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Abstract

We prove the existence of weak solutions of complex m-Hessian equations on compact

Hermitian manifolds for the non-negative right-hand side belonging to Lp, p > n/m (n is

the dimension of the manifold). For smooth, positive data the equation has recently been
solved by Székelyhidi and Zhang. We also give a stability result for such solutions.

1. Introduction

Yau [Yau78] confirmed the Calabi conjecture solving the complex Monge–Ampère equation on

compact Kähler manifolds. This fundamental result has been extended in several directions.

One can consider weak solutions for a possibly degenerate non-smooth right-hand side (see
[Ko l98]). Then one can generalize the equation, and here the Hessian equations are a natural

choice. The solutions were obtained by Dinew and the first author [DK12b, DK14]. One can

also drop the Kähler condition and consider just Hermitian manifolds. The Monge–Ampère

equation on compact Hermitian manifolds was solved by Tosatti and Weinkove [TW10] for
smooth non-degenerate data and by the authors [KN15a] for the non-negative right-hand side

in Lp, p > 1. Very recently Székelyhidi [Szé15] and Zhang [Zha15] showed the counterpart of

Calabi–Yau theorem for Hessian equations on compact Hermitian manifolds.

As in the real case, geometrically meaningful Hessian equations appear in some ‘twisted’

non-standard form. Thus, for the Kähler manifolds the Fu–Yau equation [FY08] related to a

Strominger system for dimension higher than two becomes the Hessian (two) equation with

an extra linear term involving the gradient of the solution. It has recently been studied by

Phong et al. [PPZ15]. Another form of the Hessian equation is shown to be equivalent to the
quaternionic Monge–Ampère equation on HKT manifolds in the paper of Alesker and Verbitsky

[AV10]. Some related equations are solved by Székelyhidi, Tosatti and Weinkove in their work

on the Gauduchon conjecture [STW15].

The main result of this paper extends the Székelyhidi–Zhang [Szé15, Zha15] theorem as

follows.

Theorem. Let (X,ω) be a compact n-dimensional Hermitian manifold and let m be an integer,

1 6 m < n. Let 0 6 f ∈ Lp(X,ωn), p > n/m, and
∫
X fω

n > 0. There exist a continuous

(ω,m)-subharmonic function u and a constant c > 0 satisfying

(ω + ddcu)m ∧ ωn−m = cfωn.
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We also obtain a stability theorem (Proposition 3.16), which for the Monge–Ampère equation
was proven in [KN15b]. To obtain those results we need to adapt the methods of pluripotential
theory to Hessian equations and the Hermitian setting. One of the key points, which required a
different proof was the counterpart of the Chern–Levine–Nirenberg (CLN) inequality. Another
stumbling block is the lack of a natural method of monotone approximation of an (ω,m)-
subharmonic function by smooth functions from this class. For plurisubharmonic functions (that
is, the case m = n) this is possible (see, for example, [BK07, DP04]). On Kähler manifolds Lu
and Nguyen [LN15] employed the method of Berman [Ber13] and Eyssidieux et al. [EGZ15]
to construct smooth approximants of an (ω,m)-subharmonic function. However this method
requires the existence theorem for Hessian type equations, so it is far more complicated than
the ones starting from convolutions with a smoothing kernel. In the final section we carry out a
similar construction to the one in [LN15] on Hermitian manifolds.

2. Estimates in Cn

In this section we wish to develop tools, which correspond to results in pluripotential theory,
to study the Hessian equations with respect to a Hermitian form. Some of those analogues,
notably the CLN inequalities, do not carry over trivially and they require a careful examination
of the properties of positive cones associated with elementary symmetric functions. The difficulty
is to control the negative values of a vector belonging to such a cone. First we prove pointwise
estimates for the cone in Rn, and then we express them in the language of differential forms which
live in the cone associated with a Hermitian metric ω in Cn. Next, we use these results to prove
basic ‘pluripotential’ estimates for (ω,m)-subharmonic functions such as the CLN inequality,
the Bedford–Taylor convergence theorem, the weak comparison principle and the like. We refer
to [G̊ar59, Ivo83, LT94, Wan77] for the properties of elementary symmetric functions which are
used here.

2.1 Properties of elementary positive cones
Let 1 6 m < n be two integers. We denote by

Γm = {λ = (λ1, . . . , λn) ∈ Rn : S1(λ) > 0, . . . , Sm(λ) > 0}

the symmetric positive cone associated with polynomials

Sk(λ) =
∑

16i1<···<ik6n
λi1λi2 · · ·λik .

We use the conventions

S0(λ) = 1,

Sk(λ) = 0, for k > n or k < 0.

For any fixed t-tuple {i1, . . . , it} ⊆ {1, . . . , n}, we write

Sk;i1i2···it(λ) := Sk|λi1=···=λit=0.

So Sk;i1i2···it is the kth-order elementary symmetric function of (n − t) variables {1, . . . , n}\
{i1, . . . , it}. A property that we frequently use in the sequel is

Sm(λ) 6 Sm(λ+ µ), for every λ, µ ∈ Γm (2.1)
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(see [G̊ar59]). Furthermore, a characterization of the cone Γm (see, for example, [Ivo83, Lemma 8])
tells that if λ ∈ Γm, then

Sk;i1,...,it(λ) > 0 (2.2)

for all {i1, . . . , it} ⊆ {1, . . . , n}, k+t 6m. In particular, if λ ∈ Γm, then at least m of the numbers
λ1, . . . , λn are positive. Hence, throughout this paper we shall write the entries of λ ∈ Γm in the
decreasing order

λ1 > · · · > λm > · · ·λp > 0 > λp+1 · · · > λn (2.3)

(with p > m by the remark above). It is clear that

Sk(λ) = Sk;i + λiSk−1;i(λ). (2.4)

Therefore we have the expansion

Sk−1(λ) = Sk−1;1 + λ1Sk−2;1

= Sk−1;1 + λ1Sk−2;12 + λ1λ2Sk−3;12

= Sk−1;1 + λ1Sk−2;12 + · · ·+ λ1 · · ·λk−2S1;12···(k−1) + λ1 · · ·λk−1. (2.5)

It follows from (2.2) that for λ ∈ Γm,

Sm−1(λ) > λ1 · · ·λm−1. (2.6)

A more general statement is also true.

Lemma 2.1. Let 1 6 k 6 m− 1 and {i1, . . . , ik} ⊂ {1, . . . , n}. Then, for every λ ∈ Γm,

|λi1 · · ·λik | 6 Cn,kSk(λ),

where Cn,k depends only on n, k.

Proof. Since k 6 m− 1 and λ ∈ Γm ⊂ Γk+1, the expansion formula (2.5) gives that

Sk > λ1 · · ·λk.

Therefore, if {i1, . . . , ik} ⊆ {1, . . . , p}, that is, λit > 0 for all t = 1, . . . , k, then we are done by
the arrangement (2.3). Otherwise, without loss of generality, we may assume that

λi1 > · · · > λis > 0 > λis+1 · · · > λik .

For brevity we write
A = λi1 · · ·λik .

Consequently,

|A| = (λi1 · · ·λis)|λis+1 · · ·λik |
6 (λi1 · · ·λis)|λik |

k−s.

By (2.2) we have that the sum of any n− k of entries λi is positive and hence

|λik | 6 (p− k)λk+1.

Note that p > m > k + 1. It follows from the lower bound for Sk that

|A| 6 (p− k)k−sλi1 · · ·λis(λk+1)k−s

6 (n− k)kλ1 · · ·λk
6 (n− k)kSk(λ).

Thus, the lemma is proven. 2
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We also get an upper bound for Sm in terms of Sm−1;j as follows. There exists θ = θ(n,m) > 0
such that for any j 6 m,

λjSm−1;j(λ) > θSm(λ) if λ ∈ Γm. (2.7)

Indeed, by
Sm = Sm;j + λjSm−1;j ,

we see that (2.7) is automatically true if Sm;j 6 0. Otherwise, Sm;j(λ) > 0, and we can estimate
as follows:

Sm 6 Cn,mλ1 · · ·λm
6 Cn,mλjSm−1;j ,

where the second inequality uses (2.2) and (2.5). Inequality (2.7) thus follows.
If m = n, then the following result is just a simple consequence of the Cauchy–Schwarz

inequality.

Lemma 2.2. Let a = (a1, . . . , an) ∈ Rn and λ ∈ Γm. Then

nS1(λ)

Sm(λ)
·
( n∑
i=1

|ai|2Sm−1;i(λ)

)
> θ

n∑
i=1

|ai|2,

where θ = θ(n,m) > 0 is the constant in (2.7).

Proof. If m = 1, then the statement is obvious. So we may assume that m > 2. Therefore, from
(2.3) and (2.6), we have that

S1 > λ1, Sm−1,n > Sm−1;n−1 > · · · > Sm−1;1 > 0.

Moreover, by (2.7),
θSm 6 λ1Sm−1;1.

Hence, for m > 2,

0 <
Sm

Sm−1;n
6 · · · 6 Sm

Sm−1;1
6
λ1

θ
6
S1

θ
,

and therefore
nS1

θSm
·
( n∑
i=1

|ai|2Sm−1;i

)
>

( n∑
i=1

1

Sm−1;i

)( n∑
i=1

|ai|2Sm−1;i

)
.

