𝔦(𝑠𝑖 (𝑘+1) , . . . , 𝑠𝑖ℓ𝑖 ; 𝜖𝑖 (𝑘+1) , . . . , 𝜖𝑖ℓ𝑖 ).

Here, the sum runs through the set of indices i such that (𝔱; 𝝐) = (𝑠𝑖1, . . . , 𝑠𝑖𝑘 ; 𝜖𝑖1, . . . , 𝜖𝑖𝑘 ) for some
0 ≤ 𝑘 ≤ ℓ𝑖 − 1.

We derive a direct consequence of the previous rationality result. Let (𝔱; 𝝐) ∈ 𝐼 and 𝔱 ≠ ∅. Then
(𝔱; 𝝐) = (𝑠𝑖1, . . . , 𝑠𝑖𝑘 ; 𝜖𝑖1, . . . , 𝜖𝑖𝑘 ) for some i and 1 ≤ 𝑘 ≤ ℓ𝑖 − 1. We denote by 𝐽 (𝔱; 𝝐) the set of all
such i. We know that there exists 𝑎𝔱;𝝐 ∈ 𝐾 such that

𝑎𝔱;𝝐 + 𝑓𝔱;𝝐 (𝜃) = 0,

or equivalently,

𝑎𝔱;𝝐 +
∑

𝑖∈𝐽 (𝔱;𝝐 )
𝑎𝑖𝔏𝔦(𝑠𝑖 (𝑘+1) , . . . , 𝑠𝑖ℓ𝑖 ; 𝜖𝑖 (𝑘+1) , . . . , 𝜖𝑖ℓ𝑖 ) (𝜃) = 0.

The ACMPL’s appearing in the above equality belong to AS𝑤−𝑤 (𝔱) . By the induction hypothesis, we
can suppose that 𝜖𝑖 (𝑘+1) = · · · = 𝜖𝑖ℓ𝑖 = 1. Further, if 𝑞 − 1 � 𝑤 − 𝑤(𝔱), then 𝑎𝑖 (𝑡) = 0 for all 𝑖 ∈ 𝐽 (𝔱; 𝝐).

https://doi.org/10.1017/fmp.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.18


32 B.-H. Im et al.

Therefore, letting (𝔰𝑖; 𝝐 𝑖) = (𝑠𝑖1, . . . , 𝑠𝑖ℓ𝑖 ; 𝜖𝑖1, . . . , 𝜖𝑖ℓ𝑖 ) we can suppose that 𝑠𝑖2, . . . , 𝑠𝑖ℓ𝑖 are all divisible
by 𝑞 − 1 and 𝜖𝑖2 = · · · = 𝜖𝑖ℓ𝑖 = 1. In particular, for all i, 𝜖𝑖1 = 𝜒(𝝐 𝑖) = 𝜖 .

Now, we want to solve Equation (3.12). Further, in this system we can assume that the corresponding
element 𝑏 ∈ F𝑞 [𝑡] \ {0} equals 1. We define

𝐽 := 𝐼 ∪ {(𝔰𝑖; 𝝐 𝑖)},

where I is given as in Equation (4.3). For (𝔱; 𝝐) ∈ 𝐽, we denote by 𝐽0 (𝔱; 𝝐) consisting of (𝔱′; 𝝐 ′) ∈ 𝐼
such that there exist i and 0 ≤ 𝑗 < ℓ𝑖 so that (𝔱; 𝝐) = (𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖 𝑗 ; 𝜖, 1, . . . , 1) and (𝔱′; 𝝐 ′) =
(𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖 ( 𝑗+1) ; 𝜖, 1, . . . , 1). In particular, for (𝔱; 𝝐) = (𝔰𝑖; 𝝐 𝑖), 𝐽0 (𝔱; 𝝐) is the empty set. For (𝔱; 𝝐) ∈
𝐽 \ {∅}, we also put

𝑚𝔱 :=
𝑤 − 𝑤(𝔱)
𝑞 − 1

∈ Z≥0.

Then it is clear that Equation (3.12) is equivalent finding (𝛿𝔱;𝝐 )(𝔱;𝝐 ) ∈𝐽 ∈ Mat1×|𝐽 | (𝐾 [𝑡]) such that

𝛿𝔱;𝝐 = 𝛿
(−1)
𝔱;𝝐 (𝑡 − 𝜃)𝑤−𝑤 (𝔱) +

∑
(𝔱′;𝝐 ′) ∈𝐽0 (𝔱;𝝐 )

𝛿 (−1)
𝔱′;𝝐 ′ (𝑡 − 𝜃)

𝑤−𝑤 (𝔱) , for all (𝔱; 𝝐) ∈ 𝐽 \ {∅}, (4.4)

and

𝛿𝔱;𝝐 = 𝛿
(−1)
𝔱;𝝐 (𝑡 − 𝜃)𝑤−𝑤 (𝔱) +

∑
(𝔱′;𝝐 ′) ∈𝐽0 (𝔱;𝝐 )

𝛿 (−1)
𝔱′;𝝐 ′ 𝛾

(−1) (𝑡 − 𝜃)𝑤−𝑤 (𝔱) , for (𝔱; 𝝐) = ∅. (4.5)

Here, 𝛾𝑞−1 = 𝜖 . In fact, for (𝔱; 𝝐) = (𝔰𝑖; 𝝐 𝑖), the corresponding equation becomes 𝛿𝔰𝑖 ;𝝐 𝑖 = 𝛿
(−1)
𝔰𝑖 ;𝝐 𝑖 . Thus,

𝛿𝔰𝑖 ;𝝐 𝑖 = 𝑎𝑖 (𝑡) ∈ F𝑞 [𝑡].
Letting y be a variable, we denote by 𝑣𝑦 the valuation associated to the place y of the field F𝑞 (𝑦). We

put

𝑇 := 𝑡 − 𝑡𝑞 , 𝑋 := 𝑡𝑞 − 𝜃𝑞 .

We claim that

1) For all (𝔱; 𝝐) ∈ 𝐽 \ {∅}, the polynomial 𝛿𝔱;𝝐 is of the form

𝛿𝔱;𝝐 = 𝑓𝔱

(
𝑋𝑚𝔱 +

𝑚𝔱−1∑
𝑖=0

𝑃𝔱,𝑖 (𝑇)𝑋
𝑖

)
,

where
– 𝑓𝔱 ∈ F𝑞 [𝑡],
– for all 0 ≤ 𝑖 ≤ 𝑚𝔱 − 1, 𝑃𝔱,𝑖 (𝑦) belongs to F𝑞 (𝑦) with 𝑣𝑦 (𝑃𝔱,𝑖) ≥ 1.

2) For all 𝔱 ∈ 𝐽 \ {∅} and all 𝔱′ ∈ 𝐽0(𝔱), there exists 𝑃𝔱,𝔱′ ∈ F𝑞 (𝑦) such that

𝑓𝔱′ = 𝑓𝔱𝑃𝔱,𝔱′ (𝑇).

In particular, if 𝑓𝔱 = 0, then 𝑓𝔱′ = 0.

The proof is by induction on 𝑚𝔱. We start with 𝑚𝔱 = 0. Then 𝔱 = 𝔰𝑖 and 𝝐 = 𝝐 𝑖 for some i. We have
observed that 𝛿𝔰𝑖 ;𝝐 𝑖 = 𝑎𝑖 (𝑡) ∈ F𝑞 [𝑡] and the assertion follows.
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Suppose that the claim holds for all (𝔱; 𝝐) ∈ 𝐽 \ {∅} with 𝑚𝔱 < 𝑚. We now prove the claim for all
(𝔱; 𝝐) ∈ 𝐽 \ {∅} with 𝑚𝔱 = 𝑚. In fact, we fix such 𝔱 and want to find 𝛿𝔱;𝝐 ∈ 𝐾 [𝑡] such that

𝛿𝔱;𝝐 = 𝛿
(−1)
𝔱;𝝐 (𝑡 − 𝜃) (𝑞−1)𝑚 +

∑
(𝔱′;𝝐 ′) ∈𝐽0 (𝔱;𝝐 )

𝛿 (−1)
𝔱′;𝝐 ′ (𝑡 − 𝜃)

(𝑞−1)𝑚. (4.6)

By the induction hypothesis, for all (𝔱′; 𝝐 ′) ∈ 𝐽0 (𝔱; 𝝐), we know that

𝛿𝔱′;𝝐 ′ = 𝑓𝔱′

(
𝑋𝑚𝔱′ +

𝑚𝔱′−1∑
𝑖=0

𝑃𝔱′,𝑖 (𝑇)𝑋
𝑖

)
,

where

• 𝑓𝔱′ ∈ F𝑞 [𝑡],
• for all 0 ≤ 𝑖 ≤ 𝑚𝔱′ − 1, 𝑃𝔱′,𝑖 (𝑦) ∈ F𝑞 (𝑦) with 𝑣𝑦 (𝑃𝔱,𝑖) ≥ 1.

