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Abstract

Given polynomials a and b over an integral domain R, their tensor product (denoted a <g> b) is a polynomial
over R of degree deg(a) deg(&) whose roots comprise all products afi, where a is a root of a, and fi is
a root of b. This paper considers basic properties of ® including how to factor a ® b into irreducibles
factors, and the direct sum decomposition of the ®-product of fields.

2000 Mathematics subject classification: primary"!3P05, 13W05.

1. Introduction

Let ao,... , am and b0,... , bn be indeterminates and let a = Y17=o ai^' an<^ ^ =

jyi=obiX' be polynomials of degree m > Oandn > 0 respectively over the polynomial
ring Zmn = 1[OQ, ... ,am,b0,... , bn]. Let a have roots a^,... ,am and b have roots
fit,... , fin in the splitting field of a and b over the field of fractions of lm ,„. Then the
tensor product of a and b is defined to be

It follows from Theorem 2.1 below that a ig> b is a polynomial, of degree wn, over 2 m n .
The purpose of this paper is to study properties of ®. We remark that one may define
the tensor product of non-zero polynomials over an arbitrary commutative ring R
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308 S. P. Glasby [2]

with 1 by using the above definition and evaluation homomorphisms lm,„ -> R. Most
of the theory carries over mutatis mutandis to R[X] when R is an integral domain.
In Section 3, according to context, the symbols ao,..., am, b0,..., bn need to be
interpreted as elements of R, and not indeterminants. If R has zero divisors, then the
degree of a <g> b may be less than mn (in which case a ® b = 0).

The concept of the <g»-product of monic polynomials was introduced by Brawley
and Carlitz in 1987 (see [BC87, BB93]) as a special case of a composed product.
We find it convenient to define the <g>-product of non-monic polynomials so that, for
example, Theorem 2.1 has a nice statement. One motivation for studying the tensor
product of polynomials arises from the following problem. Given an FG-module U
for a (finite) group G, determine when is it isomorphic to an inner tensor product
V ® W of FG-modules of smaller dimension (see [LO97]). A necessary condition
for this is that the characteristic polynomial of an element of G acting on U can be
written as a (gi-product of smaller degree polynomials. Note that if c(A) denotes the
characteristic polynomial of a matrix A, then c(A ® B) = c{A) <8> c(B).

The definition of the tensor product on R[X] is closely related to multiplication in
the Witt ring W(R) which may be viewed as the set, l + XR[[X]],of power series with
constant term 1 (with appropriate operations of addition and multiplication, see [K73]).
In keeping with the motivation for this paper '̂we will focus on tensor multiplication
and factorization in R[X] and not W(R). In Section 2 we study the coefficients of
a <8> b, and also show that if R is an integral domain, then the polynomials in R[X] with
non-zero constant term form a commutative 'semi-ring' with 1 which has a natural
automorphism of order 2. In Section 3 we show how a ® b factors into irreducibles,
and how this factorization is related to the tensor factorization of fields. In Section 4
we consider the factorization of a <g> b where both a and b are binomial, or cyclotomic
polynomials.

The topic of unique <g>-factorization is not discussed here. It is shown in [BC87]
that unique ^-factorization holds for the set of all irreducible polynomials (excluding
X) over a finite field. A shorter proof of this fact is given in [G95]. It is shown
in Lemma 3.2 (v) that a tensor factorization of a polynomial gives rise to a tensor
factorization of a field. The converse is false. Let £ = (1 + i)/ V2 where i = </-!•
Then £ is a primitive eighth root of unity, and there are three ways to write the
cyclotomic field Q(f) as a tensor product over Q of proper subfields:

Q(i)®Q(V2), Q( i )®Q(V = 2) , and Q(V2) <g> Q(VC2).

Each factorization shows that f can be written as a sum of products of elements from the
quadratic subfields. However, only in the first two cases can £ be written as & product
of elements from the quadratic subfields, namely £ = (1 + i)/V2 — —(1 — i)/^/^2.
These two factorizations give rise to <8>-factorizations of the minimal polynomial of £
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[3] The tensor product of polynomials 309

over Q:

X4 + 1 = (X2 - 2X + 2) ® (X2 - 1/2) = (X2 - 2X + 2) ® (X2 + 1/2).

2. Basic properties of <S>

Recall that the degree and weight of the monomial Aa^af' • • • a^ are £ X o *•' ^ d
ZXo '*< respectively. We say that a polynomial in several variables has uniform
weight k if every monomial summand has weight k; we say that it has uniform degree
k (or is homogeneous of degree k) if every monomial summand has degree k. We
adopt the convention that ak = 0f k > m, and similarly bk = 0 if k > n.