The lemma now follows by an application of the Cauchy–Schwarz inequality to the right-hand
side of the above inequality. 2

2.2 The positive cones associated with a Hermitian metric
Let ω be a Hermitian metric on Cn and let Ω be a bounded open set in Cn. Given a smooth
Hermitian (1, 1)-form γ in Ω, we say that γ is (ω,m)-positive if at any point z ∈ Ω it satisfies

γk ∧ ωn−k(z) > 0 for every k = 1, . . . ,m.

Equivalently, in the normal coordinates with respect to ω at z, diagonalizing γ =
√
−1
∑

i λidzi∧
dz̄i, we have

λ = (λ1, . . . , λn) ∈ Γm.
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This correspondence allows the estimates from § 2.1 to be expressed in the language of differential
forms. The first one can be found in [B lo05]. We denote the set of all (ω,m)-positive smooth
Hermitian (1, 1)-forms by Γm(ω,Ω), or Γm(ω) when the domain Ω is clear from the context.

Inequality (2.1) is equivalent to

(γ + η)m ∧ ωn−m > γm ∧ ωn−m for every γ, η ∈ Γm(ω). (2.8)

Lemma 2.1 gives a statement which is important for our applications.

Lemma 2.3. Let γ ∈ Γm(ω) and T be a smooth (n− k, n− k)-form with 1 6 k 6 m− 1. Then

|γk ∧ T/ωn| 6 Cn,k,‖T‖ γ
k ∧ ωn−k/ωn,

where Cn,k,‖T‖ is a uniform constant depending only on n, k and the sup norm of coefficients
of T .

Proof. Fix a point P ∈ Ω. Choose a local coordinate system at P such that

ω =
n∑
j=1

√
−1dzj ∧ dz̄j and γ =

n∑
j=1

λj
√
−1dzj ∧ dz̄j .

In those coordinates we write

T =
∑

|J |=|K|=n−k

TJKdzJ ∧ dz̄K .

In what follows, the computation is performed at P . We first have

γk = k!
∑

|I|=k,I⊆{1,...,n}

∏
is∈I

λisdzI ∧ dz̄I .

The non-zero contribution in γk ∧ T give only triplets of multi-indices I, J,K ⊆ {1, . . . , n} such
that

I ∪ J = I ∪K = {1, . . . , n},
and |I| = k. For such sets I, J,K, we have

n!

k!
(
√
−1)(n−k)2γk ∧ dzJ ∧ dz̄K/ωn =

∏
is∈I,|I|=k

λis .

By Lemma 2.1, ∏
is∈I,|I|=k

|λis | 6 Cn,kSk(λ)

= Cn,k

(
n

k

)
γk ∧ ωn−k/ωn,

where the constant Cn,k depends only on n, k. Taking into account the coefficients TJK , we get
that each term in

|γk ∧ T/ωn|
is bounded from above by

γk ∧ ωn−k/ωn,
modulo a uniform constant Cn,k,‖T‖ = Cn,k supJ,K ‖TJK‖∞, where Cn,k may differ from the one
above. Thus, the lemma follows. 2
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We need to generalize the last result to the case of the wedge product of k smooth
Hermitian (1, 1)-forms in Γm(ω) in place of γk. To do this, fix k 6 m − 2 and consider vectors
x = (x1, . . . , xk) ∈ [0, 1]k ⊂ Rk. The R-vector space of polynomials in x of degree at most
k + 1 is denoted here by Pk+1(Rk). Its dimension is equal to d =

(
2k+1
k

)
. We use multi-indices

α = (α1, . . . , αk) ∈ Nk, with the length |α| := α1 + · · ·αk, and ordered in some fixed fashion. The
vector space Pk+1(Rk) has the standard monomial basis

{xα = xα1
1 · · ·x

αk
k : |α| 6 k + 1} =: {e1, . . . , ed},

where d =
(

2k+1
k

)
. Choose a set X = {X1, . . . , Xd}, with Xi ∈ [0, 1]k, such that the Vandermonde

matrix
V := {ei(Xj)}i,j=1,d

is non-singular.
Now, for x ∈ [0, 1]k and y = (γ0, . . . , γk), γj ∈ Γm(ω), consider the polynomial

P (x, y) = (γ0 + x1γ1 + · · ·+ xkγk)
k+1 ∧ T/ωn

=:
∑
|α|6k+1

bα(y)xα,

where T is a smooth (n− k − 1, n− k − 1)-form and

bα(y) =
(k + 1)!

α1! · · ·αk!
γ
k+1−|α|
0 ∧ γα1

1 ∧ · · · ∧ γ
αk
k ∧ T/ω

n.

Put τ := γ0 + x1γ1 + · · ·+ xkγk. By Lemma 2.3, we get that for every x ∈ [0, 1]k,

|P (x, y)| 6 Cτk+1 ∧ ωn−k−1/ωn 6 C(γ0 + · · ·+ γk)
k+1 ∧ ωn−k−1/ωn.

In particular, the |P (Xj , y)|, for X = {X1, . . . , Xd} fixed above, are uniformly bounded by the
right-hand side of the last inequality. The coefficients bα(y) are computed by applying the inverse
of V to the column vector consisting of entries P (Xj , y). Since V is a fixed matrix we obtain the
desired bound and the following statement.

Corollary 2.4. Fix k 6 m − 2. Let T be a smooth (n − k − 1, n − k − 1)-form. For γ0, . . . ,
γk ∈ Γm(ω) we have

|γ0 ∧ · · · ∧ γk ∧ T/ωn| 6 Cn,m,‖T‖(γ0 + · · ·+ γk)
k+1 ∧ ωn−k−1/ωn,

where Cn,k,‖T‖ is a uniform constant depending only on n, k and the sup norm of coefficients
of T .

We end this subsection with the consequence of Lemma 2.2. This will be used later in the
proof of the stability of solutions to the Hessian equations.

Lemma 2.5. Let ψ be a smooth function and γ ∈ Γm(ω). Then
√
−1∂ψ ∧ ∂̄ψ ∧ γm−1 ∧ ωn−m

γm ∧ ωn−m
· γ ∧ ω

n−1

ωn
>
θ
√
−1∂ψ ∧ ∂̄ψ ∧ ωn−1

ωn
,

where θ = θ(n,m) > 0.

Proof. This is an application of Lemma 2.2 in the normal coordinates with respect to ω, where
a = (ψ1, . . . , ψn) with ψi := ∂ψ/∂zi and λ is the vector of eigenvalues of γ in those coordinates.

2
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2.3 (ω,m)-subharmonic functions
Let Ω be a bounded open set in Cn. Assume that ω is a Hermitian metric on Cn. Fix an
integer 1 6 m < n. In this subsection we will define the notion of (ω,m)-subharmonicity for
non-smooth functions which is adapted from B locki [B lo05] and Dinew and Ko lodziej [DK12b,
DK14]. We refer to papers by Lu [Lu13], Lu and Nguyen [LN15] and Dinew and Lu [DL15] for
more properties of this class of functions when ω is a Kähler metric. Then we will prove several
results which correspond to basic pluripotential theory theorems from [BT76, BT82].

A C2(Ω) real-valued function u is called (ω,m)-subharmonic if the associated form ωu :=
ω + ddcu belongs to Γm(ω). This means that

ωku ∧ ωn−k > 0 for every k = 1, . . . ,m.

Definition 2.6. An upper semicontinuous function u : Ω → [−∞,+∞ [ is called (ω,m)-
subharmonic if u ∈ L1

loc(Ω) and for any collection of γ1, . . . , γm−1 ∈ Γm(ω),

(ω + ddcu) ∧ γ1 ∧ · · · ∧ γm−1 ∧ ωn−m > 0,

with the inequality understood in the sense of currents.

We denote by SHm(Ω, ω) the set of all (ω,m)-subharmonic functions in Ω. We often write
SHm(ω) if the domain is clear from the context.

Remark 2.7. By results of G̊arding [G̊ar59], if u ∈ C2(Ω), then u is (ω,m)-subharmonic according
to Definition 2.6 if and only if ωu ∈ Γm(ω). In particular, we have that for γ1, . . . , γk ∈ Γm(ω),
k 6 m,

γ1 ∧ · · · ∧ γk ∧ ωn−m

is a strictly positive (n−m+ k, n−m+ k)-form.

By [Mic82, § 4, Equation (4.8)], given γ1, . . . , γm−1 ∈ Γm(ω), we can find a Hermitian metric
ω̃ such that

ω̃n−1 = γ1 ∧ · · · ∧ γm−1 ∧ ωn−m.

Thus, according to Definition 2.6, checking the (ω,m)-subharmonicity of a given function u
can be reduced to verifying that u is (ω̃, 1)-subharmonic for a collection of Hermitian metrics ω̃.
Therefore, some properties of (ω, 1)-subharmonic functions are preserved by (ω,m)-subharmonic
functions. Below we list several of them and refer to [DK14, Lu13] for more (if the Kähler
condition does not play a role).

Proposition 2.8. Let Ω be a bounded open set in Cn.

(a) If u, v ∈ SHm(ω), then max{u, v} ∈ SHm(ω).

(b) Let {uα}α∈I ⊂ SHm(ω) be a family locally uniformly bounded from above, and u :=
supα uα. Then, the upper semicontinuous regularization u∗ is (ω,m)-subharmonic.