For (𝔱′; 𝝐 ′) ∈ 𝐽0(𝔱; 𝝐), we write 𝔱′ = (𝔱, (𝑚 − 𝑘) (𝑞 − 1)) with 0 ≤ 𝑘 < 𝑚 and 𝑘 � 𝑚(mod 𝑞), in
particular 𝑚𝔱′ = 𝑘 . We put 𝑓𝑘 = 𝑓𝔱′ and 𝑃𝔱′,𝑖 = 𝑃𝑘,𝑖 so that

𝛿𝔱′;𝝐 ′ = 𝑓𝑘

(
𝑋 𝑘 +

𝑘−1∑
𝑖=0
𝑃𝑘,𝑖 (𝑇)𝑋

𝑖

)
∈ F𝑞 [𝑡, 𝜃

𝑞] . (4.7)

By Lemma 4.3, 𝛿𝔱;𝝐 belongs to 𝐾 [𝑡], and deg𝜃 𝛿𝔱;𝝐 ≤ 𝑚𝑞. Further, since 𝛿𝔱;𝝐 is divisible by (𝑡 −
𝜃) (𝑞−1)𝑚, we write 𝛿𝔱;𝝐 = 𝐹 (𝑡 − 𝜃) (𝑞−1)𝑚 with 𝐹 ∈ 𝐾 [𝑡] and deg𝜃 𝐹 ≤ 𝑚. Dividing Equation (4.6) by
(𝑡 − 𝜃) (𝑞−1)𝑚 and twisting once yields

𝐹 (1) = 𝐹 (𝑡 − 𝜃) (𝑞−1)𝑚 +
∑

(𝔱′;𝝐 ′) ∈𝐽0 (𝔱;𝝐 )
𝛿𝔱′;𝝐 ′ . (4.8)

As 𝛿𝔱′;𝝐 ′ ∈ F𝑞 [𝑡, 𝜃𝑞] for all (𝔱′; 𝝐 ′) ∈ 𝐽0 (𝔱; 𝝐), it follows that 𝐹 (𝑡−𝜃) (𝑞−1)𝑚 ∈ F𝑞 [𝑡, 𝜃
𝑞]. As deg𝜃 𝐹 ≤ 𝑚,

we get

𝐹 =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑡 − 𝜃)
𝑚−𝑖𝑞 , for 𝑓𝑚−𝑖𝑞 ∈ F𝑞 [𝑡] .

Thus,

𝐹 (𝑡 − 𝜃) (𝑞−1)𝑚 =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑡 − 𝜃)
𝑚𝑞−𝑖𝑞 =

∑
0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞𝑋
𝑚−𝑖 ,

𝐹 (1) =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑡 − 𝜃
𝑞)𝑚−𝑖𝑞 =

∑
0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑇 + 𝑋)𝑚−𝑖𝑞 .

Putting these and Equation (4.7) into Equation (4.8) gets

∑
0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑇 + 𝑋)𝑚−𝑖𝑞 =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞𝑋
𝑚−𝑖 +

∑
0≤𝑘<𝑚

𝑘�𝑚(mod 𝑞)

𝑓𝑘

(
𝑋 𝑘 +

𝑘−1∑
𝑖=0
𝑃𝑘,𝑖 (𝑇)𝑋

𝑖

)
.
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Comparing the coefficients of powers of X yields the following linear system in the variables
𝑓0, . . . , 𝑓𝑚−1:

𝐵��𝑦=𝑇 ����
𝑓𝑚−1
...
𝑓0

���� = 𝑓𝑚
����
𝑄𝑚−1
...
𝑄0

������𝑦=𝑇 .
Here, for 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑄𝑖 =

(𝑚
𝑖

)
𝑦𝑚−𝑖 ∈ 𝑦F𝑞 [𝑦] and 𝐵 = (𝐵𝑖 𝑗 )0≤𝑖, 𝑗≤𝑚−1 ∈ Mat𝑚 (F𝑞 (𝑦)) such that

• 𝑣𝑦 (𝐵𝑖 𝑗 ) ≥ 1 if 𝑖 > 𝑗 ,
• 𝑣𝑦 (𝐵𝑖 𝑗 ) ≥ 0 if 𝑖 < 𝑗 ,
• 𝑣𝑦 (𝐵𝑖𝑖) = 0 as 𝐵𝑖𝑖 = ±1.

The above properties follow from the fact that 𝑃𝑘,𝑖 ∈ F𝑞 (𝑦) and 𝑣𝑦 (𝑃𝑘,𝑖) ≥ 1. Thus, 𝑣𝑦 (det 𝐵) = 0 so
that det 𝐵 ≠ 0. It follows that for all 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑓𝑖 = 𝑓𝑚𝑃𝑖 (𝑇) with 𝑃𝑖 ∈ F𝑞 (𝑦) and 𝑣𝑦 (𝑃𝑖) ≥ 1, and
we are done.

To conclude, we have to solve Equation (4.4) for (𝔱; 𝝐) = ∅. We have some extra work as we have a
factor 𝛾 (−1) on the right-hand side of Equation (4.5). We use 𝛾 (−1) = 𝛾/𝜖 and put 𝛿 := 𝛿∅,∅/𝛾 ∈ 𝐾 [𝑡].
Then we have to solve

𝜖𝛿 = 𝛿 (−1) (𝑡 − 𝜃)𝑤 +
∑

(𝔱′;𝝐 ′) ∈𝐽0 ( ∅)

𝛿 (−1)
𝔱′;𝝐 ′ (𝑡 − 𝜃)

𝑤 . (4.9)

We distinguish two cases.

4.3.1. Case 1: 𝒒 − 1 � 𝒘, says 𝒘 = 𝒎(𝒒 − 1) + 𝒓 with 0 < 𝒓 < 𝒒 − 1

We know that for all (𝔱′; 𝝐 ′) ∈ 𝐽0 (∅), says 𝔱′ = ((𝑚 − 𝑘) (𝑞 − 1) + 𝑟) with 0 ≤ 𝑘 ≤ 𝑚 and 𝑘 � 𝑚 − 𝑟
(mod 𝑞),

𝛿𝔱′;𝝐 ′ = 𝑓𝑘

(
𝑋 𝑘 +

𝑘−1∑
𝑖=0
𝑃𝑘,𝑖 (𝑇)𝑋

𝑖

)
∈ F𝑞 [𝑡, 𝜃

𝑞], (4.10)

where

• 𝑓𝑘 ∈ F𝑞 [𝑡],
• for all 0 ≤ 𝑖 ≤ 𝑘 − 1, 𝑃𝑘,𝑖 (𝑦) belongs to F𝑞 (𝑦) with 𝑣𝑦 (𝑃𝑘,𝑖) ≥ 1.

By Lemma 4.3, 𝛿 belongs to 𝐾 [𝑡]. We claim that deg𝜃 𝛿 ≤ 𝑚𝑞. Otherwise, we have deg𝜃 𝛿∅ > 𝑚𝑞.
Twisting Equation (4.9) once gets

𝜖𝛿 (1) = 𝛿(𝑡 − 𝜃𝑞)𝑤 +
∑

(𝔱′;𝝐 ′) ∈𝐽0 ( ∅)

𝛿𝔱′;𝝐 ′ (𝑡 − 𝜃
𝑞)𝑤 .

As deg𝜃 𝛿 > 𝑚𝑞, we compare the degrees of 𝜃 on both sides and obtain

𝑞 deg𝜃 𝛿 = deg𝜃 𝛿 + 𝑤𝑞.

Thus, 𝑞 − 1 | 𝑤, which is a contradiction. We conclude that deg𝜃 𝛿 ≤ 𝑚𝑞.
From Equation (4.9), we see that 𝛿 is divisible by (𝑡 − 𝜃)𝑤 . Thus, we write 𝛿 = 𝐹 (𝑡 − 𝜃)𝑤 with

𝐹 ∈ 𝐾 [𝑡] and deg𝜃 𝐹 ≤ 𝑚𝑞 −𝑤 = 𝑚 − 𝑟 . Dividing Equation (4.9) by (𝑡 − 𝜃)𝑤 and twisting once yields

𝜖𝐹 (1) = 𝐹 (𝑡 − 𝜃)𝑤 +
∑

(𝔱′;𝝐 ′) ∈𝐽0 ( ∅)

𝛿𝔱′ . (4.11)
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Since 𝛿𝔱′;𝝐 ′ ∈ F𝑞 [𝑡, 𝜃𝑞] for all (𝔱′; 𝝐 ′) ∈ 𝐽0(∅), it follows that 𝐹 (𝑡 − 𝜃)𝑤 ∈ F𝑞 [𝑡, 𝜃
𝑞]. As deg𝜃 𝐹 ≤ 𝑚−𝑟 ,

we write

𝐹 =
∑

0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞 (𝑡 − 𝜃)
𝑚−𝑟−𝑖𝑞 , for 𝑓𝑚−𝑟−𝑖𝑞 ∈ F𝑞 [𝑡] .

It follows that

𝐹 (𝑡 − 𝜃)𝑤 =
∑

0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞 (𝑡 − 𝜃)
𝑚𝑞−𝑖𝑞 =

∑
0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞𝑋
𝑚−𝑖 ,

𝐹 (1) =
∑

0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞 (𝑡 − 𝜃
𝑞)𝑚−𝑟−𝑖𝑞 =

∑
0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞 (𝑇 + 𝑋)𝑚−𝑟−𝑖𝑞 .

Putting these and Equation (4.10) into Equation (4.11) yields

𝜖
∑

0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞 (𝑇 + 𝑋)𝑚−𝑟−𝑖𝑞

=
∑

0≤𝑖≤(𝑚−𝑟 )/𝑞

𝑓𝑚−𝑟−𝑖𝑞𝑋
𝑚−𝑖 +

∑
0≤𝑘≤𝑚

𝑘�𝑚−𝑟 (mod 𝑞)

𝑓𝑘

(
𝑋 𝑘 +

𝑘−1∑
𝑖=0
𝑃𝑘,𝑖 (𝑇)𝑋

𝑖

)
.

