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THE FREE PRODUCT OF TWO GROUPS WITH
A MALNORMAL AMALGAMATED SUBGROUP

A. KARRASS AND D. SOLITAR

1. Introduction. In [1], B. Baumslag defined a subgroup U of a group G
to be malnormal in G if gug= € U, 1 # u € U, implies that g € U. Baumslag
considered the class of amalgamated products (4 = B; U) in which U is
malnormal in both 4 and B. These amalgamated products play an important
role in the investigations of B. B. Newman [13] of groups with one defining
relation having torsion. In this paper, we shall be concerned primarily with
a generalization of this class.

Let U be a subgroup of a group G and let # € U. Then the extended nor-
malizer Eg(u, U) of u relative to U in G is defined by

Eq(u, U) = {g € Glgug™ € U},

if u1,and by E¢(u, U) = U, if u = 1. The extended normalizer E¢(U) of
U in G is the union of all E¢(u, U), # in U. We abbreviate E¢(u, U) by
E ¢(u) if the context makes clear which subgroup U is involved. The extended
normalizer need not be a subgroup.

With this notation, U is malnormal in G if and only if E4(U) = U.

Let G = (4 = B; U). Then U is r-step malnormal in G if the maximum
syllable length |E¢(U)| of an element of Es(U) does not exceed r; U is
elementwise malnormal in G if, for each u € U, |Eg(u)| < . (Note that the
syllable length of an element of U is zero.) If U is r-step malnormal in G we
shall call G an r-step malnormal product, or simply a malnormal product.

If g =g1...g,1s a reduced form of an element in E¢(x#) — U, then it is

easy to see that any terminal segment g; ... g, is in E¢(#) and that g~! is in
E;(gug™). Hence, U is O-step malnormal in G if and only if U is malnormal in
both A and B.

Moreover, U is l-step malnormal in G if and only if, for each u € U,
E (u) = Uor Exg(u) = U (for, if a, b are in E4(u), then ab=! € E;(bub=1)).
This class of amalgamated products was used by T. Lewin in [8].

The 0-step malnormal products given by the groups (4 * B;a = b) where
A, B are free a # 1, b # 1, and a, b are not proper powers (in 4 and B,
respectively) were investigated by G. Baumslag in [2]; these include the
fundamental groups of orientable two dimensional manifolds of genus &2 > 1.

B. B. Newman [13] has shown that if G is an infinite group with one defining
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relator having torsion, say,
(1) G={,b,¢c,...;R),n>1,

and N < G with G/N infinite cyclic, then N is a 0-step malnormal product,
and, in fact, V can be built up from groups with one defining relator by
repeatedly forming 0-step malnormal products.

Theorem 10 implies that any group G in (1) can be embedded in an r-step
malnormal product (A * B; U) wn which U s free, A = X «K, B =YV %K,
where X, Y are infinite cyclic and K is a group on one defining relator Ry* of
shorter length than that of the original relator (r depends upon the relator R).

Moreover (Theorem 11), if in (1), R has zero exponent sum on some generator,
then G 1is a finite extension of a 1-step malnormal product (1" = S; U), where T’
is a free group and S is a 0-step malnormal tree product (i.e., any two neighbour-
ing vertices of S together with their amalgamated subgroup form a O-step
malnormal product),

S=Ky* Ky * ... % Ky,
L, Ls Loy
where the K ; are isomorphic one-relator groups with relators R of shorter length
than R", and the L, are free groups of the same rank. (For a definition of tree
product see [6].)

The subgroup structure in 7-step malnormal products is simpler than that
of the general amalgamated product (4 * B; U); indeed, malnormal products
have a number of properties in common with free products (which clearly
are 0-step malnormal products).

Let G = (4 = B; U) be an r-step malnormal product. The centralizer of an
element of G s infinite cyclic or contained in a conjugate of A or B, the normalizer
of an infinite cyclic subgroup is infinite cyclic, infinite dihedral, or contained in a
conjugate of A or B; if H is a subgroup of G satisfying a non-trivial law, then H
is nfinite cyclic, infinite dihedral, or contained in a conjugate of A or B. More-
over, if r = 0, then any indecomposable (with respect to amalgamated product)
subgroup of G is infinite cyclic or contained in a conjugate of a factor; any two-
generator subgroup of G is the free product of two cyclic groups or is contained in a
conjugate of A or B.