It follows from Remark 2.7 (see also [B lo05]) that for any collection of C2(Ω) (ω,m)-
subharmonic functions u1, . . . , uk with 1 6 k 6 m,

ωu1 ∧ · · · ∧ ωuk ∧ ω
n−m (2.9)

is a positive form. The above properties of (ω,m)-subharmonic functions are the same as in the
Kähler case. However, there are differences too. If we replace the exponent n −m by a smaller
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one, then the positivity of the differential form (2.9) is no longer true in general. This makes
computations involving integration by parts more tricky.

Let u1, . . . , up ∈ SHm(ω) ∩ C2(Ω). If we write

ωuj1 ∧ · · · ∧ ω̂uj ∧ · · · ∧ ωujq ,

where j1 6 j 6 jq, the hat symbol indicates that the term does not appear in the wedge product.
Then we have

d(ωu1 ∧ · · · ∧ ωup ∧ ωn−m) =

p∑
j=1

dω ∧ ωu1 ∧ · · · ∧ ω̂uj ∧ · · · ∧ ωup ∧ ωn−m

+(n−m)dω ∧ ωu1 ∧ · · · ∧ ωup ∧ ωn−m−1 (2.10)

and

ddc(ωu1 ∧ · · · ∧ ωup ∧ ωn−m)

=
∑

16j6p

ddcω ∧ ωu1 ∧ · · · ∧ ω̂uj ∧ · · · ∧ ωup ∧ ωn−m

+
∑

i 6=j;16i,j6p
dω ∧ dcω ∧ ωu1 ∧ · · · ∧ ω̂ui ∧ · · · ∧ ω̂uj ∧ · · · ∧ ωup ∧ ωn−m

+ 2(n−m)
∑

16j6p

dω ∧ dcω ∧ ωu1 ∧ · · · ∧ ω̂uj ∧ · · · ∧ ωup ∧ ωn−m−1

+ (n−m)ddcω ∧ ωu1 ∧ · · · ∧ ωup ∧ ωn−m−1

+ (n−m)(n−m− 1)dω ∧ dcω ∧ ωu1 ∧ · · · ∧ ωup ∧ ωn−m−2. (2.11)

In those formulas forms of three types appear:

ωu1 ∧ · · · ∧ ω̂uj ∧ ωup ∧ ωn−m−1,

ωu1 ∧ · · · ∧ ωup ∧ ωn−m−1,

ωu1 ∧ · · · ∧ ωup ∧ ωn−m−2.

As ωui is not a positive (1, 1)-form, these forms are not necessarily positive (the exponent of ω is
less than n−m). Therefore, in the estimates that follow, we cannot directly apply the bounds for
ddcω or dω∧dcω in terms of ω2 or ω3 as in the case of the Monge–Ampère equation. Fortunately,
the results from previous subsections make the important estimates go through if p 6m−1 (see
Corollary 2.4).

We are ready to prove the CLN inequality which guarantees the compactness of a sequence
of Hessian measures provided that (ω,m)-subharmonic potentials are uniformly bounded.

Proposition 2.9 (CLN inequality). Let K ⊂⊂ U ⊂⊂ Ω, where K is compact and U is open.
Let u1, . . . , uk ∈ SHm(ω)∩C2(Ω), 1 6 k 6m. Then, there exists a constant CK,U,ω > 0 such that∫

K
ωu1 ∧ · · · ∧ ωuk ∧ ω

n−k 6 CK,U,ω

(
1 +

k∑
j=1

‖uj‖L∞(U)

)k
.

Proof. Observe that, by (2.8),

ωu1 ∧ · · · ∧ ωuk ∧ ω
n−k 6 kk

(
ω + ddc

u1 + · · ·+ uk
k

)k
∧ ωn−k.

Set u := (u1 + · · ·+ uk)/k. Thus we are reduced to estimating
∫
K ω

k
u ∧ωn−k, where ωu ∈ Γm(ω).
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Our proof is by induction on k. For k = 1, let χ be a cut-off function such that χ = 1 on K
and suppχ ⊂⊂ U . Then∫

K
ωu ∧ ωn−1 6

∫
χωu ∧ ωn−1 =

∫
χωn +

∫
χddcu ∧ ωn−1.

It is clear that
∫
χωn 6 CK,U,ω, and by integration by parts we have∫

χddcu ∧ ωn−1 =

∫
uddc(χωn−1) 6 CK,U,ω‖u‖L∞(U).

Thus, the CLN inequality holds for k = 1. Suppose now that∫
K
ωk−1
u ∧ ωn−k+1 6 CK,U,ω(1 + ‖u‖L∞(U))

k−1.

We need to infer the inequality∫
K
ωku ∧ ωn−k 6 CK,U,ω(1 + ‖u‖L∞(U))

k.

Indeed, as ∫
K
ωku ∧ ωn−k 6

∫
χωku ∧ ωn−k

=

∫
χωk−1

u ∧ ωn−k+1 +

∫
χddcu ∧ ωk−1

u ∧ ωn−k,

using the induction hypothesis, it is enough to estimate the second term on the right-hand side.
Integration by parts gives∫

χddcu ∧ ωk−1
u ∧ ωn−k =

∫
uddc(ωk−1

u ∧ χωn−k).

An elementary computation yields

ddc(ωk−1
u ∧ χωn−k) = (k − 1)(k − 2)ωk−3

u ∧ dω ∧ dcω ∧ χωn−k

+ (k − 1)ωk−2
u ∧ ddcω ∧ χωn−k

− (k − 1)ωk−2
u ∧ dcω ∧ d(χωn−k)

+ (k − 1)ωk−2
u ∧ dω ∧ dc(χωn−k)

+ωk−1
u ∧ ddc(χωn−k).

Since k 6 m, applying Lemma 2.3 for γ = ωu, we get that

|uddc(ωk−1
u ∧ χωn−k)| 6 CK,U,ω‖u‖L∞(U)(ω

k−1
u ∧ ωn−k+1 + ωk−2

u ∧ ωn−k+2 + ωk−3
u ∧ ωn−k+3).

This implies that |
∫
χddcu ∧ ωk−1

u ∧ ωn−k| is bounded by

CK,U,ω‖u‖L∞(U)

∫
suppχ

(ωk−1
u ∧ ωn−k+1 + ωk−2

u ∧ ωn−k+2 + ωk−3
u ∧ ωn−k+3).

Combined with the induction hypothesis, this finishes the proof. 2

For general 1 < m < n and Hermitian metrics ω, it is not known yet that any (ω,m)-
subharmonic function is approximable by a decreasing sequence of smooth (ω,m)-subharmonic
functions. Therefore we need the following definition.
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Definition 2.10 (Smoothly approximable functions). Let u be an (ω,m)-subharmonic function
in Ω. We say that u belongs to Am(ω) if at each point z ∈ Ω there exist a ball B(z, r) ⊂⊂ Ω and
smooth (ω,m)-subharmonic functions uj in B(z, r) decreasing to u as j goes to ∞.

We shall now develop ‘pluripotential theory’ for (ω,m)-subharmonic functions in the class
Am(ω).

Proposition 2.11 (Wedge product). Fix a ball B(z0, r) ⊂⊂ Ω. Let u1, . . . , uk ∈ SHm(ω) ∩
C(B̄(z0, r)), 1 6 k 6 m. Assume that there exists a sequence of smooth (ω,m)-subharmonic
functions uj1, . . . , u

j
k decreasing to u1, . . . , uk in B̄(z0, r), respectively. Then the sequence

(ω + ddcuj1) ∧ · · · ∧ (ω + ddcujk) ∧ ω
n−m

converges weakly to a unique positive current, in B(z0, r), as j goes to +∞.

Proof. Thanks to Corollary 2.4 and the CLN inequality (Proposition 2.9), the proof is a standard
modification of the Bedford and Taylor convergence theorem [BT76, BT82]. For notational

simplicity we only give it in the case k = m, u1 = · · · = um = u and uj1 ≡ · · · ≡ ujm ≡ uj =: uj .
The general case follows by the same method. Set B := B(z0, r). Since u is continuous on B, it
follows that uj → u uniformly on that set. Hence, ‖uj‖∞ is uniformly bounded, where we denote
here and below

‖ · ‖∞ := sup
B̄

| · |.

For any compact set K ⊂ B we have∫
K
ωmuj ∧ ω

n−m 6 CK,B,ω(1 + ‖uj‖∞)m

by the CLN inequality (Proposition 2.9). Therefore, the sequence

ωmuj ∧ ω
n−m, j > 1,

is weakly compact in B. This implies that there exists a weak limit µ upon passing to a
subsequence.

It remains to check that every weak limit is equal to µ. Suppose that {vj}∞j=1 and {wj}∞j=1

are two decreasing sequences of smooth (ω,m)-subharmonic functions converging to u. Since
the statement is local we may assume that all functions are equal near the boundary of B
(see [BT82, Ko l05]). We need to show that for any test function χ ∈ C∞c (B),∣∣∣∣∫

B
χωmvj ∧ ω

n−m −
∫
B
χωmwj

∧ ωn−m
∣∣∣∣ −→ 0

as j → +∞. Since u is continuous on B, it follows that both {vj} and {wj} converge uniformly
to u on that set. Hence, ‖vj‖∞, ‖wj‖∞ are uniformly bounded. By integration by parts we have

Aj :=

∫
B
χddc(vj − wj) ∧ Tj =

∫
B

(vj − wj)ddc(χTj),

where Tj =
∑m−1

s=0 ωsvj ∧ ω
m−1−s
wj

∧ ωn−m. From Corollary 2.4 and the above proof of the CLN
inequality we get that

Aj 6 ‖vj − wj‖∞
∫

supp χ
‖ddc(χTj)‖,
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where the last integral is controlled by

C(1 + ‖vj‖∞)m−1(1 + ‖wj‖∞)m−1.