Comparing the coefficients of powers of X yields the following linear system in the variables 𝑓0, . . . , 𝑓𝑚:

𝐵��𝑦=𝑇 ����
𝑓𝑚
...
𝑓0

���� = 0.

Here, 𝐵 = (𝐵𝑖 𝑗 )0≤𝑖, 𝑗≤𝑚 ∈ Mat𝑚+1(F𝑞 (𝑦)) such that

• 𝑣𝑦 (𝐵𝑖 𝑗 ) ≥ 1 if 𝑖 > 𝑗 ,
• 𝑣𝑦 (𝐵𝑖 𝑗 ) ≥ 0 if 𝑖 < 𝑗 ,
• 𝑣𝑦 (𝐵𝑖𝑖) = 0 as 𝐵𝑖𝑖 ∈ F×𝑞 .

The above properties follow from the fact that 𝑃𝑘,𝑖 ∈ F𝑞 (𝑦) and 𝑣𝑦 (𝑃𝑘,𝑖) ≥ 1. Thus, 𝑣𝑦 (det 𝐵) = 0.
Hence, 𝑓0 = · · · = 𝑓𝑚 = 0. It follows that 𝛿∅ = 0 as 𝛿 = 0 and 𝛿𝔱′;𝝐 ′ = 0 for all (𝔱′; 𝝐 ′) ∈ 𝐽0 (∅). We
conclude that 𝛿𝔱;𝝐 = 0 for all (𝔱; 𝝐) ∈ 𝐽. In particular, for all i, 𝑎𝑖 (𝑡) = 𝛿𝔰𝑖 ;𝝐 𝑖 = 0, which is a contradiction.
Thus, this case can never happen.

4.3.2. Case 2: 𝒒 − 1 | 𝒘, says 𝒘 = 𝒎(𝒒 − 1)

By similar arguments as above, we show that 𝛿 = 𝐹 (𝑡 − 𝜃) (𝑞−1)𝑚 with 𝐹 ∈ 𝐾 [𝑡] of the form

𝐹 =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑡 − 𝜃)
𝑚−𝑖𝑞 , for 𝑓𝑚−𝑖𝑞 ∈ F𝑞 [𝑡] .

Thus,

𝐹 (𝑡 − 𝜃) (𝑞−1)𝑚 =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑡 − 𝜃)
𝑚𝑞−𝑖𝑞 =

∑
0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞𝑋
𝑚−𝑖 ,

𝐹 (1) =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑡 − 𝜃
𝑞)𝑚−𝑖𝑞 =

∑
0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑇 + 𝑋)𝑚−𝑖𝑞 .

https://doi.org/10.1017/fmp.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.18


36 B.-H. Im et al.

Putting these and Equation (4.7) into Equation (4.9) gets

𝜖
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞 (𝑇 + 𝑋)𝑚−𝑖𝑞 =
∑

0≤𝑖≤𝑚/𝑞

𝑓𝑚−𝑖𝑞𝑋
𝑚−𝑖 +

∑
0≤𝑘<𝑚

𝑘�𝑚(mod 𝑞)

𝑓𝑘

(
𝑋 𝑘 +

𝑘−1∑
𝑖=0
𝑃𝑘,𝑖 (𝑇)𝑋

𝑖

)
.

Comparing the coefficients of powers of X yields

𝜖 𝑓𝑚 = 𝑓𝑚

and the following linear system in the variables 𝑓0, . . . , 𝑓𝑚−1:

𝐵��𝑦=𝑇 ����
𝑓𝑚−1
...
𝑓0

���� = 𝑓𝑚
����
𝑄𝑚−1
...
𝑄0

������𝑦=𝑇 .
Here, for 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑄𝑖 =

(𝑚
𝑖

)
𝑦𝑚−𝑖 ∈ 𝑦F𝑞 [𝑦] and 𝐵 = (𝐵𝑖 𝑗 )0≤𝑖, 𝑗≤𝑚−1 ∈ Mat𝑚 (F𝑞 (𝑦)) such that

• 𝑣𝑦 (𝐵𝑖 𝑗 ) ≥ 1 if 𝑖 > 𝑗 ,
• 𝑣𝑦 (𝐵𝑖 𝑗 ) ≥ 0 if 𝑖 < 𝑗 ,
• 𝑣𝑦 (𝐵𝑖𝑖) = 0 as 𝐵𝑖𝑖 ∈ F×𝑞 .

The above properties follow from the fact that 𝑃𝑘,𝑖 ∈ F𝑞 (𝑦) and 𝑣𝑦 (𝑃𝑘,𝑖) ≥ 1. Thus, 𝑣𝑦 (det 𝐵) = 0 so
that det 𝐵 ≠ 0.

We distinguish two subcases.

Subcase 1: 𝜖 ≠ 1.
It follows that 𝑓𝑚 = 0. Then 𝑓0 = · · · = 𝑓𝑚−1 = 0. Thus, 𝛿𝔱;𝝐 = 0 for all (𝔱; 𝝐) ∈ 𝐽. In particular, for

all i, 𝑎𝑖 (𝑡) = 𝛿𝔰𝑖 ;𝝐 𝑖 = 0. This is a contradiction, and we conclude that this case can never happen.

Subcase 2: 𝜖 = 1.
It follows that 𝛾 ∈ F×𝑞 and thus

1) The polynomial 𝛿∅ = 𝛿𝛾 is of the form

𝛿∅ = 𝑓∅

(
𝑋𝑚 +

𝑚−1∑
𝑖=0

𝑃∅,𝑖 (𝑇)𝑋
𝑖

)
with
– 𝑓∅ ∈ F𝑞 [𝑡],
– for all 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑃∅,𝑖 (𝑦) ∈ F𝑞 (𝑦) with 𝑣𝑦 (𝑃∅,𝑖) ≥ 1.

2) For all (𝔱′; 𝝐 ′) ∈ 𝐽0(∅), there exists 𝑃∅,𝔱′ ∈ F𝑞 (𝑦) such that

𝑓𝔱′ = 𝑓∅𝑃∅,𝔱′ (𝑇).

Hence, there exists a unique solution (𝛿𝔱;𝝐 )(𝔱;𝝐 ) ∈𝐽 ∈ Mat1×|𝐽 | (𝐾 [𝑡]) of Equation (4.4) up to a factor
in F𝑞 (𝑡). Recall that for all i, 𝑎𝑖 (𝑡) = 𝛿𝔰𝑖 ;𝝐 𝑖 . Therefore, up to a scalar in 𝐾×, there exists at most one
nontrivial relation

𝑎�̃�𝑤 +
∑
𝑖

𝑎𝑖 Li
(
𝜺𝑖
𝔰𝑖

)
= 0

with 𝑎𝑖 ∈ 𝐾 and Li
(
𝜺𝑖
𝔰𝑖

)
∈ AS𝑤 . Further, we must have 𝜺𝑖 = (1, . . . , 1) for all i.
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To conclude, it suffices to exhibit such a relation with 𝑎 ≠ 0. In fact, we recall 𝑤 = (𝑞 − 1)𝑚

and then express Li(𝑞 − 1)𝑚 = Li
(

1
𝑞 − 1

)𝑚
as a K-linear combination of ACMPL’s of weight w. By

Theorem 2.11, we can write

Li(𝑞 − 1)𝑚 = Li
(

1
𝑞 − 1

)𝑚
=

∑
𝑖

𝑎𝑖 Li
(
𝜺𝑖
𝔰𝑖

)
, where 𝑎𝑖 ∈ 𝐾,Li

(
𝜺𝑖
𝔰𝑖

)
∈ AS𝑤 .

We note that Li(𝑞 − 1) = 𝜁𝐴(𝑞 − 1) = −𝐷−1
1 �̃�

𝑞−1. Thus,

(−𝐷1)
−𝑚�̃�𝑤 −

∑
𝑖

𝑎𝑖 Li
(
𝜺𝑖
𝔰𝑖

)
= 0,

which is the desired relation.

5. Applications on AMZV’s and Zagier–Hoffman’s conjectures in positive characteristic

In this section, we give two applications of the study of ACMPL’s.
First, we use Theorem 4.6 to prove Theorem A which calculates the dimensions of the vector space

AZ𝑤 of alternating multiple zeta values in positive characteristic (AMZV’s) of fixed weight introduced
by Harada [21]. Consequently, we determine all linear relations for AMZV’s. To do so, we develop an
algebraic theory to obtain a weak version of Brown’s theorem for AMZV’s. Then we deduce that AZ𝑤

and AL𝑤 are equal and conclude. In contrast to the setting of MZV’s, although the results are clean, we
are unable to obtain either sharp upper bounds or sharp lower bounds for AZ𝑤 for general w without
the theory of ACMPL’s.

Second, we restrict our attention to MZV’s and determine all linear relations between MZV’s. In
particular, we obtain a proof of Zagier–Hoffman’s conjectures in positive characteristic in full generality
(i.e., Theorem B) and generalize the work of one of the authors [31].