We give an example of the coefficients of a ® b. A long, but otherwise straightfor-
ward, calculation shows that

a2X
2 + a3X

3) <8> (b0 + bxX + b2X
2)

liX + (aoa2bob
2 + a2blb2 l 2

+ (a2bob
2
2 + aia,b

2b2 - 2aia3b0b
2)X4 -

For a different perspective on computing coefficients of a ® b, see [S99].
The reader is referred to [M95] for notation and terminology concerning partitions

and symmetric polynomials. Denote the set of all partitions A. = (A-i,..., Am) of k
with n > A, > • • • > km > 0 by /\,m,n, and the dominance partial order on Pk,m,n by
<. Given A. € Pk,m,n define

K = \{k I A* > i}| and lj = n - Am_;+1

for i = 1 , . . . , n andy = I,... ,m. Then the conjugate partition, A.', of A lies in Pi,n,m
and X € Pmn-k,m.n- It is easy to see, by considering the diagram of a partition, that

(*) K + K-i+\=™ fori = l , . . . , / i .

Define bx = bkl • • • b^m and â - = a^ • • • a^. For i = 0,... ,m, denote by e, the /th
elementary symmetric polynomial in variables ait ...,am, and observe that, when
evaluated in the splitting field of a,

(**) et = ( - l ) ^ ; 1 ^ , , .

Define eM = eMl • • • e^ for /x € Pmn-k,n,m. Hence, by (*) and (**)

1=1
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Consider v e Pmn-k,m.n- In particular v is an m-tuple. Observe that the symmetric
group Sm acts naturally on w-tuples of integers, preserving the total sum of the entries,
and define

, am) =

where the sum ranges over all m-tuples (ju ... ,jm) in the Sm-orbit of v. Thus
mv(cti,... ,am) is invariant under permutations of { 1 , . . . . m), and so is symmetric
when regarded as a polynomial in a i , . . . , am. Hence by [M95,1, 2.3] and Mobius
inversion, mv(a{,... ,am) = Yin<vev.iien' f° r some integers eVtll where eViV = 1.
These considerations, and the fact that the map Pk,m<n ->• Pmn-k,m,n defined by X !->• X
is an order-preserving bijection, tell us that

where y^ = (-l)m"-ke-ktii satisfies y™ = ( - 1 ) * - * for each X, k.

THEOREM 2.1. If a <g> 6 = Xir=o c*x*' ^ e « / o r eacft it,

for some integers y^ such that y^l = (—I)"1"'11 for all k € Pt,m,«- In particular, ck is
an element of1mn which has uniform degree n (respectively m) and uniform weight k
when viewed as a polynomial in a^,... , am (respectively b0,..., bn).

PROOF. For each i, the polynomials (X — a,) <g> b and ]T"= 0a""; bjX' are equal as
they have the same roots and leading coefficient. We have

i=l y=0

* = 0

where the inner sum is over all m-tuples (j\,... ,jm) with 0 < j \ , . . . ,jm < n and
j \ H 1-7m = k- Hence
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where now the inner sum ranges over all w-tuples (ju ..., jm) in the Sm-orbit of the
given X e Pk,m,n. Thus, by the comments immediately preceding the statement of this
theorem,

E( )

and the theorem follows quickly. •

The integer y^ is a sum of products of Kosta numbers (see [M95]). Computing
tensor products over the ring

(l/pl)[ao, ...,am,b0,,..,bn] = 2m,n/p2m,n

is generally faster than computing in 2 m n , and the intermediate calculations do not
involve large integers. Furthermore, if/? is chosen so that —p/2 < y^l < p/2 holds
for all k, X, /x, then it follows from Theorem 2.1 that one can unambiguously pull back
a <g>-product computed in !„,,„/pl.m,n to Zm n . We shall now relate ^-products in Zm,n
to multiplication in the Witt ring W(l).

The following technical result allows us to define multiplication, denoted O, in the
Witt ring of I[au a2,..., bu b2,... ]. Suppose m > 0 and 4> is a homomorphism
2m,JX] -> lm-Ln[X] mapping am to "zero and fixing Zm_i,n[X] elementwise. Then

PROPOSITION 2.2. With the above notation:

(i) (j>(a®b) = (-\Ybo{<t){a)®<t>{b)).
(ii) Suppose OQ = b0 = 1 and R = 2[a\,... ,am,b\,..., bn]. Then the binary

operation O on R[X] defined by a O b = (-l)des(a)desW(a ® 6) satisfies <p{a Q b) =
4>(a)O4>(b).

PROOF, (i) Let c = a ® ft and c? = (p(a) <g> ft. We shall show that

4>(ct) = (-D"M*

holds for * = 0 , . . . , (m - \)n. By Theorem 2.1

«£(c*)= E E « f > ^ and *̂= E E C ° A -

The following are equivalent: <j>(ay) ^ 0; <p(ak>) = a^\ m > k\; km = 0. If £i > A

and A.m = 0, then /xm = 0. Now f: P*,m_,,n ->• Pt,m,« defined by i^(Pi, • • •, Pm-i) =
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312 S. P. Glasby [6]

( P i , . . . , pm-\, 0) is an order-preserving injective map. Let A. = \/rp and n = \j/a
where p, a e Pt,m-i.n. Then ay = a? and Z>M = &0&<r, so

= E

We complete the proof by showing below that y~£ ̂  = yf}, or equivalently sfp^ =
Sp,5, holds for p , CT e P*,m-i,n.