Therefore, we can conclude that limj→+∞Aj = 0, and thus the result follows. 2

Corollary 2.12. Let u1, . . . , uk ∈ Am(ω) ∩ C(Ω), 1 6 k 6 m. Then the wedge product

ωu1 ∧ · · · ∧ ωuk ∧ ω
n−m

is a well-defined positive current of bidegree (n − m + k, n − m + k). In particular, for u ∈
Am(ω) ∩ C(Ω), the current

ωmu ∧ ωn−m

is the complex Hessian operator of u, which is a positive Radon measure in Ω.

2.4 The comparison principle and maximality
Let Ω be a bounded open set in Cn. Given ω a Hermitian metric there exists a constant Bω > 0,
which we fix, satisfying, in Ω̄,

−Bωω2 6 2nddcω 6 Bωω
2, −Bωω3 6 4n2dω ∧ dcω 6 Bωω

3. (2.12)

Thanks to Lemma 2.3 and Corollary 2.4, the proof of [KN15a, Theorem 0.2] can be adapted
to Hessian operators and as a consequence we get the following domination principle.

Proposition 2.13. Let u, v ∈ Am(ω) ∩ C(Ω̄) be such that u > v on ∂Ω. Assume that (ω +
ddcu)m ∧ ωn−m 6 (ω + ddcv)m ∧ ωn−m. Then u > v on Ω̄.

Proof. See [KN15a, Corollary 3.4]. We remark here that if u, v belong to C2(Ω), then the corollary
can be proven simply by using the ellipticity of the Hessian operator [CNS85, Lemma B]. 2

The above proposition shows that if u ∈ Am(ω) ∩ C(Ω̄) and ωmu ∧ ωn−m = 0, then it is
maximal in Am(ω) ∩ C(Ω̄). We shall see that a stronger result is true. First, we recall a couple
of facts from classical potential theory. For a general fixed Hermitian metric γ in Cn and a Borel
set E ⊂ Ω we define

Cγ(E) = sup

{∫
E
ddcw ∧ γn−1 : w is γ-subharmonic in Ω, 0 6 w 6 1

}
.

Proposition 2.14. Every γ-subharmonic function u is quasi-continuous with respect to the
capacity Cγ , that is, for any ε > 0, there exists an open set U ⊂ Ω such that Cγ(U) < ε and u
restricted to Ω\U is continuous.

Lemma 2.15. Every γ-subharmonic in a neighbourhood of the closure of Ω is the limit of a
decreasing sequence of smooth γ-subharmonic functions, in Ω.

Next, we strengthen the domination principle. It is usually applied locally, so we formulate
it for Ω being a ball.

Theorem 2.16 (Maximality). Let Ω denote a ball and let v ∈ SHm(ω)∩L∞(Ω). Let u ∈ Am(ω)∩
C(Ω̄) be the uniform limit of {uj}∞j=1 ⊂ SHm(ω)∩C∞(Ω̄). Suppose that G := {u < v} ⊂⊂ Ω. If
ωmu ∧ ωn−m = 0 on G, then G is empty.

To prove the theorem, we need the following result.
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Lemma 2.17. Fix 0 < ε < 1 and the constant Bω in (2.12). Let v ∈ SHm(ω) ∩ L∞(Ω), with Ω
denoting a ball. Assume that {uj}∞j=1 ⊂ SHm(ω)∩C∞(Ω̄) converges uniformly to u as j →∞ in

Ω̄. Denote S(ε) := infΩ[u− (1− ε)v] and U(ε, t) := {u < (1− ε)v + S(ε) + t} for t > 0. Suppose
that U(ε, t0) ⊂⊂ Ω for some t0 > 0. Then, for 0 < t < min{ε3/16Bω, t0},

ε

∫
U(ε,t)

ωm−1
u ∧ ωn−m+1 6

(
1 +

Ct

εm

)∫
U(ε,t)

ωmu ∧ ωn−m,

where C is a uniform constant depending only on n,m,Bω.

Proof. By Corollary 2.12, it is enough to show that

ε

∫
Uj(ε,t)

ωm−1
uj ∧ ωn−m+1 6

(
1 +

Ct

εm

)∫
Uj(ε,t)

ωmuj ∧ ω
n−m,

where Uj(ε, t) is the sublevel set corresponding to uj and v defined as above. In other words,
we only need to prove the lemma under the assumption that u is smooth and strictly (ω,m)-
subharmonic, that is, ωu ∈ Γm(ω) (achieved by considering the sequence (1− 1/j)uj , j > 1).

Moreover, since εωm−1
u ∧ ωn−m+1 6 ω(1−ε)v ∧ ωm−1

u ∧ ωn−m, it suffices to prove that∫
U(ε,t)

ω(1−ε)v ∧ ωm−1
u ∧ ωn−m 6

(
1 +

Ct

εm

)∫
U(ε,t)

ωmu ∧ ωn−m. (2.13)

Since ωm−1
u ∧ ωn−m > 0, applying [Mic82, Equation (4.8)], we can write

γn−1 := ωm−1
u ∧ ωn−m (2.14)

for some Hermitian metric γ. By the definition of an (ω,m)-subharmonic function,

ωv ∧ γn−1 > 0.

Solving the linear elliptic equation, we can write ω ∧ γn−1 = ddcw ∧ γn−1 for some smooth
γ-subharmonic function w in Ω. Therefore, if we set ṽ := v + w, then ṽ is a γ-subharmonic
function. With this property in hand, we can use the proof of [BT76, Proposition 3.1] and the
quasi-continuity of ṽ (or equivalently, that of v), from Proposition 2.14 to get that∫

U(ε,t)
ddc(1− ε)v ∧ γn−1 6

∫
U(ε,t)

ddcu ∧ γn−1 +

∫
U(ε,t)

[(1− ε)v + Sε + t− u]ddcγn−1.

This implies that∫
U(ε,t)

ω(1−ε)v ∧ γn−1 6
∫
U(ε,t)

ωu ∧ γn−1 + t

∫
U(ε,t)

‖ddcγn−1‖, (2.15)

where ‖ddcγn−1‖ is the total variation of ddcγn−1. Furthermore, we can use Lemma 2.3 to bound
‖ddcγn−1‖ from above by

R := C(ωm−1
u ∧ ωn−m+1 + ωm−2

u ∧ ωn−m+2 + ωm−3
u ∧ ωn−m+3),

where C depends only on X,ω, n,m. Therefore, the inequality (2.13) will follow if we have∫
U(ε,t)

R 6
C

εm

∫
U(ε,t)

ωmu ∧ ωn−m
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for every 0 < t < min{ε3/16Bω, t0}. Writing ak :=
∫
U(ε,t) ω

k
u ∧ ωn−k, for 0 6 k 6 m, we need to

show that

ak 6
Cam
εm

.

As in [KN15a, Theorem 2.3] we shall verify that for 0 < t < δ := min{ε3/16Bω, t0},

εak 6 ak+1 + δBω(ak + ak−1 + ak−2),

where we understand that ak ≡ 0 if k < 0. Indeed, since u is smooth and strictly (ω,m)-
subharmonic, inequality (2.15) applied for γn−1

k := ωku ∧ωn−k−1 > 0, 0 6 k 6 m− 2 (see (2.14)),
gives that ∫

U(ε,t)
ω(1−ε)v ∧ γn−1

k 6
∫
U(ε,t)

ωu ∧ γn−1
k + t

∫
U(ε,t)

‖ddcγn−1
k ‖.

By (2.11), (2.12) and Lemma 2.3 we have∫
U(ε,t)

‖ddcγn−1
k ‖ 6 Bω(ak + ak−1 + ak−2).

Moreover, since v is a bounded (ω,m)-subharmonic function, we also have

ε

∫
U(ε,t)

ω ∧ γn−1
k 6

∫
U(ε,t)

ω(1−ε)v ∧ γn−1
k .

Combining the last three inequalities, we get that for 0 < t < δ,

εak 6 ak+1 + δBω(ak + ak−1 + ak−2).

Thus the proof of the lemma follows. 2

Proof of Theorem 2.16. Suppose that {u < v} is not empty. Then for ε > 0 small enough, we
have {u < (1− ε)v+ infΩ[w− (1− ε)v] + t} ⊂ {u < v} for any 0 < t 6 t0, where t0 > 0 depends
on u, v, ε. Applying Lemma 2.17, we have for 0 < t 6 min{εm+3/16Bω, t0},

ε

∫
U(ε,t)

ωm−1
u ∧ ωn−m+1 6 C

∫
U(ε,t)

ωmu ∧ ωn−m = 0,

where C is independent of t. Therefore, ωm−1
u ∧ ωn−m+1 = 0 in U(ε, t) for 0 < t 6 t1, where

t1 := min{εm+3/16Bω, t0}. Thus we can iterate this argument to get that ωm−2
u ∧ ωn−m+2 =

· · · = ωn = 0 in U(ε, t1). This is impossible and the proof of the theorem follows. 2

Remark 2.18. The statement of Theorem 2.16 holds true if we replace Ω̄ by a compact Hermitian
manifold, with the same proof modulo obvious modifications.