5.1. Linear relations between AMZV’s

5.1.1. Preliminaries
For 𝑑 ∈ Z and for 𝔰 = (𝑠1, . . . , 𝑠𝑛) ∈ N

𝑛, recalling 𝑆𝑑 (𝔰) and 𝑆<𝑑 (𝔰) given in §2.1.3, and further letting(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
be an array, we recall (see §2.1.3)

𝑆𝑑

(
𝜺
𝔰

)
=

∑
𝑎1 ,...,𝑎𝑛∈𝐴+

𝑑=deg 𝑎1> · · ·>deg 𝑎𝑛≥0

𝜀
deg 𝑎1
1 . . . 𝜀

deg 𝑎𝑛
𝑛

𝑎𝑠1
1 . . . 𝑎

𝑠𝑛
𝑛

∈ 𝐾

and

𝑆<𝑑

(
𝜺
𝔰

)
=

∑
𝑎1 ,...,𝑎𝑛∈𝐴+

𝑑>deg 𝑎1> · · ·>deg 𝑎𝑛≥0

𝜀
deg 𝑎1
1 . . . 𝜀

deg 𝑎𝑛
𝑛

𝑎𝑠1
1 . . . 𝑎

𝑠𝑛
𝑛

∈ 𝐾.

One verifies easily the following formulas:

𝑆<𝑑

(
1 . . . 1
𝑠1 . . . 𝑠𝑛

)
= 𝑆<𝑑 (𝑠1, . . . , 𝑠𝑛), 𝑆𝑑

(
1 . . . 1
𝑠1 . . . 𝑠𝑛

)
= 𝑆𝑑 (𝑠1, . . . , 𝑠𝑛),

𝑆𝑑

(
𝜀
𝑠

)
= 𝜀𝑑𝑆𝑑 (𝑠), 𝑆𝑑

(
𝜺
𝔰

)
= 𝑆𝑑

(
𝜀1
𝑠1

)
𝑆<𝑑

(
𝜺−
𝔰−

)
.
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Harada [21] introduced the AMZV as follows;

𝜁𝐴

(
𝜺
𝔰

)
=

∑
𝑑≥0

𝑆𝑑

(
𝜺
𝔰

)
=

∑
𝑎1 ,...,𝑎𝑛∈𝐴+

deg 𝑎1> · · ·>deg 𝑎𝑛≥0

𝜀
deg 𝑎1
1 . . . 𝜀

deg 𝑎𝑛
𝑛

𝑎𝑠1
1 . . . 𝑎

𝑠𝑛
𝑛

∈ 𝐾∞.

Using Chen’s formula (see [13]), Harada proved that for 𝑠, 𝑡 ∈ N and 𝜀, 𝜖 ∈ F×𝑞 , we have

𝑆𝑑

(
𝜀
𝑠

)
𝑆𝑑

(
𝜖
𝑡

)
= 𝑆𝑑

(
𝜀𝜖
𝑠 + 𝑡

)
+

∑
𝑖

Δ 𝑖𝑠,𝑡𝑆𝑑

(
𝜀𝜖 1

𝑠 + 𝑡 − 𝑖 𝑖

)
, (5.1)

where

Δ 𝑖𝑠,𝑡 =

{
(−1)𝑠−1 ( 𝑖−1

𝑠−1
)
+ (−1)𝑡−1 (𝑖−1

𝑡−1
)

if 𝑞 − 1 | 𝑖 and 0 < 𝑖 < 𝑠 + 𝑡,
0 otherwise.

(5.2)

Remark 5.1. When 𝑠 + 𝑡 ≤ 𝑞, we deduce from the above formulas that

𝑆𝑑

(
𝜀
𝑠

)
𝑆𝑑

(
𝜖
𝑡

)
= 𝑆𝑑

(
𝜀𝜖
𝑠 + 𝑡

)
.

He then proved similar results for products of AMZV’s (see [21]):

Proposition 5.2. Let
(
𝜺
𝔰

)
,
(
𝝐
𝔱

)
be two arrays. Then

1. There exist 𝑓𝑖 ∈ F𝑞 and arrays
(
𝝁𝑖
𝔲𝑖

)
with

(
𝝁𝑖
𝔲𝑖

)
≤

(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
and depth(𝔲𝑖) ≤ depth(𝔰) + depth(𝔱) for

all i such that

𝑆𝑑

(
𝜺
𝔰

)
𝑆𝑑

(
𝝐
𝔱

)
=

∑
𝑖

𝑓𝑖𝑆𝑑

(
𝝁𝑖
𝔲𝑖

)
for all 𝑑 ∈ Z.

2. There exist 𝑓 ′𝑖 ∈ F𝑞 and arrays
(
𝝁′
𝑖

𝔲′
𝑖

)
with

(
𝝁′
𝑖

𝔲′
𝑖

)
≤

(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
and depth(𝔲′

𝑖 ) ≤ depth(𝔰) + depth(𝔱)

for all i such that

𝑆<𝑑

(
𝜺
𝔰

)
𝑆<𝑑

(
𝝐
𝔱

)
=

∑
𝑖

𝑓 ′𝑖 𝑆<𝑑

(
𝝁′
𝑖

𝔲′
𝑖

)
for all 𝑑 ∈ Z.

3. There exist 𝑓 ′′𝑖 ∈ F𝑞 and arrays
(
𝝁′′
𝑖

𝔲′′
𝑖

)
with

(
𝝁′′
𝑖

𝔲′′
𝑖

)
≤

(
𝜺
𝔰

)
+

(
𝝐
𝔱

)
and depth(𝔲′′

𝑖 ) ≤ depth(𝔰) + depth(𝔱)

for all i such that

𝑆𝑑

(
𝜺
𝔰

)
𝑆<𝑑

(
𝝐
𝔱

)
=

∑
𝑖

𝑓 ′′𝑖 𝑆𝑑

(
𝝁′′
𝑖

𝔲′′
𝑖

)
for all 𝑑 ∈ Z.

We denote by AZ the K-vector space generated by the AMZV’s and AZ𝑤 the K-vector space
generated by the AMZV’s of weight w. It follows from Proposition 5.2 that AZ is a K-algebra.

5.1.2. Algebraic theory for AMZV’s
We can extend an algebraic theory for AMZV’s which follow the same line as that in §2.
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Definition 5.3. A binary relation is a K-linear combination of the form

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
= 0 for all 𝑑 ∈ Z,

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays of the same weight.

A binary relation is called a fixed relation if 𝑏𝑖 = 0 for all i.

We denote by ℜ𝑤 the set of all binary relations of weight w. From Lemma 2.2 and the relation 𝑅𝜀
defined in §2.2, we obtain the following binary relation

𝑅𝜀 : 𝑆𝑑

(
𝜀
𝑞

)
+ 𝜀−1𝐷1𝑆𝑑+1

(
𝜀 1
1 𝑞 − 1

)
= 0,

where 𝐷1 = 𝜃𝑞 − 𝜃.
For later definitions, let 𝑅 ∈ ℜ𝑤 be a binary relation of the form

𝑅(𝑑) :
∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
= 0, (5.3)

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays of the same weight. We now define some operators on

K-vector spaces of binary relations.

First, we define operators B∗. Let
(
𝜎
𝑣

)
be an array. We introduce

B∗
𝜎,𝑣 : ℜ𝑤 −→ ℜ𝑤+𝑣

as follows: For each 𝑅 ∈ ℜ𝑤 as given in Equation (5.3), the image B∗
𝜎,𝑣 (𝑅) = 𝑆𝑑

(
𝜎
𝑣

) ∑
𝑗<𝑑 𝑅( 𝑗) is a

fixed relation of the form

0 = 𝑆𝑑

(
𝜎
𝑣

) (∑
𝑖

𝑎𝑖𝑆<𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆<𝑑+1

(
𝝐 𝑖
𝔱𝑖

))
=

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜎
𝑣

)
𝑆<𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎
𝑣

)
𝑆<𝑑

(
𝝐 𝑖
𝔱𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎
𝑣

)
𝑆𝑑

(
𝝐 𝑖
𝔱𝑖

)
=

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜎 𝜺𝑖
𝑣 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎 𝝐 𝑖
𝑣 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖
∑
𝑗

𝑓𝑖, 𝑗𝑆𝑑

(
𝝁𝑖, 𝑗
𝔲𝑖, 𝑗

)
.

The last equality follows from Proposition 5.2.

Let
(
Σ
𝑉

)
=

(
𝜎1 . . . 𝜎𝑛
𝑣1 . . . 𝑣𝑛

)
be an array. We define an operator B∗

Σ,𝑉 (𝑅) by

B∗
Σ,𝑉 (𝑅) := B∗

𝜎1 ,𝑣1 ◦ · · · ◦ B
∗
𝜎𝑛 ,𝑣𝑛 (𝑅).
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Lemma 5.4. Let
(
Σ
𝑉

)
=

(
𝜎1 . . . 𝜎𝑛
𝑣1 . . . 𝑣𝑛

)
be an array. Under the notations of Equation (5.3), suppose that

for all i, 𝑣𝑛 + 𝑡𝑖1 ≤ 𝑞, where 𝔱𝑖 = (𝑡𝑖1, 𝔱𝑖−). Then B∗
Σ,𝑉 (𝑅) is of the form∑

𝑖

𝑎𝑖𝑆𝑑

(
Σ 𝜺𝑖
𝑉 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
Σ 𝝐 𝑖
𝑉 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎1 . . . 𝜎𝑛−1 𝜎𝑛𝜖𝑖1 𝝐 𝑖−
𝑣1 . . . 𝑣𝑛−1 𝑣𝑛 + 𝑡𝑖1 𝔱𝑖−

)
= 0.