Recall that

(1) m 5 ( a 1 , . . . , a m _ i ) = ^ e , , , * e«j.(a,,.. . , am_,), and

(2) w ^ ( a i , . . . , a m ) =

Now (V^cr)! = n and

1 3"
{m$a{au . . . , a m ) m5(a, am-i) .

n! dam"

Since n7=i(^ - «y) = E,<m(-1)'«.(«i- • • •^ccm)Xm-i holds for m > 0, we see that
e,(c*i,..., am) equals 0 if i < 0, and 1 if i = 0. Since m > 1, it follows that

et(a\, ...,am) = ei(au ..., a m _, ) + e j _ i ( a i , . . . , a m _ i ) a m .

Therefore e(U| P , ) (a i , . . . ,am) is a polynomial in am of degree < n and the coefficient
of a"m is «(„,_, UB-D(O!I, . . . , am_!). Thus

1 3"
— - — - e(v, u , ) ( a i , . . . , am) = e(ui_, ,,._i)(a!i,..., am_i).

However, it can been seen by considering the diagram of a partition that {^a)\ — 1 =
(V ĉr); holds for o € Pk,m-i,n and 1 < i < n. Thus

1 i\n

^ ( )^ T o m ^ ( a 1 ( . . . , a m )
n. ootm

Since e^5)'{ot\, •• •, am_i) = e5'(ay,..., am_i), it follows by comparing (1) and (3)
that £p,5 = ejrpjz, as desired,

(ii) It follows from (i) that

4>{a Qb) = (-l)mntf>(a <g> b) = ( - l ) ( m + 1 ) n (0(a) ® 4>(b)) = 4>{a) Q <j>{b). •

If ao = fco = 1 and m, n > i , then it follows from Theorem 2.1 and Proposi-
tion 2.2 (ii) that the coefficient of Xk in aQb is an element of 1 [au ... ,ak,bu ... , bk]
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which is independent of m and n. Therefore the binary operation O may be extended
to the set of power series with constant term 1 over the ring Z [a \, a2,... , b\, b2,...].
Let a = 1 + J2Zi aix' a n d ft (a) = 1 + £ L i a,X'. If b = 1 + £ ~ , b'X^ t h e n w e

may define a O b by Tk(a Q b) = Tk(Tk(a) © Tk(b)) for k = 1, 2 , . . . . This gives the
multiplication in the Witt ring of l[a[,a2,... ,bt,b2,...] (see [K73]). Many prop-
erties involving ©-products of power series can be readily deduced from properties
of (g>-products of polynomials. Proposition 2.2 may be used to show that the Witt
ring W(R) is semi-simple if R is an integral domain of characteristic zero (because
a(g>a®---(g>a = l implies that a = 1). Henceforth we shall consider polynomi-
als, and not power series, and we revert to our original notation where a and b are
polynomials of degrees m and n respectively.

Given the conventions that a non-zero constant polynomial has degree 0 and a
non-zero ring element raised to the power zero is 1, it follows that a <E> b0 = b™. It is
straightforward to check that a <g> X" = a"mXmn and, if yS ^ 0, that a ® (X - fi) =

THEOREM 2.3. Let R be an integral domain (with unity). Then the set R[X]*,
of non-zero polynomials, is a commutative 'semi-ring' (with unity) with addition
corresponding to polynomial multiplication, and multiplication corresponding to <g).
Furthermore, the map p : R[X]* —>• R[X]* defined by

-i deg(a)

(ap)(X) = (-X)deg<a)a(l/X) = (-l)de«'fl) ] T aiX'^-'
i=0

satisfies p3 = p and the restriction of p to the sub-semi-ring of polynomials with
non-zero constant terms is an automorphism of order 2.

PROOF. The term 'semi-ring', means that all the ring axioms hold except possibly
for the existence of additive inverses. To prove that R[X]* is a commutative semi-ring
it suffices to prove for a,b,c e R[X]* that a®b = b<8>a, a<8>(b<g>c) = (a® b) ®c
and a <g> (be) = (a <8> b)(a <g> c). Let y , , . . . , yp be the roots of c. The associative law
holds as

(a ® b) ® c = ( a " m ;
i.j.k

and this equals

a ® (b ® c) = an?(Wnc
n
p)

m \\(X - «,-(#yk)).
ij.k

The commutative and distributive laws are also easily verified. Note that 1 is the
additive identity, and X — 1 is the multiplicative identity for the semi-ring.
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It is not hard to see that S = [a G R[X]* \ ao ^ 0} is a sub-semi-ring. Also pi = p
and deg ap < deg a with equality if and only if a e S. Since Sp = 5, p defines a
bijection of 5 of order 2. If a, ft e ^?[X]*, then (ap)(bp) = (ab)p since