In the case of 0-step malnormal products, we can give a more detailed
description of the general structure of a subgroup H than that given in [6]
for arbitrary (4 = B; U); see Theorems 4 and 5.

Several types of examples of 0- and 1-step malnormal products are given in
§ 5, and other examples of 7-step malnormal products are described in § 6.

An extension of some of these ideas to HNN groups is also discussed in § 6.

2. Centralizers and normalizers.

LEMMA 1. Let G = (A = B; U) be any amalgamated product. Suppose that
H < G and |H| < ©. Then H is contained in a conjugate of A or B.
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Proof. The proof is by induction on |H|. If |H| < 1, then since H is a sub-
group, H < A or H < B. Suppose that |[H| =m > 1, and let b = g; ... g,
be a reduced form for an element of H of syllable length s > 1. Since 4" € H,
we have g,g1 € U, and so b = gihigi™, where hy € g1 'Hgy and |h| = [h| — 2.
Let & = pihopr! (with ke € p1—'Hpy) be any other element of H of syllable
length greater than 1, where |hs| = |k| — 2. Since (hk)" € H, we have that
gr'p1 € U and, therefore, & = gihigi™!, where || = |hs|. Moreover, if
g€ H and |g| =1, then (hg)" € H implies that gilgg; € U. Thus,
lgr'Hgi| < |H|, and so by the inductive hypothesis H is contained in a
conjugate of a actor.

COROLLARY. Under the same hypothesis as above, if |H| = r, then H < U or
H < cActor H < ¢Bc™t, where |c| = (r — 1)/2.

Proof. If H < U, choose ¢ of smallest syllable length (¢ = 1 if |¢] = 0), so
that H is in cAc¢! or ¢Bc, say cAct. Then ¢ cannot end in an A-syllable,
and cac! € H, for some @« € A — U; hence, 2|c| + 1 = 7.

THEOREM 1. Let G = (A = B; U) be an elementwise malnormal product, and
let 1 # g € G. If g is not in a conjugate of a factor, then the centralizer C(g) of g
is infinite cyclic; otherwise, C(g) is in a conjugate of a factor.

Proof. If g is properly contained in a factor (i.e., g is in a factor but not in a
conjugate of U), then C(g) is contained in that factor (by [9, Theorem 4.5]).

If g is in U, then C(g) is a subgroup of E¢(g, U), so |[C(g)| < © and, by
Lemma 1, C(g) is in a conjugate of a factor.

Suppose now that g is not in a conjugate of a factor; then C(g) has trivial
intersection with any conjugate of a factor (for, if v # 1 is in C(g), then g is
in C(v)). Hence, by a theorem of H. Neumann (see [12] or [9, Corollary 4.9.2]),
C(g) is a free group; but C(g) has a non-trivial centre, so C(g) must be infinite
cyclic.

T. Lewin [8] gave a different proof of Theorem 1 when G is 1-step malnormal.

COROLLARY. Let G = (4 * B; U) be an elementwise malnormal product.
Then any element not in a conjugate of a factor has at most one nth root. In
particular, the class of groups in which each element has at most one nth root
(n ranging over a set of positive integers) is closed under taking (elementwise)
malnormal products.

Proof. Suppose that g, & are in G and g* = h*. If g" is not in a conjugate
of a factor, then C(g") is infinite cyclic and contains g and %; but any element
in an infinite cyclic group has at most one nth root, and so g = .

Suppose, moreover, that each element in a factor has at most one nth root.
If g" is in a conjugate of a factor, then C(g") is in a conjugate of a factor, and,
therefore, both g and % are in that conjugate, so g = k.