Proof. From the definition, we have B∗
𝜎𝑛 ,𝑣𝑛 (𝑅) is of the form∑

𝑖

𝑎𝑖𝑆𝑑

(
𝜎𝑛 𝜺𝑖
𝑣𝑛 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎𝑛 𝝐 𝑖
𝑣𝑛 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎𝑛
𝑣𝑛

)
𝑆𝑑

(
𝝐 𝑖
𝔱𝑖

)
= 0.

For all i, since 𝑣𝑛 + 𝑡𝑖1 ≤ 𝑞, it follows from Remark 5.1 that

𝑆𝑑

(
𝜎𝑛
𝑣𝑛

)
𝑆𝑑

(
𝝐 𝑖
𝔱𝑖

)
= 𝑆𝑑

(
𝜎𝑛
𝑣𝑛

)
𝑆𝑑

(
𝜖𝑖1
𝑡𝑖1

)
𝑆<𝑑

(
𝝐 𝑖−
𝔱𝑖−

)
= 𝑆𝑑

(
𝜎𝑛𝜖𝑖1
𝑣𝑛 + 𝑡𝑖1

)
𝑆<𝑑

(
𝝐 𝑖−
𝔱𝑖−

)
= 𝑆𝑑

(
𝜎𝑛𝜖𝑖1 𝝐 𝑖−
𝑣𝑛 + 𝑡𝑖1 𝔱𝑖−

)
,

hence B∗
𝜎𝑛 ,𝑣𝑛 (𝑅) is of the form∑

𝑖

𝑎𝑖𝑆𝑑

(
𝜎𝑛 𝜺𝑖
𝑣𝑛 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎𝑛 𝝐 𝑖
𝑣𝑛 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜎𝑛𝜖𝑖1 𝝐 𝑖−
𝑣𝑛 + 𝑡𝑖1 𝔱𝑖−

)
= 0.

Apply the operator B∗
𝜎1 ,𝑣1 ◦ · · · ◦B∗

𝜎𝑛−1 ,𝑣𝑛−1 to B∗
𝜎𝑛 ,𝑣𝑛 (𝑅), the result then follows from the definition. �

Second, we define operators C. Let
(
Σ
𝑉

)
be an array of weight v. We introduce

CΣ,𝑉 (𝑅) : ℜ𝑤 −→ ℜ𝑤+𝑣

as follows: For each 𝑅 ∈ ℜ𝑤 as given in Equation (5.3), the image CΣ,𝑉 (𝑅) = 𝑅(𝑑)𝑆<𝑑+1

(
Σ
𝑉

)
is a

binary relation of the form

0 =

(∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝝐 𝑖
𝔱𝑖

))
𝑆<𝑑+1

(
Σ
𝑉

)
=

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
𝑆𝑑

(
Σ
𝑉

)
+

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
𝑆<𝑑

(
Σ
𝑉

)
+

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
𝑆<𝑑+1

(
Σ
𝑉

)
=

∑
𝑖

𝑓𝑖𝑆𝑑

(
𝝁𝑖
𝔲𝑖

)
+

∑
𝑖

𝑓 ′𝑖 𝑆𝑑+1

(
𝝁′
𝑖

𝔲′
𝑖

)
.

The last equality follows from Proposition 5.2.
In particular, the following proposition gives the form of CΣ,𝑉 (𝑅𝜀).

Proposition 5.5. Let
(
Σ
𝑉

)
be an array with𝑉 = (𝑣1, 𝑉−) and Σ = (𝜎1, Σ−). Then CΣ,𝑉 (𝑅𝜀) is of the form

𝑆𝑑

(
𝜀𝜎1 Σ−

𝑞 + 𝑣1 𝑉−

)
+

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝜀 𝝐 𝑖
1 𝔱𝑖

)
= 0,
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where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays satisfying

•
(
𝜺𝑖
𝔰𝑖

)
≤

(
𝜀
𝑞

)
+

(
Σ
𝑉

)
and 𝑠𝑖1 < 𝑞 + 𝑣1 for all i;

•
(
𝝐 𝑖
𝔱𝑖

)
≤

(
1

𝑞 − 1

)
+

(
Σ
𝑉

)
for all i.

Proof. From the definition, CΣ,𝑉 (𝑅𝜀) is of the form

𝑆𝑑

(
𝜀
𝑞

)
𝑆𝑑

(
Σ
𝑉

)
+ 𝑆𝑑

(
𝜀
𝑞

)
𝑆<𝑑

(
Σ
𝑉

)
+ 𝜀−1𝐷1𝑆𝑑+1

(
𝜀 1
1 𝑞 − 1

)
𝑆<𝑑+1

(
Σ
𝑉

)
= 0.

It follows from Equation (5.1) and Proposition 5.2 that

𝑆𝑑

(
𝜀
𝑞

)
𝑆𝑑

(
Σ
𝑉

)
+ 𝑆𝑑

(
𝜀
𝑞

)
𝑆<𝑑

(
Σ
𝑉

)
= 𝑆𝑑

(
𝜀𝜎1 Σ−

𝑞 + 𝑣1 𝑉−

)
+

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
,

𝜀−1𝐷1𝑆𝑑+1

(
𝜀 1
1 𝑞 − 1

)
𝑆<𝑑+1

(
Σ
𝑉

)
=

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝜀 𝝐 𝑖
1 𝔱𝑖

)
,

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays satisfying

•
(
𝜺𝑖
𝔰𝑖

)
≤

(
𝜀
𝑞

)
+

(
Σ
𝑉

)
and 𝑠𝑖1 < 𝑞 + 𝑣1 for all i;

•
(
𝝐 𝑖
𝔱𝑖

)
≤

(
1

𝑞 − 1

)
+

(
Σ
𝑉

)
for all i.

This proves the proposition. �

Finally, we define operators BC. Let 𝜀 ∈ F×𝑞 . We introduce

BC 𝜀,𝑞 : ℜ𝑤 −→ ℜ𝑤+𝑞

as follows: For each 𝑅 ∈ ℜ𝑤 as given in Equation (5.3), the image BC 𝜀,𝑞 (𝑅) is a binary relation given by

BC 𝜀,𝑞 (𝑅) = B∗
𝜀,𝑞 (𝑅) −

∑
𝑖

𝑏𝑖C𝝐 𝑖 ,𝔱𝑖 (𝑅𝜀).

Let us clarify the definition of BC 𝜀,𝑞 . We know that B∗
𝜀,𝑞 (𝑅) is of the form

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜀 𝜺𝑖
𝑞 𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜀 𝝐 𝑖
𝑞 𝔱𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑

(
𝜀
𝑞

)
𝑆𝑑

(
𝝐 𝑖
𝔱𝑖

)
= 0.

Moreover, C𝝐 𝑖 ,𝔱𝑖 (𝑅𝜀) is of the form

𝑆𝑑

(
𝜀 𝝐 𝑖
𝑞 𝔱𝑖

)
+ 𝑆𝑑

(
𝜀
𝑞

)
𝑆𝑑

(
𝝐 𝑖
𝔱𝑖

)
+ 𝜀−1𝐷1𝑆𝑑+1

(
𝜀
1

)
𝑆<𝑑+1

(
1

𝑞 − 1

)
𝑆<𝑑+1

(
𝝐 𝑖
𝔱𝑖

)
= 0.
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Combining with Proposition 5.2, we have that BC 𝜀,𝑞 (𝑅) is of the form∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜀 𝜺𝑖
𝑞 𝔰𝑖

)
+

∑
𝑖, 𝑗

𝑏𝑖 𝑗𝑆𝑑+1

(
𝜀 𝝐 𝑖 𝑗
1 𝔱𝑖 𝑗

)
= 0,

where 𝑏𝑖 𝑗 ∈ 𝐾 and
(
𝝐 𝑖 𝑗
𝔱𝑖 𝑗

)
are arrays satisfying

(
𝝐 𝑖 𝑗
𝔱𝑖 𝑗

)
≤

(
1

𝑞 − 1

)
+

(
𝝐 𝑖
𝔱𝑖

)
for all j.

Proposition 5.6. 1) Let
(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑛
𝑠1 . . . 𝑠𝑛

)
be an array such that Init(𝔰) = (𝑠1, . . . , 𝑠𝑘−1) for some

1 ≤ 𝑘 ≤ 𝑛. Then 𝜁𝐴
(
𝜺
𝔰

)
can be decomposed as follows:

𝜁𝐴

(
𝜺
𝔰

)
=

∑
𝑖

𝑎𝑖𝜁𝐴

(
𝜺′𝑖
𝔰′𝑖

)
︸����������︷︷����������︸

type 1

+
∑
𝑖

𝑏𝑖𝜁𝐴

(
𝝐 ′𝑖
𝔱′𝑖

)
︸����������︷︷����������︸

type 2

+
∑
𝑖

𝑐𝑖𝜁𝐴

(
𝝁𝑖
𝔲𝑖

)
︸����������︷︷����������︸

type 3

,

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ∈ 𝐾 such that for all i, the following properties are satisfied:

• For all arrays
(
𝝐
𝔱

)
appearing on the right-hand side,

depth(𝔱) ≥ depth(𝔰) and 𝑇𝑘 (𝔱) ≤ 𝑇𝑘 (𝔰).