We end this subsection by proving a volume–capacity inequality which corresponds to the one
in [DK14]. This inequality was the key ingredient in studying local integrability ofm-subharmonic
functions.

Definition 2.19 (Capacity). For any Borel set E ⊂ Ω,

capm,ω(E) := sup

{∫
E

(ω + ddcv)m ∧ ωn−m : v ∈ Am(ω) ∩ C(Ω), 0 6 v 6 1

}
.
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Lemma 2.20 (Local volume–capacity inequality). Let 1< τ < n/(n−m). There exists a constant
C = C(τ) such that for any Borel set E ⊂ Ω,

Vω(E) 6 C[capm,ω(E)]τ ,

where Vω(E) :=
∫
E ω

n.

The exponent here is optimal because if we take ω = ddc|z|2, then the explicit formula for
capm(B(0, r)) in Ω = B(0, 1), with 0 < r < 1, provides an example.

Proof. From [DK14, Proposition 2.1] we know that Vω(E) 6 C[capm(E)]τ with

capm(E) = sup

{∫
E

(ddcw)m ∧ ωn−m : w ∈ Am ∩ C(Ω), 0 6 w 6 1

}
,

which is the capacity related to m − ω-subharmonic functions in Ω and the class Am consists
of all m− ω-subharmonic functions which are locally approximable by a decreasing sequence of
smooth m− ω-subharmonic functions in Ω.

Note that the argument in [DK14] remains valid for non-Kähler ω since the mixed form
type inequality used there still holds by stability estimates for the Monge–Ampère equation.
Therefore, the proof will follow if we can show that capm(E) is less than capm,ω(E). Since ω is
globally defined there exists a constant C > 0 such that

1

C
ddcρ 6 ω 6 Cddcρ,

where ρ = |z|2−A 6 0. We can choose C such that |ρ/C| 6 1/2. Take 0 6 w 6 1/2 a continuous
m− ω-subharmonic in Am. Then it is easy to see that∫

E
(ddcw)m ∧ ωn−m 6

∫
E

(
ω + ddc

(
w − ρ

C

))m
∧ ωn−m 6 capm,ω(E).

Hence, capm(E) 6 2ncapm,ω(E). 2

3. Hessian equations on compact Hermitian manifolds

In this section we study Hessian equations on a compact n-dimensional Hermitian manifold
(X,ω). To do this we need first to transfer the local results from the previous section to
the manifold setting. Then we apply them to prove results on the existence and stability of
solutions of Hessian equations. Finally, we prove that every (ω,m)-subharmonic function can
be approximated by a decreasing sequence of smooth (ω,m)-subharmonic function on X. This
allows us to replace assumptions on Am(ω) by just SHm(ω) in statements. In what follows our
notation is as in [KN15a, KN15b], we write L1(ωn) for L1(X,ωn), ‖ · ‖p := ‖ · ‖Lp(X,ωn) and
‖ · ‖∞ := supX | · |.

3.1 Pluripotential estimates for (ω,m)-subharmonic functions
Fix an integer 1 6 m < n. By means of partition of unity we carry over the local construction
from § 2 onto the compact Hermitian manifold X.

Definition 3.1. An upper semicontinuous function u : X → [−∞,+∞ [ is called (ω,m)-
subharmonic in X if u ∈ L1(ωn) and u ∈ SHm(U, ω) for each coordinate patch U ⊂⊂ X.
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We denote by SHm(X,ω) or SHm(ω) the set of all (ω,m)-subharmonic functions in X.
Similarly, we say that u ∈ Am(ω) if u ∈ SHm(ω) and there exists a decreasing sequence of
smooth (ω,m)-subharmonic functions on X which converges to u (globally). So, if u ∈ Am(ω),
then for any coordinate patch U ⊂⊂ X we have u ∈ Am(U, ω). Thus the properties of Am(U, ω)
(Proposition 2.8, Hessian measures, the Bedford–Taylor convergence theorem, etc.) are also valid
for Am(ω).

Below we state several results which are analogues of those from [DK12a]. We omit the proofs
which are similar and require only local properties.

Proposition 3.2 (CLN inequalities). Let ϕ1, . . . , ϕm ∈ Am(ω)∩C(X) and 0 6 ϕ1, . . . , ϕm 6 1.
Then there exists a uniform constant C > 0 such that∫

X
ωϕ1 ∧ · · · ∧ ωϕm ∧ ωn−m 6 C.

The following lemma is classical (see, for example, Hörmander’s book [Hör94]).

Lemma 3.3. Let ϕ ∈ SHm(ω) with supX ϕ = 0. There exists a uniform constant C = C(X,ω) > 0
such that ∫

X
|ϕ|ωn 6 C.

Consequently, the family {ϕ ∈ SHm(ω) : supX ϕ = 0} is compact in SHm(ω) with respect to
L1(ωn)-topology, that is, for any sequence ϕj ∈ SHm(ω) with supX ϕj = 0, j > 1, there exists a
subsequence {ϕjk} such that ϕjk converges to ϕ ∈ SHm(ω) as jk → +∞ in L1(ωn).

Proof. The first part is from [TW13, § 2, p. 8], where the proof used only the fact that ϕ is a
smooth (ω, 1)-subharmnic function, that is,

nddcϕ ∧ ωn−1/ωn > −n,

coupled with the existence of the Green function for the Gauduchon metric in the conformal class
of ω. Since every (ω, 1)-subharmonic function is approximated by a decreasing sequence of smooth
(ω, 1)-subharmonic functions, we get the statement for general (ω,m)- subharmonic functions.
The second part follows from Proposition 2.8 and requires only properties of (ω, 1)-subharmonic
functions. 2

The estimates of the decay of volume of sublevel sets follow directly from Lemma 3.3. We
use the notation

Vω(E) :=

∫
E
ωn.

Corollary 3.4. Let ϕ ∈ SHm(ω) with supX ϕ = 0. Then, for any t > 0,

Vω({ϕ < −t}) 6 C/t,

where C > 0 is a uniform constant.

Following [BT82] and [Ko l03] we define the capacity related to the Hessian equations.
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Definition 3.5 (Capacity). For a Borel set E ⊂ X,

capm,ω(E) := sup

{∫
E
ωmρ ∧ ωn−m : ρ ∈ Am(ω) ∩ C(X), 0 6 ρ 6 1

}
.

Then, as in the local case, we have the estimate with the sharp exponent.

Proposition 3.6. Fix 1 < τ < n/(n−m). There exists a uniform constant C = C(τ,X, ω) > 0
such that for any Borel set E ⊂ X,

Vω(E) 6 C[capm,ω(E)]τ .

Proof. The basic idea is from [DK14]. Surprisingly, it is enough to use the estimates for the
Monge–Ampère equation to obtain a sharp bound related to capacity defined in terms of more
general Hessian equations. One could infer the statement from the local counterpart, but due
to the difficulties with approximation by smooth (ω,m)-subharmonic functions that approach
would be more technical than a direct proof (like [Lu13] in the Kähler case). This requires the
estimates in the Hermitian setting [KN15a].

Without loss of generality we assume that Vω(E) > 0. Denote by 1E the characteristic
function of E. By [KN15a, Theorem 0.1] we can find a continuous ω-plurisubharmonic function
u on X with supX u = 0 and a constant b > 0 solving

ωnu = b 1Eω
n.

Set p = mτ/n(τ − 1) > 1. We will need the lower bound for Lp-norm of b1E .

Fact. There exists a uniform constant c0 > 0 depending on X,ω, p such that

‖b1E‖p > c0.

Indeed, suppose that this were not true; then there would be a sequence of Borel sets {Ej}∞j=1

such that

1 > ‖bj 1Ej‖p ↘ 0 as j → +∞.

By [KN15a, KN15b] we know that for 0 < t 6 tmin (tmin > 0 depending only on X,ω)

tn~(t) 6 C‖bj 1Ej‖1 6 C‖bj 1Ej‖p ↘ 0,

where the function ~(t) is the inverse function of κ(t) defined in [KN15a, Theorem 5.3]. This
leads to a contradiction for a fixed t = tmin.

Thus, by a priori estimates for Monge–Ampère equations [KN15a, Corollary 5.6] we have

‖u‖∞ 6 C‖b1E‖1/np = Cb1/n[Vω(E)]1/pn. (3.1)

We observe that by the proof of [Ngu16, Proposition 1.5] for −1 6 w 6 0,∫
X
ωnw >

∫
X
ωn − C‖w‖∞,

where C = C(X,ω). Hence, there exists 0 < δ = δ(X,ω) < 1 such that if ‖u‖∞ 6 δ then∫
X ω

n
u > Vω(X)/2, that is,b > Vω(X)/2Vω(E). We now consider two cases.
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Case 1. If ‖u‖∞ > δ, then, by (3.1)

‖u‖∞ + 1 6 (C + C/δ) b1/n[Vω(E)]1/pn. (3.2)

The mixed form type inequality [Ngu16, Lemma 1.9] gives ωmu ∧ ωn−m > bm/n1E . Hence, by
definition of capacity we have

capm,ω(E) >
1

(1 + ‖u‖∞)m

∫
E

(ω + ddcu)m ∧ ωn−m

>
1

(1 + ‖u‖∞)m

∫
E
bm/n1Eω

n

>
bm/nVω(E)

C1bm/n[Vω(E)]m/pn

=
[Vω(E)]1−m/pn

C1
,

where we used (3.2) for the last inequality and C1 = (C + C/δ)m. Therefore, we have

Vω(E) 6 C[capm,ω(E)]1+m/(pn−m).