(ap)0*>) = (-X)ma(l/X)(-X)nft(l/X) = (-X)m+n(ab)(l/X) = (ab)p.

lfa,be S, we show that (a <g> b)p = (ap) <g> (ftp). In this case the roots a,and ft are
non-zero, and hence

m n

(ap)(X) = (-l)maoY[(X-a-1) and
1 = 1

Therefore

However, (a ® fe)(0) = (-l)mna^™ and so

and p restricts to an involutory automorphisnYof 5 as claimed. •

Note that p does not extend to the Witt ring. Let a, b e /?[X]* and write a — Xra
and b = Xsb where a, b e S. Then

(a <g> b)p = (Xmn-(m-r){n-s) a®b)p = (-l)"r+ms-"(a ® i)p

and

(ap) ® (ftp) = ((-l) r(ap)) ® ((-\Y(bp)) = ( - l ) ' ' - ' ) ^ - " (ap ® ftp).

Thus (a <8> b)p = (—l)"(ap) ® (ftp) and hence p is an endomorphism of fl[X]* if
char(/?) = 2.

In practise, one does not use the definition of a ® ft to compute the tensor product
of polynomials. If a and ft are monic polynomials and A and B denote their respective
companion matrices, then a <g> ft = det(X/ — A (8) B) provides a practical method to
compute a <gi ft. A variant of this method, with lower time complexity, is described in
[G95]. This fast method is particularly useful for computing in the algebraic closure
of a finite field (see [G96]).

3. Factoring a <g> ft into irreducibles

Givena, ft € Tmn[X], it is shown in Theorem 3.1 thataigift 6 2mn[X] is irreducible.
This section is concerned with the factorization of tensor products in R[X], where R is
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[9] The tensor product of polynomials 315

a unique factorization domain. Consider an evaluation homomorphism xjr: 2 m n -»• R.
Now xjr is determined by the values of a, \jr and bj \j/'mR (we shall assume that 1 \jr — 1),
and \j/ gives rise to a homomorphism Zmn[X] -> R[X], which we also call xjf, that
fixes X. Although a ® b e Zmin[X] is irreducible, a\jf®b\l/ € R[X] may be reducible.
We shall use the notation a,-, ft, to denote (indeterminant) elements of 2 m n , and also to
denote elements of R (identified with a,iff, ft, V0- One can determine from the context
whether a,, bj is an element of 2 m n or R.

THEOREM 3.1. If a, ft e lm,n[X] have degrees m, n > 1 respectively, then a® bis
irreducible over Zm n.

PROOF. It suffices to prove that for m, n > 1 there is a commutative ring R and
polynomials / and g over R, of degrees m and n respectively, such that / <g> g is
irreducible over R. We shall assume, without loss of generality, that 1 < m < n.

Let Qr denote the rth cyclotomic field, and let 4>r denote the rth cyclotomic
polynomial of degree <p(r), where <j> is Euler's phi-function. We shall choose r and
s so that gcd(r, s) = 1, and note that <t>r ® <PS = <DrJ. Let r = p\i+x • • • pk,'+x

and m = /?*' • • • pf' where the /?, are distinct primes. By Dirichlet's Theorem we
may choose a prime s congruent to 1 modulo n and different to plt..., p,. Then
gcd(r, s) = 1, and Q r j is the compositum Q r Q f . Since m divides <p(r) there is a
subfield Km of Qr satisfying |Qr : DCm| = m. Similarly, let Kn be a subfield of Qs

satisfying |Q, : Kn\ = n.
Now Gal(Qr : Q) acts regularly on the roots of <J>r, and the subgroup Gal(Qr : IKm)

permutes the roots in orbits of length m, hence <t>r equals f\ • • • f^r)/m where each / ,
is irreducible over Km of degree m. Similarly, <I>j = gt • • • g^,(S)/n where each gj is
irreducible over Kn of degree n. The following principle may be used to show that
|Qr j : KmKJ = mn: if K, L are fields such that K : IK n I is Galois, then KL : I is
Galois and |KL : L| = \K : K n L|. Therefore <t>rs = hi--- hHrs)/mn where each hk is
irreducible over KmKn of degree mn. It follows from

<t>(rs)/mn <t>(r)/m <t>(s)/n

Y\ hk = <t>rs = <t>r®$s= y[ Yif,®gj

that each fi®gj equals some hk. This completes the proof as deg(/,) = m,deg(gj) =
n and / , ® gj is irreducible over KOTKn. D

The following notation will hold throughout this section: R is a unique factorization
domain, F is its field of fractions, and F is an algebraic closure of F. Let a, b € R[X]
and consider how a ® b factors into irreducible factors over R. Since (fg) ® h =
if ® h){g ® h), we shall assume that a and b are irreducible over R. By Gauss'
Lemma, the irreducible factors of a ® ft are the same (up to constant multiples) as
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those over F. We shall assume henceforth that a and b are monic and irreducible over
F. As a shorthand we write a = ma/F, b = mp/f where the notation ma/f denotes the
minimum polynomial of a over F.