• For the array
(
𝜺′

𝔰′

)
of type 1 with respect to

(
𝜺
𝔰

)
, we have Init(𝔰) � Init(𝔰′) and 𝑠′𝑘 < 𝑠𝑘 .

• For the array
(
𝝐 ′

𝔱′

)
of type 2 with respect to

(
𝜺
𝔰

)
, for all 𝑘 ≤ ℓ ≤ 𝑛,

𝑡 ′1 + · · · + 𝑡 ′ℓ < 𝑠1 + · · · + 𝑠ℓ .

• For the array
(
𝝁
𝔲

)
of type 3 with respect to

(
𝜺
𝔰

)
, we have Init(𝔰) ≺ Init(𝔲).

2) Let
(
𝜺
𝔰

)
=

(
𝜀1 . . . 𝜀𝑘
𝑠1 . . . 𝑠𝑘

)
be an array such that Init(𝔰) = 𝔰 and 𝑠𝑘 = 𝑞. Then 𝜁𝐴

(
𝜺
𝔰

)
can be

decomposed as follows:

𝜁𝐴

(
𝜺
𝔰

)
=

∑
𝑖

𝑏𝑖𝜁𝐴

(
𝝐 ′𝑖
𝔱′𝑖

)
︸����������︷︷����������︸

type 2

+
∑
𝑖

𝑐𝑖𝜁𝐴

(
𝝁𝑖
𝔲𝑖

)
︸����������︷︷����������︸

type 3

,

where 𝑏𝑖 , 𝑐𝑖 ∈ 𝐾 such that for all i, the following properties are satisfied:

• For all arrays
(
𝝐
𝔱

)
appearing on the right-hand side,

depth(𝔱) ≥ depth(𝔰) and 𝑇𝑘 (𝔱) ≤ 𝑇𝑘 (𝔰).
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• For the array
(
𝝐 ′

𝔱′

)
of type 2 with respect to

(
𝜺
𝔰

)
,

𝑡 ′1 + · · · + 𝑡 ′𝑘 < 𝑠1 + · · · + 𝑠𝑘 .

• For the array
(
𝝁
𝔲

)
of type 3 with respect to

(
𝜺
𝔰

)
, we have Init(𝔰) ≺ Init(𝔲).

Proof. The proof follows the same line as in [31, Proposition 2.12 and 2.13]. We outline the proof here
and refer the reader to [25] for more details. For Part 1, since Init(𝔰) = (𝑠1, . . . , 𝑠𝑘−1), we get 𝑠𝑘 > 𝑞.

Set
(
Σ
𝑉

)
=

(
1 𝜀𝑘+1 . . . 𝜀𝑛

𝑠𝑘 − 𝑞 𝑠𝑘+1 . . . 𝑠𝑛

)
. By Proposition 5.5, CΣ,𝑉 (𝑅𝜀𝑘 ) is of the form

𝑆𝑑

(
𝜀𝑘 . . . 𝜀𝑛
𝑠𝑘 . . . 𝑠𝑛

)
+

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜺𝑖
𝔰𝑖

)
+

∑
𝑖

𝑏𝑖𝑆𝑑+1

(
𝜀𝑘 𝝐 𝑖
1 𝔱𝑖

)
= 0, (5.4)

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
,

(
𝝐 𝑖
𝔱𝑖

)
are arrays satisfying(

𝜺𝑖
𝔰𝑖

)
≤

(
𝜀𝑘
𝑞

)
+

(
Σ
𝑉

)
=

(
𝜀𝑘 . . . 𝜀𝑛
𝑠𝑘 . . . 𝑠𝑛

)
and 𝑠𝑖1 < 𝑞 + 𝑣1 = 𝑠𝑘 ; (5.5)(

𝝐 𝑖
𝔱𝑖

)
≤

(
1

𝑞 − 1

)
+

(
Σ
𝑉

)
=

(
1 𝜀𝑘+1 . . . 𝜀𝑛

𝑠𝑘 − 1 𝑠𝑘+1 . . . 𝑠𝑛

)
.

For 𝑚 ∈ N, we recall that 𝑞 {𝑚} is the sequence of length m with all terms equal to q. Setting 𝑠0 = 0,
we may assume that there exists a maximal index j with 0 ≤ 𝑗 ≤ 𝑘 − 1 such that 𝑠 𝑗 < 𝑞, hence
Init(𝔰) = (𝑠1, . . . , 𝑠 𝑗 , 𝑞

{𝑘− 𝑗−1}). Then the operator BC 𝜀 𝑗+1 ,𝑞 ◦ · · · ◦BC 𝜀𝑘−1 ,𝑞 applied to the relation (5.4)
gives

𝑆𝑑

(
𝜀 𝑗+1 . . . 𝜀𝑘−1 𝜀𝑘 . . . 𝜀𝑛
𝑞 . . . 𝑞 𝑠𝑘 . . . 𝑠𝑛

)
+

∑
𝑖

𝑎𝑖𝑆𝑑

(
𝜀 𝑗+1 . . . 𝜀𝑘−1 𝜺𝑖
𝑞 . . . 𝑞 𝔰𝑖

)
(5.6)

+
∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 𝑆𝑑+1

(
𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

1 𝔱𝑖1...𝑖𝑘− 𝑗

)
= 0,

where 𝑏𝑖1...𝑖𝑘− 𝑗 ∈ 𝐾 and (
𝝐 𝑖1...𝑖𝑘− 𝑗

𝔱𝑖1...𝑖𝑘− 𝑗

)
≤

(
𝜀 𝑗+2 . . . 𝜀𝑘 1 𝜀𝑘+1 . . . 𝜀𝑛
𝑞 . . . 𝑞 𝑠𝑘 − 1 𝑠𝑘+1 . . . 𝑠𝑛

)
. (5.7)

We let
(
Σ′

𝑉 ′

)
=

(
𝜀1 . . . 𝜀 𝑗
𝑠1 . . . 𝑠 𝑗

)
, and we apply B∗

Σ′,𝑉 ′ to Equation (5.6). Since 𝑠 𝑗 < 𝑞, that is, 𝑠 𝑗 + 1 ≤ 𝑞,

we can deduce from Lemma 5.4 that

𝜁𝐴

(
𝜺
𝔰

)
= −

∑
𝑖

𝑎𝑖𝜁𝐴

(
𝜀1 . . . 𝜀 𝑗 𝜀 𝑗+1 . . . 𝜀𝑘−1 𝜺𝑖
𝑠1 . . . 𝑠 𝑗 𝑞 . . . 𝑞 𝔰𝑖

)
−

∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 𝜁𝐴

(
𝜀1 . . . 𝜀 𝑗 𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

𝑠1 . . . 𝑠 𝑗 1 𝔱𝑖1...𝑖𝑘− 𝑗

)
−

∑
𝑖

𝑏𝑖1...𝑖𝑘− 𝑗 𝜁𝐴

(
𝜀1 . . . 𝜀 𝑗−1 𝜀 𝑗𝜀 𝑗+1 𝝐 𝑖1...𝑖𝑘− 𝑗

𝑠1 . . . 𝑠 𝑗−1 𝑠 𝑗 + 1 𝔱𝑖1...𝑖𝑘− 𝑗

)
. (5.8)

The first term, the second term and the third term on the right-hand side of Equation (5.8) are referred to
as type 1, type 2 and type 3, respectively. From Equations (5.5) and (5.7) and Remark 2.1, one verifies
that the arrays of type 1, type 2 and type 3 satisfy the desired conditions. We have proved Part 1.
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The proof of Part 2 is similar to that of Proposition 2.7. We first begin with the relation 𝑅𝜀𝑘 . Next,

we apply BC 𝜀 𝑗+1 ,𝑞 ◦ · · · ◦BC 𝜀𝑘−1 ,𝑞 to 𝑅𝜀𝑘 and then apply B∗
Σ′,𝑉 ′ . We can decompose 𝜁𝐴

(
𝜺
𝔰

)
in terms of

type 2 and type 3 as in Equation (5.8). One verifies that these terms satisfy the desired conditions. We
finish the proof. �

Proposition 5.7. For all 𝑘 ∈ N and for all arrays
(
𝜺
𝔰

)
, 𝜁𝐴

(
𝜺
𝔰

)
can be expressed as a K-linear combination

of 𝜁𝐴
(
𝝐
𝔱

)
’s of the same weight such that 𝔱 is k-admissible.

Proof. The proof follows the same line as that of [31, Proposition 3.2]. We outline the proof here and
refer the reader to [25] for more details. We consider the following statement:

(𝐻𝑘 ) For all arrays
(
𝜺
𝔰

)
, we can express 𝜁𝐴

(
𝜺
𝔰

)
as a K-linear combination of 𝜁𝐴

(
𝝐
𝔱

)
’s of the same

weight such that 𝔱 is k-admissible.
We will show that (𝐻𝑘 ) holds for all 𝑘 ∈ N by induction on k. For 𝑘 = 1, we prove that (𝐻1) holds

by induction on the first component 𝑠1 of 𝔰. If 𝑠1 ≤ 𝑞, then either 𝔰 is 1-admissible, or
(
𝜺
𝔰

)
=

(
𝜀
𝑞

)
. We

deduce from the relation 𝑅𝜀 that (𝐻1) holds for the case
(
𝜺
𝔰

)
=

(
𝜀
𝑞

)
. If 𝑠1 > 𝑞, we assume that (𝐻1)

holds for the array
(
𝜺
𝔰

)
, where 𝑠1 < 𝑠. We need to shows that (𝐻1) holds for the array

(
𝜺
𝔰

)
where 𝑠1 = 𝑠.