Plugging the value of p = mτ/n(τ − 1) gives the desired inequality.

Case 2. If ‖u‖∞ 6 δ < 1, then b > Vω(X)/2Vω(E). Again, by definition we have

capm,ω(E) >
∫
E
ωmu ∧ ωn−m

>
∫
E
bm/n1Eω

n

>

(
Vω(X)

2Vω(E)

)m/n
· Vω(E).

This implies that Vω(E) 6 C[capm,ω(E)]n/(n−m). Thus we complete the proof. 2

Let us recall that, by the definition, the constant B > 0 satisfies, on X,

−Bω2 6 2nddcω 6 Bω2, −Bω3 6 4n2 dω ∧ dcω 6 Bω3. (3.3)

For general Hermitian metric ω the Hessian measures do not preserve the volume of manifolds,
so the classical comparison principle [BT82, Ko l05] is no longer true (see [DK12a]). However, a
weaker form will be enough for several applications as it is proven in [KN15a, KN15b]. We state
below the analogue for Hessian operators.

Theorem 3.7 (Weak comparison principle). Let ϕ,ψ ∈ Am(ω) ∩ C(X). Fix 0 < ε < 1 and use
the notation S(ε) := infX [ϕ− (1− ε)ψ] and U(ε, s) := {ϕ < (1− ε)ψ+S(ε) + s} for s > 0. Then,
for 0 < s < ε3/16B, ∫

U(ε,s)
ωm(1−ε)ψ ∧ ω

n−m 6

(
1 +

Cs

εm

)∫
U(ε,s)

ωmϕ ∧ ωn−m,

where C > 0 is a uniform constant depending only on n,m, ω.

Proof. This follows from the argument in [KN15a, Theorem 0.2] with the aid of Corollary 2.4. 2

Thanks to the weak comparison principle we can estimate the rate of the decay of capacity
of sublevel sets not far from the minimum point.
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Lemma 3.8. Fix 0 < ε < 3
4 and εB := 1

3 min{εm, ε3/16B}. Consider ϕ,ψ ∈ Am(ω) ∩ C(X) with

ϕ 6 0 and −1 6 ψ 6 0. With U(ε, s) defined as in the previous theorem, for any 0 < s, t < εB,
we have

tmcapm,ω(U(ε, s)) 6 C

∫
U(ε,s+t)

ωmϕ ∧ ωn−m, (3.4)

where C > 0 depends only on X,ω.

Proof. See the arguments in [KN15a, Lemma 5.4, Remark 5.5] by using the above weak
comparison principle (Theorem 3.7). 2

The preparations above were needed for the proof of a priori estimates for solutions to
Hessian equations with the right-hand side in Lp, p > n/m. We follow the method from [Ko l98,
Ko l03] with small variations.

Lemma 3.9. We retain the assumptions and notation of Lemma 3.8. Assume, furthermore, that

ωmϕ ∧ ωn−m = fωn

for f ∈ Lp(ωn), p > n/m. Fix 0 < α < (p− n/m)/p(n−m). Then there exists a constant
Cα = C(α, ω) such that for any 0 < s, t < εB,

t[Vω(U(ε, s))]1/mτ 6 Cα‖f‖1/mp [Vω(U(ε, s+ t))](1+mα)/mτ ,

where τ = (1 +mα)p/(p− 1) < n/(n−m).

Proof. It is elementary that

0 < α <
p− n/m
p(n−m)

⇔ p

p− 1
< τ =

(1 +mα)p

p− 1
<

n

n−m
. (3.5)

By the volume–capacity inequality (Proposition 3.6) and Lemma 3.8 we have

tm[Vω(U(ε, s))]1/τ 6 Cα t
m capm,ω(U(ε, s)) 6 Cα · C

∫
U(ε,s+t)

fωn.

The Hölder inequality implies that

tm[Vω(U(ε, s))]1/τ 6 Cα‖f‖p[Vω(U(ε, s+ t))]p−1/p.

Taking the mth root of both sides and plugging in the value of τ , we get the desired inequality. 2

Thanks to this lemma we get a uniform estimate for the solution of Hessian equations with
Lp, p > n/m, control of the right-hand side.

Theorem 3.10. Fix 0 < ε < 3
4 and εB := 1

3 min{εm, ε3/16B}. Let ϕ,ψ ∈ Am(ω) ∩C(X) satisfy
−1 6 ψ 6 0 and ϕ 6 0. Assume that

ωmϕ ∧ ωn−m = fωn

with f ∈ Lp(ωn), p > n/m. Put

U(ε, s) =
{
ϕ < (1− ε)ψ + inf

X
[ϕ− (1− ε)ψ] + s

}
,

and fix 0 < α < (p− n/m)/p(n−m). Then there exists a constant Cα = C(α, ω) such that for
0 < s < εB,

s 6 4Cα‖f‖1/mp [Vω(U(ε, s))]α/τ ,

where τ = (1 +mα)p/(p− 1).
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Proof. First, for 0 < α < (p− n/m)/p(n−m), we define

a(s) := [Vω(U(ε, s))]1/mτ , C := Cα‖f‖1/mp .

It follows from Lemma 3.9 that for any 0 < s, t < εB,

ta(s) 6 C[a(s+ t)]1+mα. (3.6)

The function a(x) satisfies

lim
x→s−

a(x) = a(s) and lim
x→s+

a(x) =: a(s+) > a(s). (3.7)

To finish the proof, we shall show that for any 0 < s < εB,

s 6
21+mα

2mα − 1
· C[a(s)]mα.

The argument is similar to the proof of [KN15a, Theorem 5.3], but simpler here, so we include

the proof for the sake of completeness.
Fix s0 := s ∈ (0, εB). Let us define by induction the sequence si, i > 1 as follows:

si := sup{0 6 x 6 si−1 : a(si−1) > 2a(x)}. (3.8)

Since a(0) = 0 and a(x) > 0 for x > 0, it follows from the first equality in (3.7) that

s0 > s1 > · · · > si ↘ 0 as i → +∞.

(If a(0+) > 0, then sN = sN+1 = · · · = 0 for some 1 6 N < +∞.) By (3.7) and definition (3.8)

we get

2a(si) 6 a(si−1) 6 2a(s+
i ).

Hence, by (3.6),

si−1 − si = lim
x→s+i

(si−1 − x) 6 C[a(si−1)]1+mα/a(s+
i ).

It follows that

si−1 − si 6 2C[a(si−1)]mα 6 2C(1/2mα)[a(si−2)]mα

6 · · ·
6 2C(1/2mα)i−1[a(s0)]mα.

Thus,

s =

∞∑
i=1

(si−1 − si) 6 21+mαC

∞∑
i=1

(1/2mα)i[a(s0)]mα

=
21+mαC

2mα − 1
[a(s)]mα.

This completes the proof. 2
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From the statement of Theorem 3.10, we can derive the uniform estimate by taking
ε = 1/2 and ψ = 0 and combining it with the estimate of the decay of volume of sublevel
sets (Corollary 3.4). Thus we get that if ωmϕ ∧ ωn−m = fωn with 0 6 f ∈ Lp(ωn), p > n/m, and
ϕ is normalized by supX ϕ = −1, then for any 0 < s < εB,

s 6
Cα‖f‖1/mp

|−infX ϕ− s|(p−1)α/p(1+mα)
,

where 0 < α < (p− n/m)/p(n−m) is fixed. This leads to

‖ϕ‖∞ 6 C‖f‖1/m·p(1+mα)/(p−1)α
p , (3.9)

where C = C(α, p, ω,X). Note that here we have used the fact that there exists a uniform lower
bound for ‖f‖p similar to the one in [KN15a, KN15b], though the present case is simpler. Indeed,
it follows from Theorem 3.10 that for s = εB/2,

‖f‖1/mp >
εB

8Cα[Vω(X)]α/τ
.

This gives an explicit bound.

3.2 Existence of weak solutions and stability
The existence of weak solutions to the Monge–Ampère equations on compact Hermitian manifolds
has recently been obtained in [KN15a] where the technique is quite different from that of [Ko l05].
We will adapt those techniques to the Hessian equation.

Let us start with a quantitative version of [KN15a, Corollary 5.10] (see also [DK14, Theorem
3.1] for a similar result in the Kähler case).

Theorem 3.11. Let u, v ∈ Am(ω) ∩ C(X) be such that supX u = 0 and v 6 0. Suppose that
ωmu ∧ ωn−m = fωn, where f ∈ Lp(ωn), p > n/m. Fix 0 < α < (p− n/m)/p(n−m). Then

sup
X

(v − u) 6 C‖(v − u)+‖1/ap
∗

1 ,

where the constant a = 1/p∗ +m(m+ 2) + (m+ 2)/α, and C depends only on α, p, ω, ‖f‖p and
‖v‖∞.