LEMMA 3.2. Let a, P e Fx, and let ma/r, mp/f denote the minimum polynomials of
a, P over F, respectively. The following are necessary conditions for ma/f <%> mp/f to
be irreducible over F:

(i) |F(a£) : F| = mn,
(ii) mp/f is irreducible over F(a), and ma/f is irreducible over F(/3),

(iii) F(a) n FQ3) = F,
(iv) |F(a, p) : F(a)| = n and |F(a, P) : F(jS)| = m,
(v) F(a)FQS) = F(a, P) = F(ay3) and F(a, p) = F(a) ®F F(/J).

Condition (i) is a/so sufficient.

T IF

F(a)

m/d n/d

D = F(a) fl F(j8)

FIGURE 1. Subfields of F(a, /8) and degrees of field extensions

PROOF. Consider Figure 1. Let D = F(a) D F(/3) and J = |D : F|. Since nip/r is
irreducible over F of degrees, |F(^8) : F| = n and similarly |F(or) : F| = m. Therefore
|F(a) : D\ = m/d and |F(/3) : D\ = n/d. Since mo / F W divides ma/D, it follows that

|F(a, p) : < degma / D = |F(a) : D\ = m/d,

and similarly |F(a, P) : F(or)| < n/d.

As aP is a root of ma/T ® WI^/F. it follows that map/f divides ma/i <8) mp/r. Thus
ma/f ® W^/F is irreducible if and only if deg map/T = mn, or equivalently |F(a/3) :
F| = mn. Hence (i) is both necessary and sufficient.
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Suppose henceforth that ma/f <8> mp/T is irreducible. It follows from Figure 1 that

mn = \¥(a0) : F| < |F(a, /8) : F| < (m/d)(n/d)d = mn/d.

Therefore d = 1, F(a)F(0) = F(a, /J) = F(a/3), |F(a, 0) : F(a)| = n and |F(a, 0) :
¥(0)\ = m. To conclude the proof, we note that the F-algebra homomorphism
F(a) <8>F F(/J) ->• F(a, 0) given by a <g> 1 i-> a and yS <g> 1 i->- ^ is an isomorphism (as
the domain and the codomain have dimension mn). •

LEMMA 3.3. (i) The characteristic polynomial of the ^-algebra homomor-
phism F(a) ® F()S) -> F(a) (8> F(^) : x \-+ x (a <g> 0) is ma/r (8) w^/F.

(ii) The ^-algebra homomorphism F(a, ^) -» F(a, jS) : JC i—>• xa/3 has character-
istic polynomial mlfjff^' ("m.

(iii) If\IF(a) : F| |F(/3) : F| = |F(a, 0) : F|, rAen F(a) ® F(/3) - • F(a, /9
fcy a ® 1 i-> a anrf \ ® 0 \-+ 0 is an ^-algebra isomorphism and ma/$ ®

|F(o.^):r(o^)|

PROOF. Both (i) and (ii) follow from the fact that the characteristic polynomial of
the map F(j/) ->• F(j/) given by J: i-> xy is w x / f . The map given in part (iii) is a
surjective homomorphism, and by comparing dimensions, it must be an isomorphism.
This isomorphism shows that the maps in (i) and (ii) are similar and hence have equal
characteristic polynomials. That is, msfr ® mp/F — m^"f)T(am. •

THEOREM 3.4. Let a, 0 e F. Let ma^ be separable over F, and suppose that it

t factors over F(^) as ma/F = n,=i ma,inpy Then

d d

'- 11 m«-fiifmaM and Ha) ®F F()S) = 0 F(a,-, 0)
i=i /=i

Furthermore, the polynomials /na,/F(^) are distinctand thefields$'(a,, 0), i = I,... ,d,
are separable over F(/J).

PROOF. Since ma/F is separable, the polynomials mai/np) are distinct. Hence it
follows from [HB82, II, 1.4(a)] that

where the F(a,-,^) are separable over F(/J). A precise description of the above
isomorphism is obtained from the proofs of II, 1.4(a) and (c) in [HB82]. The images
of a (8) 1 and 1 <g> fi in F(or,, 0) are a, and 0 respectively; and hence a <g> 0 has image
or,-/J. The factorization of ma/f ® m^/F now follows from Lemma 3.3 (i) and (ii). •
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THEOREM 3.5. Let a, P € F and D = F(a) D F(£). Suppose that ma/f equals
ri;=i mat/T(fi) and F(a) : F is Galois. Then d equals \D : F| and divides gcd(|F(a) :
F|, |F(/3) : F|), andma.mfi) equals mai,D and has degree |F(a, P) : F(/3)| = \D(a) :
D\fori = l,...,d.