Indeed, assume that
(
𝜺
𝔰

)
=

(
𝜀1 · · · 𝜀𝑛
𝑠1 · · · 𝑠𝑛

)
. Set

(
Σ
𝑉

)
=

(
𝜀1 𝜀2 · · · 𝜀𝑛

𝑠1 − 𝑞 𝑠2 · · · 𝑠𝑛

)
. Applying 𝐶Σ,𝑉 to the relation

𝑅1 and using Proposition 5.5, we can deduce that

𝜁𝐴

(
𝜺
𝔰

)
= −

∑
𝑖

𝑎𝑖𝜁𝐴

(
𝜺𝑖
𝔰𝑖

)
−

∑
𝑖

𝑏𝑖𝜁𝐴

(
1 𝝐 𝑖
1 𝔱𝑖

)
,

where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐾 and
(
𝜺𝑖
𝔰𝑖

)
are arrays satisfying 𝑠𝑖1 < 𝑠 for all i. From the induction hypothesis, we

deduce that (𝐻1) holds for
(
𝜺𝑖
𝔰𝑖

)
, and therefore for

(
𝜺
𝔰

)
.

We next assume that (𝐻𝑘−1) holds. We need to show that (𝐻𝑘 ) holds. The rest of the proof is similar

to that of Proposition 2.9. We can restrict our attention to the array
(
𝜺
𝔰

)
=

(
𝜀1 · · · 𝜀𝑛
𝑠1 · · · 𝑠𝑛

)
, where 𝔰 is not k-

admissible and depth(𝔰) ≥ 𝑘 . We show that (𝐻𝑘 ) holds for the array
(
𝜺
𝔰

)
by induction on 𝑠1+· · ·+𝑠𝑘 . For

the induction step, by using Proposition 5.6 and the induction hypothesis, we can give an algorithm to

decompose 𝜁𝐴
(
𝜺
𝔰

)
as a K-linear combination of 𝜁𝐴

(
𝝐
𝔱

)
’s of the same weight such that 𝔱 is k-admissible.

From Proposition 5.6 and similar arguments as in [31, Proposition 3.2], we can show that this algorithm
stops after a finite number of steps. This proves the result. �

Consequently, we obtain a weak version of Brown’s theorem for AMZV’s as follows.

Proposition 5.8. The set of all elements 𝜁𝐴
(
𝜺
𝔰

)
such that 𝜁𝐴

(
𝜺
𝔰

)
∈ AT 𝑤 forms a set of generators

for AZ𝑤 . Here, we recall that AT 𝑤 is the set of all AMZV’s 𝜁𝐴
(
𝜺
𝔰

)
= Li

(
𝜺
𝔰

)
of weight w such
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that
(
𝜺
𝔰

)
=

(
𝜀1 · · · 𝜀𝑛
𝑠1 · · · 𝑠𝑛

)
with 𝑠1, . . . , 𝑠𝑛−1 ≤ 𝑞 and 𝑠𝑛 < 𝑞 introduced in the paragraph preceding

Proposition 2.10.

Proof. It follows from Proposition 5.7 in the case of 𝑘 = 𝑤. �

5.2. Proof of Theorem A

As a direct consequence of Proposition 2.10 and Proposition 5.8, we get

Theorem 5.9. The K-vector space AZ𝑤 of AMZV’s of weight w and the K-vector space AL𝑤 of
ACMPL’s of weight w are the same.

By this identification, we apply Theorem 4.6 to obtain Theorem A.

5.3. Zagier–Hoffman’s conjectures in positive characteristic

5.3.1. Known results
We use freely the notation introduced in §1.2.1. We recall that for 𝑤 ∈ N, Z𝑤 denotes the K-vector
space spanned by the MZV’s of weight w and T𝑤 denotes the set of 𝜁𝐴(𝔰), where 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N

𝑟

of weight w with 1 ≤ 𝑠𝑖 ≤ 𝑞 for 1 ≤ 𝑖 ≤ 𝑟 − 1 and 𝑠𝑟 < 𝑞.
Recall that the main results of [31] state that

• For all 𝑤 ∈ N we always have dim𝐾 Z𝑤 ≤ 𝑑 (𝑤) (see [31, Theorem A]).
• For 𝑤 ≤ 2𝑞 − 2, we have dim𝐾 Z𝑤 ≥ 𝑑 (𝑤) (see [31, Theorem B]). In particular, Conjecture 1.7

holds for 𝑤 ≤ 2𝑞 − 2 (see [31, Theorem D]).

However, as stated in [31, Remark 6.3] it would be very difficult to extend the method of [31] for general
weights.

As an application of our main results, we present a proof of Theorem B which settles both Conjectures
1.6 and 1.7.

5.3.2. Proof of Theorem B
As we have already known the sharp upper bound for Z𝑤 (see [31, Theorem A]), Theorem B follows
immediately from the following proposition.

Proposition 5.10. For all 𝑤 ∈ N we have dim𝐾 Z𝑤 ≥ 𝑑 (𝑤).

Proof. We denote by S𝑤 the set of CMPL’s consisting of Li(𝑠1, . . . , 𝑠𝑟 ) of weight w with 𝑞 � 𝑠𝑖 for all i.
Then S𝑤 can be considered as a subset of AS𝑤 by assuming 𝝐 = (1, . . . , 1). In fact, all algebraic

relations in §2 hold for CMPL version, that is, for Si𝑑 (𝑠1, . . . , 𝑠𝑟 ) = Si𝑑
(

1 . . . 1
𝑠1 . . . 𝑠𝑟

)
and Li(𝑠1, . . . , 𝑠𝑟 ) =

Li
(

1 . . . 1
𝑠1 . . . 𝑠𝑟

)
. It follows that S𝑤 is contained in Z𝑤 by Theorem 5.9. Further, by §2.4.1, |S𝑤 | = 𝑑 (𝑤).

By Theorem 4.4, we deduce that elements in S𝑤 are all linearly independent over K. Therefore,
dim𝐾 Z𝑤 ≥ |S𝑤 | = 𝑑 (𝑤). �

5.4. Sharp bounds without ACMPL’s

To end this paper, we mention that without ACMPL’s it seems very hard to obtain for arbitrary weight w

• either the sharp upper bound dim𝐾 AZ𝑤 ≤ 𝑠(𝑤),
• or the sharp lower bound dim𝐾 AZ𝑤 ≥ 𝑠(𝑤).

We can only do this for small weights with ad hoc arguments. We collect the results below, sketch
some ideas for the proofs, and refer the reader to [26] for full details.
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Proposition 5.11. Let 𝑤 ≤ 2𝑞 − 2. Then dim𝐾 AZ𝑤 ≤ 𝑠(𝑤).

Proof. We outline the proof and refer the reader to [25] for more details. We denote by AT 1
𝑤 the subset

of AMZV’s 𝜁𝐴
(
𝝐
𝔰

)
ofAT 𝑤 such that 𝜖𝑖 = 1 whenever 𝑠𝑖 = 𝑞 and by 〈AT 1

𝑤 〉 the K-vector space spanned

by the AMZV’s in AT 1
𝑤 . We see that |AT 1

𝑤 | = 𝑠(𝑤). Thus, it suffices to prove that 〈AT 1
𝑤 〉 = AZ𝑤 .

Let𝑈 = (𝑢1, . . . , 𝑢𝑛) and𝑊 = (𝑤1, . . . , 𝑤𝑟 ) be tuples of positive integers such that𝑤(𝑈)+𝑤(𝑊)+𝑞 =
𝑤, 𝑢𝑛 ≤ 𝑞 − 1 and 𝑤1, . . . , 𝑤𝑟 ≤ 𝑞. Let 𝝐 = (𝜖1, . . . , 𝜖𝑛) ∈ (F×𝑞)

𝑛 and 𝝀 = (𝜆1, . . . , 𝜆𝑟 ) ∈ (F×𝑞)
𝑟 . By

direct calculations, we can obtain an explicit formula for B𝝐 ,𝑈C𝝀,𝑊 (𝑅𝜖 ). We give briefly the form of
this formula as follows:

𝑆𝑑

(
𝝐 𝜖 𝝀
𝑈 𝑞 𝑊

)
+ 𝑆𝑑

(
𝝐 𝜖𝜆1 𝝀−
𝑈 𝑞 + 𝑤1 𝑊−

)
(5.9)

+
∑
𝑖

𝛼𝑖𝑆𝑑

(
𝝐 ′𝑖 𝜆′𝑖1 𝝀′

𝑖−

𝑈 ′
𝑖 𝑞 + 𝑤

′
𝑖1 𝑊

′
𝑖−

)
+

∑
𝑖

𝛽𝑖𝑆𝑑

(
𝝐 ′′𝑖 𝜆1 𝝀−
𝑈 ′′
𝑖 𝑞 + 𝑤1 − 1 𝑊−

)
+

∑
𝑖

𝛾𝑖𝑆𝑑

(
𝜇𝑖
𝑉𝑖

)
= 0.