Proof. By the uniform estimate (3.9), ‖u‖∞ is controlled by ‖f‖p. After a rescaling we may
assume that ‖u‖∞, ‖v‖∞ 6 1. We wish to estimate −S := supX(v−u) > 0 in terms of ‖(v−u)+‖1
as in the Kähler case [Ko l03]. Suppose that

‖(v − u)+‖1 6 εap
∗

(3.10)

for 0 < ε� 3/4 and a > 0 (to be determined later). Let

~(s) := (s/4Cα‖f‖1/mp )1/α

be the inverse function of 4Cα‖f‖1/mp sα in Theorem 3.10. Consider sublevel sets U(ε, t) = {u <
(1− ε)v + Sε + t}, where Sε = infX [u− (1− ε)v]. It is clear that

S − ε 6 Sε 6 S.
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Therefore, U(ε, 2t) ⊂ {u < v + S + ε+ 2t}. Then (v − u)+ > |S| − ε− 2t > 0 for 0 < t < εB and
0 < ε < |S|/2 on the latter set (if |S| 6 2ε then we are done).

By Lemma 3.8 and the Hölder inequality, we have

capm,ω(U(ε, t)) 6
C

tm

∫
U(ε,2t)

fωn 6
C

tm

∫
X

(v − u)
1/p∗

+

(|S| − ε− 2t)1/p∗
fωm

6
C‖f‖p

tm(|S| − ε− 2t)1/p∗
‖(v − u)+‖1/p

∗

1 .

Moreover, by Theorem 3.10,

~(t) 6 [Vω(U(ε, t))]1/τ 6 C capm,ω(U(ε, t)),

where τ = (1 +mα)p∗ and C also depends on α. Combining these inequalities, we obtain

(|S| − ε− 2t)1/p∗ 6
C‖f‖p
tm~(t)

‖(v − u)+‖1/p
∗

1 .

Therefore, using (3.10),

|S| 6 ε+ 2t+

(
C‖f‖p
tm~(t)

)p∗
‖(v − u)+‖1

6 3ε+

(
C‖f‖pεa

tm~(t)

)p∗
.

Recall that εB = (1/3) min{εm, ε3/16B}. So, taking t = εB/2 > εm+2, we have

~(t) =

(
t

4Cα‖f‖1/mp

)1/α

>
Cε(m+2)/α

‖f‖1/mαp

.

If we choose a = 1/p∗ +m(m+ 2) + (m+ 2)/α, then

(εa/εm(m+2)+(m+2)/α)p
∗

= ε.

Hence |S| 6 Cε with C = C(α, p, ω, ‖f‖p). Thus,

sup
X

(v − u) 6 C‖(v − u)+‖1/ap
∗

1 .

This is the stability estimate we wished to show. 2

Applying the above theorem twice, we get the symmetric (with respect to u and v) form of
this result.

Corollary 3.12. Fix α > 0 and a > 0 as in Theorem 3.11. Suppose that u, v ∈ Am(ω)∩C(X),
normalized supX u = supX v = 0, satisfy

ωmu ∧ ωn−m = fωn, ωmv ∧ ωn−m = gωn,

where 0 6 f, g ∈ Lp(ωn), p > n/m. Then

‖u− v‖∞ 6 C‖u− v‖1/ap
∗

1 ,

where C = C(α, p, ‖f‖p, ‖g‖p, X, ω) > 0.
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On compact non-Kähler manifolds we can only expect to solve the Hessian equation up to

a multiplicative constant on the right-hand side. We need to know that those constants stay

bounded as long as the given functions on the right-hand side are bounded in Lp.

Lemma 3.13. Suppose that u ∈ SHm(ω) ∩ C∞(X) satisfies

ωmu ∧ ωn−m = cfωn,

where f ∈ Lp(ωn), p > n/m, and
∫
X fω

n > 0. Then

cmin 6 c 6 1/cmin

for a uniform constant cmin = C(‖f‖p, ‖f1/m‖1, X, ω) > 0.

Proof. This is a consequence of mixed form type inequality and the a priori estimate in

Theorem 3.10. The proof is similar to that for the Monge–Ampère equation [KN15a, Lemma 5.9].

2

Thanks to the work of Székelyhidi [Szé15] and Zhang [Zha15], the Hessian equation has

a smooth solution when the right-hand side is smooth and positive. Using the approximation

procedure as in [KN15a] and the stability (Corollary 3.12), we get the following existence result.

Note that the solution is obtained as a uniform limit of a sequence of smooth functions, therefore

it automatically belongs to Am(ω).

Theorem 3.14 (Existence). Let 0 6 f ∈ Lp(ωn), p > n/m, satisfy
∫
X fω

n > 0. There exist

u ∈ Am(ω) ∩ C(X) and a constant c > 0 satisfying

(ω + ddcu)m ∧ ωn−m = cfωn.

Remark 3.15. As in [Ngu16], it follows from the weak comparison principle (Theorem 3.7) that

the constant c > 0 is uniquely defined by f .

By adapting the method in [KN15b] we get the following stability statement for the Hessian

equation on compact Hermitian manifolds.

Proposition 3.16. Suppose that u, v ∈ SHm(ω) ∩ C∞(X), supX u = supX v = 0, satisfy

ωmu ∧ ωn−m = fωn, ωmv ∧ ωn−m = gωn,

where f, g ∈ Lp(ωn), p > n/m. Assume that

f > c0 > 0

for some constant c0. Fix 0 < a < 1/(m+ 1). Then

‖u− v‖∞ 6 C‖f − g‖ap

where the constant C depends on c0, a, p, ‖f‖p, ‖g‖p, ω,X.
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Proof. The proof follows the one in [KN15b, Theorem 3.1], with the difference that we need here
the smoothness assumption on u, v in order to use the mixed form type inequality [G̊ar59]. This
inequality is likely to be true in the general setting (see [Ko l05, Ngu16]), but at the moment we
do not have it. In § 2 we have provided estimates for elementary symmetric functions which are
needed to make the arguments in [KN15b] go through. We only point out where those arguments
should be modified.

Note that now both f and u are smooth. Use the notation

ϕ := u− v and T =

m−1∑
k=0

ωku ∧ ωm−1−k
v ∧ ωn−m.

By Corollary 2.4 we still have, for a continuous function w > 0 on X and a Borel set E ⊂ X,
that ∣∣∣∣∫

E
wddcT

∣∣∣∣ 6 C‖w‖L∞(E)(1 + ‖u‖∞)m(1 + ‖v‖∞)m.

So the inequality [KN15b, Equation (3.16)] is valid. Next, the inequality corresponding to the
one in the proof of [KN15b, Lemma 3.6] has the form

ωu ∧ ωn−1

ωn
·
√
−1∂ϕ ∧ ∂̄ϕ ∧ ωm−1

u ∧ ωn−m

ωn
>
ωmu ∧ ωn−m

ωn
· θ
√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1

ωn
,

where ωu ∈ Γm. This is exactly the content of Lemma 2.5 applied for γ = ωu and ϕ. There is an
extra constant θ > 0 here, but it causes no harm as it only depends on n,m. 2

3.3 Approximation property for (ω,m)-subharmonic functions
We will show the approximation property for (ω,m)-subharmonic functions on X for every
1 <m< n. The case m = 1 is classical. The case m = n, that is to say, for quasi-plurisubharmonic
functions, is a result due to Demailly (see [BK07] for a simple proof). When ω is Kähler the
approximation property for (ω,m)-subharmonic functions has recently been proven by Lu and
Nguyen [LN15]. They use the viscosity solutions and ideas from [Ber13, EGZ15]. By a similar
approach, but without reference to viscosity solutions, we generalize the approximation theorem
in [LN15] to the case of general Hermitian metric ω.

The following theorem is essentially contained in the work of Székelyhidi [Szé15].

Theorem 3.17. Let H be a smooth function on X. Then, there exists a unique u ∈ SHm(ω) ∩
C∞(X) solving the Hessian equation

(ω + ddcu)m ∧ ωn−m = eu+Hωn.

Proof. The uniform estimate follows from the maximum principle. We claim that there exists a
constant C = C(H,ω) such that

‖u‖∞ 6 C.

Indeed, suppose that u attains a maximum at x ∈ X. Then ddcu(x) 6 0. Hence, at x,

eu(x)+H(x) = (ω + ddcu)m ∧ ωn−m/ωn 6 ωn/ωn = 1.

This implies that esupX u 6 e−infX H . Similarly, einfX u > e−supX H .
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Lemma 3.18 (Hou–Ma–Wu Laplacian estimate). We have

sup
X
|∂∂u| 6 C

(
1 + sup

X
|∇u|2

)
,

where the constant C depends on ‖u‖∞, ω,H.

Proof. We follow the proof in [Szé15] which generalized the Hou–Ma–Wu result [HMW10] to
Hermitian manifolds. We only need to adjust our notation to that in [Szé15]. Write

ω =
√
−1
∑

ωjk̄ dzj ∧ dz̄k.

Let (ωjk̄) be the inverse matrix of (ωjk̄) and consider

Aij = ωjp̄(ωip̄ + uip̄) =: ωjp̄gip̄.

Then the equation is equivalent to
F (A) = u+H,

where
F (A) = logSm(λ([Aij ])),

with Sm denoting the elementary symmetric polynomial of degree m. Without loss of generality
we may assume that z0 is the origin 0 and the coordinates z are chosen as in [Szé15, § 4].