PROOF. Since F(a) : F is Galois F(or,) = F(a) and hence F(a,, P) = F(a, /3) for
each i. We show below that d equals \D : F|.

Now D(a) = F(a) and D(a) : D is Galois. Furthermore, D(a, P) : D(P) is
Galois with group isomorphic, via restriction, to Gal(Z)(a) : D). Now Gal(F(a) : F)
acts regularly on the roots of ma/F and hence so too does the subgroup Gal(D(a) : D).
If A, is the orbit of a root a, of ma/F under Gal(£>(a) : £>), then | A,| = \D(a) : D\.
Hence ma/F factors over D into \D : F| irreducible polynomials each of degree
\D(a) : D\. Moreover, A,£ is the orbit of atf under Gal(D(a,)3) : D(P)) so
maip/D(p) — rna./D <g> (X - ft) and thus mai/D = mai/DW. Since D(/3) = F(y3) it
follows that d = \D : F| and /na./D(^) has degree

: D\ = |F(a, )3)

It is clear that d divides gcd(|F(a) : F|, |F(/3) T-F|). D

It is worth noting that the polynomials ma^/F, i — 1 , . . . , d, appearing in Theo-
rem 3.4 need not be distinct even though the mo./F(^) are distinct. For example, if
a = P is a primitive fifth root of unity and F = Q, then d = 4 and the values of maifi/f

are X — 1, wa/F, wa/F and ma/F.

LEMMA 3.6. Leta,p € $ and let A and B denote the set of roots of ma/r and of mp/f

respectively. Suppose that F(a) and F(/?) are Galois over F and wa/F is irreducible
over ¥(P). Then F(a) ®F F(/J) is isomorphic to the field F(a, ft). Furthermore,
F(a, P) : F J5 Galois with group isomorphic (as a permutation group) to Gal(F(a) :
F) x Gal(F(/J) : F) acting on A x B with product action.

PROOF. It follows from Theorem 3.4 that d = 1 and F(a) (g> F(/3) = F(a, P).
Then, by Theorem 3.5, F(a) fl F(/3) = F so all of the assertions hold by [L80, VIII,
Theorem 5]. •

We introduce some notation used in Theorem 3.7 below. A positive integer s is
called an exponent of a polynomial a if a(X) = b(Xs) for some polynomial b. If
a ^ ao, then a has a greatest exponent denoted ge(a). This is a multiple of every
exponent of a and equals gcd{/ | a, ^ 0). If a ^ Xm or ao and a = a® (X — p)
where p ^ 0 , then the (multiplicative) order of p is finite and divides ge(a).

Given an abelian group G, let Qn(G) denote the subgroup [g e G \ g" = 1} of G.
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THEOREM 3.7. Suppose that a,
over F.

The tensor product of polynomials

\ F, a, fi & F and F(a) and

319

are Galois

(i) Then F(a, /3) and D = IF (a) n F(>8) are Ga/ow over F, a/irf Gal(F(a, P): F) w
isomorphic to the pull-back of Gal(F(a): F) and Gal(FQS): F) identifying Gal(D: F).

f(ii) Suppose ma/i = J~[f=i a" = |D : F|

ma/f <g> mfi/r =
i=\

e = \D(a, /3) : D(a0) | a n d / ; = |£>(a^) : IF(a,fi)\ for each i. Moreover, e divides

m,(D*)l where g - gcd(ge(mo/D), ge(m^/D)), / , divides d and

eft deg maiPtf = (deg /no/F) (deg mp,f)/d for each i.

FIGURE 2. Galois correspondence and the pull-back C| x^ G2

PROOF, (i) This is a generalization of [L80, VIII, Theorem 5] which is presumably
known. Let Ki = IF (a) and K2 = F(£l) be Galois extensions of F with groups G\
and G2 respectively. Then the compositum Kx&z = F(a, fi) is Galois over F and its
group, G, is a pull-back of G{ and G2 as described below. Let JT, : G -> G, be the
epimorphism defined by an, = a |K,. Let Â i = ker(7T2) and Â 2 = k e r ^ , ) . Since
Ni D N2 is trivial, the map 9 : G -± Gx x G2 defined by ad = (a\Ku a\K2) is a
monomorphism. It follows from the Galois correspondence (see Figure 2) that the
fixed field of the normal subgroup NiN2isKiC]K2, and the Galois group of Kt n K2

over F is G/NiN2 = G{/N* = G2/N2
t where N* = n^Ni) is isomorphic to Nt.