Here, the coefficients 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ∈ 𝐾 . For the third term, we have𝑊 ′
𝑖 = (𝑤′

𝑖1,𝑊
′
𝑖−) are tuples of positive

integers such that depth(𝑊 ′
𝑖 ) < 𝑟 . For the last term, since 𝑤(𝑈) + 𝑤(𝑊) = 𝑤 − 𝑞 ≤ 𝑞 − 2, we have 𝑉𝑖

are tuples of positive integers such that all components are less than or equal to 𝑞 − 1.
We denote by 𝐻𝑟 the following claim: For any tuples of positive integers U and 𝑊 = (𝑤1, . . . , 𝑤𝑟 )

of depth r, 𝝐 ∈ (F×𝑞)
depth(𝑈 ) of any depth, 𝝀 = (𝜆1, . . . , 𝜆𝑟 ) ∈ (F×𝑞)

𝑟 , and 𝜖 ∈ F×𝑞 such that

𝑤(𝑈) + 𝑤(𝑊) + 𝑞 = 𝑤, the AMZV’s 𝜁𝐴
(
𝝐 𝜖 𝝀
𝑈 𝑞 𝑊

)
and 𝜁𝐴

(
𝝐 𝜖𝜆1 𝝀−
𝑈 𝑞 + 𝑤1 𝑊−

)
belong to 〈AT 1

𝑤 〉.

We will show that 𝐻𝑟 holds for all 𝑟 ≥ 0 by induction on r. For 𝑟 = 0, we know that 𝑊 = ∅. The
explicit expression for B𝝐 ,𝑈 (𝑅𝜖 ) is given by

𝑆𝑑

(
𝝐 𝜖
𝑈 𝑞

)
+ 𝜖−1𝐷1𝑆𝑑

(
𝝐 𝜖 1
𝑈 1 𝑞 − 1

)
+ 𝜖−1𝐷1𝑆𝑑

(
𝜖1 . . . 𝜖𝑛−1 𝜖𝑛𝜖 1
𝑢1 . . . 𝑢𝑛−1 𝑢𝑛 + 1 𝑞 − 1

)
= 0.

Since 𝑢𝑖 ≤ 𝑤(𝑈) = 𝑤 − 𝑞 ≤ 𝑞 − 2, we deduce that 𝜁𝐴
(
𝝐 𝜖
𝑈 𝑞

)
∈ 〈AT 1

𝑤 〉 as required.

Suppose that 𝐻𝑟 ′ holds for any 𝑟 ′ < 𝑟 . We now show that 𝐻𝑟 holds. We proceed again by induction on
𝑤1. For 𝑤1 = 1, we apply the formula (5.9). As 𝑤(𝑈) +𝑤(𝑊) = 𝑤 − 𝑞 ≤ 𝑞 − 2, by induction we deduce
that all the terms except the first two ones in this expression belong to 〈AT 1

𝑤 〉. Thus, for any 𝜖 ∈ F×𝑞 ,

𝜁𝐴

(
𝝐 𝜖 𝝀
𝑈 𝑞 𝑊

)
+ 𝜁𝐴

(
𝝐 𝜖𝜆1 𝝀−
𝑈 𝑞 + 1 𝑊−

)
∈ 〈AT 1

𝑤 〉. (5.10)

We take 𝜖 = 1. As the first term lies in AT 1
𝑤 by definition, we deduce that

𝜁𝐴

(
𝝐 𝜆1 𝝀−
𝑈 𝑞 + 1 𝑊−

)
∈ 〈AT 1

𝑤 〉.

Thus, in Equation (5.10) we now know that the second term lies in 〈AT 1
𝑤 〉, which implies that

𝜁𝐴

(
𝝐 𝜖 𝝀
𝑈 𝑞 𝑊

)
∈ 〈AT 1

𝑤 〉.

We suppose that 𝐻𝑟 holds for all 𝑊 ′ = (𝑤′
1, . . . , 𝑤

′
𝑟 ) such that 𝑤′

1 < 𝑤1. We have to show that 𝐻𝑟
holds for all 𝑊 = (𝑤1, . . . , 𝑤𝑟 ). The proof is similar to that of the base step 𝑤1 = 1. We first consider
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the formula (5.9). As 𝑤(𝑈) +𝑤(𝑊) = 𝑤 − 𝑞 ≤ 𝑞 − 2, we can deduce from the induction hypothesis that

𝜁𝐴

(
𝝐 𝜖 𝝀
𝑈 𝑞 𝑊

)
+ 𝜁𝐴

(
𝝐 𝜖𝜆1 𝝀−
𝑈 𝑞 + 𝑤1 𝑊−

)
∈ 〈AT 1

𝑤 〉. (5.11)

From similar arguments as in the base step 𝑤1 = 1, we can deduce that the first term and the second
term of Equation (5.11) belong to 〈AT 1

𝑤 〉. The proof is complete. �

Remark 5.12. The condition 𝑤 ≤ 2𝑞−2 is essential in the previous proof as it allows us to significantly
simplify the expression of B𝝐 ,𝑈C𝝀,𝑊 (𝑅𝜖 ) (see Equation (5.11)). For 𝑤 = 2𝑞−1, the situation is already
complicated but we can manage to prove Proposition 5.11. Unfortunately, we are not able to extend it to
𝑤 = 2𝑞.

Proposition 5.13. Let either 𝑤 ≤ 3𝑞 − 3, or 𝑤 = 3𝑞 − 2, 𝑞 = 2. Then dim𝐾 AZ𝑤 ≥ 𝑠(𝑤).

Proof. We outline a proof of this theorem and refer the reader to [26] for more details. For 1 ≤ 𝑤 ≤ 3𝑞−2,
we denote by I ′

𝑤 the set of tuples 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N
𝑟 of weight w as follows:

• For 1 ≤ 𝑤 ≤ 2𝑞 − 2, I ′
𝑤 consists of tuples 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N

𝑟 of weight w, where 𝑠𝑖 ≠ 𝑞 for all i.
• For 2𝑞 − 1 ≤ 𝑤 ≤ 3𝑞 − 3, I ′

𝑤 consists of tuples 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N
𝑟 of weight w of the form

– either 𝑠𝑖 ≠ 𝑞, 2𝑞 − 1, 2𝑞 for all i,
– or there exists a unique integer 1 ≤ 𝑖 < 𝑟 such that (𝑠𝑖 , 𝑠𝑖+1) = (𝑞 − 1, 𝑞).

• For 𝑤 = 3𝑞 − 2 and 𝑞 > 2, I ′
𝑤 consists of tuples 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ N

𝑟 of weight w of the form
– either 𝑠𝑖 ≠ 𝑞, 2𝑞 − 1, 2𝑞, 3𝑞 − 2 for all i,
– or there exists a unique integer 1 ≤ 𝑖 < 𝑟 such that (𝑠𝑖 , 𝑠𝑖+1) ∈ {(𝑞 − 1, 𝑞), (2𝑞 − 2, 𝑞)}, but
𝔰 ≠ (𝑞 − 1, 𝑞 − 1, 𝑞),

– or 𝔰 = (𝑞 − 1, 2𝑞 − 1).
• For 𝑞 = 2 and 𝑤 = 3𝑞 − 2 = 4, I ′

𝑤 consists of the following tuples: (2, 1, 1), (1, 2, 1) and (1, 3).

We denote by AT ′
𝑤 the subset of AMZV’s given by

AT ′
𝑤 :=

{
𝜁𝐴

(
𝝐
𝔰

)
: 𝔰 ∈ I ′

𝑤 , and 𝜖𝑖 = 1 whenever 𝑠𝑖 ∈ {𝑞, 2𝑞 − 1}
}
.

Thus, if either 𝑤 ≤ 3𝑞 − 3, or 𝑤 = 3𝑞 − 2, 𝑞 = 2, then one shows that

|AT ′
𝑤 | = 𝑠(𝑤).

Further, for 𝑤 ≤ 3𝑞 − 3 and any (𝔰; 𝝐) = (𝑠1, . . . , 𝑠𝑟 ; 𝜖1, . . . , 𝜖𝑟 ) ∈ N
𝑟 × (F×𝑞)

𝑟 , if 𝜁𝐴
(
𝜺
𝔰

)
∈ AT ′

𝑤 ,

then 𝜁𝐴
(
𝑠1 . . . 𝑠𝑟−1
𝜖1 . . . 𝜖𝑟−1

)
belongs to AT ′

𝑤−𝑠𝑟 . This property allows us to apply Theorem 3.4 and show by

induction on 𝑤 ≤ 3𝑞 − 3 that the AMZV’s in AT ′
𝑤 are all linearly independent over K. The proof is

similar to that of Theorem 4.4. We apply Theorem 3.4 and reduce to solve a system of𝜎-linear equations.
By direct but complicated calculations, we show that there does not exist any nontrivial solutions and
we are done. For 𝑤 = 3𝑞 − 2 and 𝑞 = 2, it can be treated separately by the same method. �

Remark 5.14. 1) We note that the MZV’s 𝜁𝐴(1, 2𝑞 − 2) and 𝜁𝐴(2𝑞 − 1) (resp. 𝜁𝐴(1, 3𝑞 − 3) and
𝜁𝐴(3𝑞 − 2)) are linearly dependent over K by [28, Theorem 3.1]. This explains the above ad hoc
construction of AT ′

𝑤 .
2) Despite extensive numerical experiments, we cannot find a suitable basis AT ′

𝑤 for the case
𝑤 = 3𝑞 − 1.
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