From now on we use the notation and the computations in [Szé15, § 4] with α ≡ χ ≡ ω. Since
‖u‖∞ 6 C, where C is a uniform constant and ω is a positive form, it follows that u ≡ 0 is the
subsolution in the sense used in [Szé15]. When the right-hand side is independent of u the proof
is given in [Szé15]. A small modification is required for the present case. As the equation is now

F (A) = u+H,

the computations will change accordingly at each step. We need to use differentiation at 0 to get

up +Hp = F kkgkk̄p,

u11̄ +H11̄ = F pq,rsgpq̄1grs̄1̄ + F kkgkk̄11̄.

Since F =
∑
F kk > τ and u11̄ is controlled by λ1 > 1, the second equation above is enough to

get inequality (81) in [Szé15]:

F kkλ̃1,kk̄ > −F pq,rsgpq̄1grs̄1̄ − 2F kkRe(gk1̄1T
1
k1)− C0λ1F .

Again, if we replace hp there by up +Hp, then inequality (95) in [Szé15] holds true:

F kkupkk̄up̄ > −C0KF − ε1F kkλ2
k − Cε1FK.

The rest of the proof is unchanged. So we get the lemma. 2

Thus, we have proven the Hou–Ma–Wu type second-order estimate which enables us to use
the blow-up argument, due to Dinew and Ko lodziej [DK12b], to get the gradient estimate (see also
its variations due to Tosatti and Weinkove [TW13] and to Székelyhidi [Szé15]). Consequently,
we also get a priori estimates for |∂∂̄u|. Then, C2,α estimates follow from the Evans–Krylov
theorem (see, for example, [TWWY15]). By bootstrapping arguments we get C∞ estimates for
the equation.

Finally, the existence follows by the standard continuity method through the family

log(ωmut ∧ ω
n−m/ωn) = ut + tH

for t ∈ [0, 1]. The uniqueness is a simple consequence of the maximum principle. 2
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We also need the existence and uniqueness of weak solutions of the Hessian type equation.
We refer to [Ngu16] for more details about weak solutions to this equation in the case m = n.

Theorem 3.19. Let 0 6 f ∈ Lp(ωn), p > n/m, be such that
∫
X fω

n > 0. Assume that {fj}j>1

are smooth and positive functions on X converging in Lp(ωn) to f as j → +∞. Assume that
uj ∈ SHm(ω) ∩ C∞(X) solves

ωmuj ∧ ω
n−m = eujfjω

n. (3.11)

Then uj converges uniformly to u ∈ Am(ω)∩C(X) as j → +∞, which is the unique solution in
Am(ω) ∩ C(X) of

ωmu ∧ ωn−m = eufωn. (3.12)

Proof. Set Mj := supX uj . Using the argument in [Ngu16, Claim 2.6] we get that the Mj are
uniformly bounded. Set ũj := uj −Mj . Equation (3.11) reads

ωmũj ∧ ω
n−m = eũj+Mjfjω

n.

Then {ũj}j>1 is relatively compact in L1(ωn) (Lemma 3.3). Passing to a subsequence, still
writing ũj , we obtain a Cauchy sequence in L1(ωn). By Corollary 3.12 it follows that {ũj}j>
is a Cauchy sequence in C(X). Therefore, it converges uniformly to a solution ũ ∈ Am(ω) of
ωmũ ∧ ωn−m = eũ+Mfω, where M = limjM . Rewriting u = ũ + M , we get that uj converges
uniformly to u which satisfies ωmu ∧ ωn−m = eufωn.

By the weak comparison principle (Theorem 3.7) the equation (3.12) has at most one solution
in Am(ω)∩C(X) (see, for example, [Ngu16, Lemma 2.3]). Thanks to this, we conclude that the
sequence uj converges uniformly to the unique solution u because every convergent subsequence
in L1(ωn) does. 2

We are ready to prove the main result of this subsection.

Lemma 3.20 (Approximation property). For any u ∈ SHm(X,ω) there exists a decreasing
sequence of smooth (ω,m)-subharmonic functions on X converging to u pointwise. In particular,
SHm(X,ω) ≡ Am(X,ω).

Proof. The general scheme is borrowed from Berman [Ber13] and Eyssidieux et al. [EGZ15] (used
also in [LN15]). However, to make the argument work we have to employ results which allow us
to extend the proof from the Kähler context to the Hermitian context.

Take u an (ω,m)-subharmonic function. As max{u,−j} ∈ SHm(ω) for any j > 1, without
loss of generality we may assume that u is bounded. Suppose that u 6 h ∈ C∞(X), where the
function h may not belong to SHm(ω). Consider the largest (ω,m)-subharmonic function h̃ which
is smaller than or equal to h. The function h̃ can be obtained by taking the upper semicontinuous
regularization of

sup{v ∈ SHm(ω) ∩ L∞(X) : v 6 h}.

Then it is clear that h̃ is a (ω,m)-subharmonic and u 6 h̃ 6 h. We will show that h̃ can be
approximated by a decreasing sequence of smooth (ω,m)-subharmonic functions, h̃ ∈ Am(ω).
Once this is done, we also obtain u ∈ Am(ω) by letting h ↘ u and choosing an appropriate
sequence of approximants of h̃↘ u.

Since h ∈ C∞(X), we can write ωmh ∧ ωn−m = Fωn, with F being a smooth function on X.
We take the non-negative part F∗ = max{F, 0}, and then a smooth approximation of it to obtain

2245

https://doi.org/10.1112/S0010437X16007417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007417


S. Ko lodziej and N.-C. Nguyen

a non-negative and smooth function F̃ > F∗. Using the existence of a smooth (ω,m)-solution to
the complex Hessian type equation (Theorem 3.17), we get for 0 < ε 6 1,

ωmw̃ε
∧ ωn−m = e(1/ε)(w̃ε−h)[F̃ + ε]ωn,

where w̃ε ∈ SHm(ω) ∩ C∞(X).
It is easy to see, by the maximum principle, that w̃ε 6 h and w̃ε is decreasing in ε. That

means w̃ε ↗ as ε↘ 0 and is bounded from above by h. Taking limits on both sides as F̃ → F∗
uniformly, by Theorem 3.19 we get (for any fixed ε) that w̃ε → wε ∈ Am(ω) ∩ C(X) uniformly
and wε is also increasing as ε↘ 0. Moreover, at the limit we have

ωmwε
∧ ωn−m = e(1/ε)(wε−h)(F∗ + ε)ωn.

Since wε 6 h, the right-hand side is uniformly bounded in L∞(X). The monotone sequence of
continuous (ω,m)-subharmonic functions {wε}ε>0 is bounded by h, therefore it is Cauchy in
L1(X). Letting ε ↘ 0, it follows from Corollary 3.12 that wε ↗ w ∈ Am(ω) ∩ C(X) uniformly
and w satisfies

ωmw ∧ ωn−m 6 1{w=h}F∗ ω
n.

We now claim that w = h̃. Indeed, as wε 6 h̃, it follows that w 6 h̃. It remains to show that
w > h̃ on {w < h}. Take v ∈ SHm(ω)∩L∞(X) and v 6 h. First, we observe that ωmw ∧ωn−m = 0
on {w < v} ⊂ {w < h}. If {w < v} were non-empty then by the maximality of w on this set
would we would get a contradiction (see Theorem 2.16, Remark 2.18). 2
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STW15 G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed volume form.
Preprint (2015), arXiv:1503.04491.

TWWY15 V. Tosatti, Y. Wang, B. Weinkove and X. Yang, C2,α estimates for nonlinear elliptic equations
in complex and almost complex geometry, Calc. Var. Partial Differential Equations 54 (2015),
431–453; MR3385166.

TW10 V. Tosatti and B. Weinkove, The complex Monge–Ampère equation on compact Hermitian
manifolds, J. Amer. Math. Soc. 23 (2010), 1187–1195.

TW13 V. Tosatti and B. Weinkove, Hermitian metrics, (n − 1, n − 1) forms and Monge–Ampère
equations. Preprint (2013), arXiv:1310.6326.

Wan77 X.-J. Wang, The k-Hessian equation, in Geometric analysis and PDEs, Lecture Notes in
Mathematics, vol. 1977 (Springer, Dordrecht, 2009), 177–252.

Yau78 S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–
Ampère equation, Comm. Pure Appl. Math. 31 (1978), 339–411.

Zha15 D. Zhang, Hessian equations on closed Hermitian manifolds. Preprint (2015),
arXiv:1501.03553.

S lawomir Ko lodziej Slawomir.Kolodziej@im.uj.edu.pl

Faculty of Mathematics and Computer Science,
Jagiellonian University, 30-348 Kraków,  Lojasiewicza 6, Poland

Ngoc Cuong Nguyen Nguyen.Ngoc.Cuong@im.uj.edu.pl

Faculty of Mathematics and Computer Science,
Jagiellonian University, 30-348 Kraków,  Lojasiewicza 6, Poland

2248

https://doi.org/10.1112/S0010437X16007417 Published online by Cambridge University Press

http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1503.04491
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1310.6326
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
http://www.arxiv.org/abs/1501.03553
https://doi.org/10.1112/S0010437X16007417

	1 Introduction
	2 Estimates in Cn
	2.1 Properties of elementary positive cones
	2.2 The positive cones associated with a Hermitian metric
	2.3 (ω,m)-subharmonic functions
	2.4 The comparison principle and maximality

	3 Hessian equations on compact Hermitian manifolds
	3.1 Pluripotential estimates for (ω, m)-subharmonic functions
	3.2 Existence of weak solutions and stability
	3.3 Approximation property for (ω,m)-subharmonic functions

	Acknowledgements
	References