Furthermore, the map <p : GJN*X ->• G2/N2* given by (cr\Ki)N* t-+ (CT|K2)A^2* for
a € G, is a well-defined isomorphism. But G is isomorphic to GO, and a little thought
shows that GO equals the pull-back

G, x , G2 = {(a,, a2) € G, x G2 = c2N'2).
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(ii) Now Diet) : D is Galois and D(a) D D(fi) = D, therefore ma/D is irreducible
over£>0S). Since D(0) : D is also Galois it follows from Lemma 3.6 that D(a)®D(P)
is isomorphic to the field D(a, ft), and ma/D <g> mfi/D equals (map/Dy where e is
the order of the stabilizer of ap in Gal(D(a, p1) : D). If the element (a, T) of
Gal(£>(a) : D) x Gal(D(£) : D) stabilizes a ® p\ then there exists a p e Dx such
that cto = pa and /Jr = p~lfi. The map from the stabilizer of a <8> /J to Dx given
by (CT, T) I->- p is a monomorphism, since if p = 1 then both a and r are the identity
automorphism. The image of this homomorphism is cyclic of order e. By the remarks
preceding this theorem e divides g = gcd(ge(ma/D), ge(m^/D)) and hence divides

\ng(D*)\.
By Theorem 3.5, d = \D : F|. By Theorem 3.4

m a / F < g > m « / F = I I — " r" — ' ' •*• ---"<a^)i

/ = 1 i = l

since e — \D(a, yS) : D(afi)\ = |F(a,, /?) : D{atp)\ for each i. The remaining claims
of the theorem are immediate upon comparing degrees of field extensions. •

Suppose that F(a, ft) : F is cyclic (that is^ is Galois with a cyclic group). Then
F(a) : F and F(/5) : F are also cyclic and it follows from Theorem 3.7 (i) that
|F(a, $) : F(a)| and |F(a, P) : F(y3)| are coprime (otherwise F(a, P) : F(a) D F(/8)
is not cyclic). Thus d — gcd(w, n) where m = degma/F and n = degm^/F, and by
Theorem 3.7 (ii), eft deg maip/r = lcm(m, n) holds for i = 1 , . . . , d. It follows from
Theorems 3.4 and 3.7 (ii) that

gcd(m.n)

F , . <g>F F r =

(compare with [HB82, 1.4(b)]). Moreover, g divides gcd(m/d, n/d) = 1 so g = e =
1 and ma/f <g> mp/f is irreducible if and only if d = 1.

LEMMA 3.8. Let F(a) and F(/J) be Galois over F, a«d suppose P is a normal
p-subgroup o/Gal(F(a, /J) : F) such that every element of order p in P fixes a or p\
Then | P | divides deg map/f.

PROOF. Since G = Gal(F(a, /J) : F) acts transitively on the roots of ma^/F, and the
orbits of the normal subgroup P have equal size, it suffices to show that one orbit
has |P | elements. This follows if each non-trivial a € P does not fix a/3. Assume
without loss of generality that a has order p, and hence by our assumption aa = a
or pV = 0. Assume that flcr = p. Then aa ^ a, otherwise a has order 1, not p.
Thus (afl)cr ̂  afi, and assuming that aa = a gives the same conclusion. •
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More can be said about the integers / , in Theorem 3.7 (ii) in the case when
Gal(F(a, y9) : F) is cyclic.

PROPOSITION 3.9. Suppose a J e F , F(a, P) : F is cyclic and m = deg ma/s and
n = degm/j/F. Suppose that p is prime, and let \m\p denote the largest power of
p dividing m. If ma/f = f]f=i ma./D, where D = F(a) n F(/J) and \m\p £ \n\p,
then \D(a,P) : D(a£) | = 1, and for each i, | / , | p = 1 and m a x ( M p , \n\p] =
|degma.0/(:|p. In particular, if \m\p ^ \n\p for each prime divisor p of mn, then
ma/f (g) mp/f is a product ofgcd(m, n) irreducible polynomials over F each of degree
lcm(m, n).

PROOF. It was shown in the remarks preceding Lemma 3.8 that D(a, fi) equals
D(afl),d = gcd(w,n)and/ ,degm a ^ / F = lcm(m, n). Suppose \m\p ^ \n\p. Without
loss of generality assume | m\p < \n\p. If Pi is the Sylowp-subgroup of Gal(F(a) : F)
and P2 is the Sylow p-subgroup of Gal(F(£) : F), then the Sylow p-subgroup of
Gal(F(a, fi) : F) is isomorphic (by 3.7 (i)) to the pull-back

= a2N2},P2 = {(CT,, or2) e P, x P2

where A', is a normal subgroup of P, (i = 1,2) and 0: Pi/Ni —> Pi/N2 is an
isomorphism. Since Pi x e P2 is cyclic, it follows that Ni = {l}andPi x e P 2 = P2. As
any element of Pi x# P2 of order p fixes'a, Lemma 3.8 shows that | P21 divides deg maip/r

for each i. Since |P2 | = \n\p = | lcm(w, ri)\p, it follows from Theorem 3.7 (ii) that
\fi\p = 1. Hence if \m\p j=- \n\p for each prime divisor p of lcm(/n, n), then / , = 1
and deg — lcm(m, n) for each i. •

The main idea behind Proposition 3.9 holds more generally. Suppose that F(a) : F
and F(/J) : F are Galois and Pi, P2 are Sylow p-subgroups of the respective Galois
groups. A Sylow p-subgroup of Gal(F(a, j8) : F) is isomorphic (by Theorem 3.7 (i))
to a pull-back Pi xe P2 where 9: PJN\ -> P2/N2 is an isomorphism. Suppose that
each element (au a2) of order p in P, xe P2 has ax = 1 or a2 = 1, or equivalently
lies in the subgroup N{ x {1} or {1} x N2. Then by Lemma 3.8

|P, xe P2\ = max{|Pi|, |P2|} = \degmaiP/r\p

andp does not divide |D(a, )3) : D(ocP)\ o r / , for any i.

4. (gi-products of binomials and cyclotomic polynomials

In this section we give some examples of how ma/t factors over F.
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LEMMA 4 . 1 . Suppose that F is an arbitrary field, a,be¥ are non-zero, and
d = g c d ( w , h) where m , n are positive integers. Then

(6) (Xm -a)® (Xn -b) = (Xmn/d - a"
ldbmld)d

and (Xm -a)® (Xn - b) is irreducible over F if and only ifXm - a and X" - b are
irreducible over F and d — 1.

PROOF. Suppose first that char(F) does not divide mn. Then there exist £m, £„ e F
with multiplicative orders m and n respectively. Let a, fl e F be roots of Xm — a and
X" - b respectively. Then the roots of Xm - a, X" - b and (Xm -a)® {Xn - b)
are distinct and have the form afj,, /*£(, a/Jfj,?;! respectively where i = I,... ,m
and 7 = 1 , . . . , n. Each of the mn roots afiZ'jzi has multiplicity rf and satisfies
(aPSiS'n )mn/d = an/dbm/d and so (6) holds. Consider now the case when char(F) = p
divides mn. Let m = rs and n — tu where r = |m|p and t = |n|p. This case follows
from the previous case by considering

(Xs - axlry <g> (xu - bl/iy

over the field F(a1/r, bl").
Suppose that (Xm - a) <8> (Xn - ft) is irreducible over F. Then d = 1 and it follows

from the distributive law that both Xm —a and Xn—baie irreducible over F. Conversely,
suppose that Xm — a and X" — b are irreducible over F and d = 1. Let M and N be
integers satisfying Mm + Nn = \. Since (aP)Mm - a

Mmpx-Nn = aMb~NP, we see
j8 e F(a/3). Similarly, a € F(a/8) so F(a, /?) = F(a0). Hence |F(ar/8) : F| = m/i and
by Lemma 3.2, the tensor product (Xm - a) ® (X" - i ) is irreducible over F. D

It is well-known (see [L80, VIII, Theorem 16], for example) which binomials are
irreducible over F. We remark that if gcd(m, n) = 1, then the binomial Xmn - c can
be tensor factored as (Xm -a)® (X" - b) where a = cN,b = cM and M,N el
satisfy Mm + Nn = l. This follows from (6) as anbm = c

Mm+Nn = c.
Setting a = b = 1 in (6) shows that

(Xm - D o (Xn - l ) = (x[cm(m'n)

Now Xm - 1 = Ilrim ^ r a n d X" - 1 = J~[j|n <t>* are factorizations over Q into (irre-
ducible) cyclotomic polynomials. Hence Y\r\m.5\n *<- ® ** e ( l u a l s n,|icm(m,n) Ofd(mn>

and so <t>r ® O, is a product of certain <t>, where t divides lcm(m, n). This factorization
may be determined from the following facts:

(7) <t>f ® <DS = <Dri if gcd(r, s) = 1,
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while if r and s are powers of the same prime p and r < s, then

(8) *r®*, = r~~'
[ * ? ( r ) if r < J .

The proof of (7) is straightforward, and (8) follows by considering the equation pa — x
where p, a, z areroots of unity of prime power order such that [p / properly divides \<J\

(and so \o\ = | r | ) .
Let r = r{ • • • rk and s = st • • • sk, where n and J, are powers of ph and / ? i , . . . , pk

are distinct primes. A formula for the factorization over Q of Or ® <&s into irreducible

Then

(see Proposition 3.9). More generally, if r = r, • • • 4 where f, = lcm(r,, 5;) when
r, ^ 5,, and f, is a proper divisor of r, when r, = sh then the largest power of <J>,
dividing ^>r <S> <S>S is <^(gcd(r, 5)).
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