THEOREM 2. Let G = (A * B; U) be an elementwise malnormal product,
and let H = gp(h), where 1 # h € G. If h is in a conjugate of a factor, then the
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normalizer N (H) of H is in a conjugate of a factor; if h is not in a conjugate of
factor and h is not the product of two elements of order two, then N(H) = C(h)
s nfinite cyclic; finally, if b is not in a conjugate of o factor and h is the product
of two elements of order two, then N(H) is infinite dihedral and C(h) has index
two 1n N (H).

Proof. Suppose that % is properly contained in a factor. We show that
N (H) is in that same factor. Let xhx=! = h*, withx ¢ U,andletx = g1...g,
be a reduced form of x. Then by examining

g1.. . Ghg o gl

it is easy to see that # = 1, and g; is in the same factor as . Hence, N(H) is
in the same factor as A.

On the other hand, if 2 € U, then N(H) is a subgroup of E¢(k, U), and,
therefore, N(H) is contained in a conjugate of a factor.

Next, suppose that % is not in a conjugate of a factor; we may assume that
k is cyclically reduced. If xhx—! = A*, then, since % is a cyclically reduced form
of the right hand side, s = #1. This implies that C(%) is of index 1 or 2 in

N(H).

If s = —1, then % is the product of two elements of order two. For,
xhx~! = k! implies that x2hx—2 = h. If x? were not in a conjugate of a factor,
then 7, x would both be in C(x?), which is cyclic; hence, xhx—! = &, and so &

would have order two, which is impossible. Hence, x? is in a conjugate of a
factor. If x? £ 1, then % is in C(x?) which is contained in a conjugate of a
factor; but % is not in a conjugate of a factor. Consequently, x> = 1, (hx)? = 1,
and & = (hx)x is the product of two elements of order two. Thus, if % is not
in a conjugate of a factor and not the product of two elements of order two,
then N(H) = C(h).

Finally, suppose that % is not in a conjugate of a factor and & = hh,, where
hi, ke are each of order two. Now C(k) is an infinite cyclic group; let
C(h) = gp(w), b = w*. Therefore,

(hl‘whl—l)’“ = hlhhl—'l = 2h1 =hl= (“w“)".

Hence, hwh,~! = w=! (by the corollary to Theorem 1), and so (hyw)? = 1.
Let ks = hyw; then k = (hih3)* and C(k) = gp(hihs). Moreover, C(h) has
index two in N(H), and N (H) is generated by ki and kyk;. Since kih; generates
an infinite cyclic group and &y (hihs)hi~! = (hihs)7L, it follows that ky and kihs
generate an infinite dihedral group, and so N(H) is the free product

gp (h1) * gp (hs).

3. Subgroups satisfying a law.

LEMMA 2. Let G = (A * B; U) be an r-step malnormal product. Suppose that
H s a subgroup which is a union of subgroups of conjugates of A or B. Then H
is contained in a conjugate of A or B.
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Proof. We first show that, if ¢,d are in 4 \UB and ¢# 13 d and
[p| = 2r + 4, then g = cpdp~!is not in a conjugate of 4 or B. We do this by
showing that a cyclically reduced form of g has syllable length =2. Let $ have
a reduced form p = p;... p,; let 7, j be the largest positive integers (if any)
such that

iy = Pi_l e P1~ICPI oDy dj = Po—jpl . Psdps_l Ce Ps~j+1ﬁ1

arein U. Thens — 1,7 — 1 =7, and so s — 7 — j = 2. Therefore,

Perr™ oo Py P Pisr e (Bomge o PP P L P

is a cyclically reduced form of g with syllable length =2.

Suppose now that H is the union of groups ¢.Cigy~!, where C; is a non-
trivial subgroup of 4 or B, and that the set of non-negative integers {|g;|} is
unbounded. Let ¢Cg~! be a fixed subgroup in {¢;Cigx~!}, and choose ¢; so that
lgel = |q| + 27 4+ 4. Then |g~'q:] = 2r + 4, and the above argument shows
that Cq~'gxCigx~'q is not in ¢~ 'Hgq, which is a contradiction.

Hence, the set {|g:|} is bounded, and so |H| < o ; consequently, Lemma 1
applies and H is in a conjugate of a factor.

LEMMA 3. Suppose that G = (A * B; U) is an r-step malnormal product,
and that H is any subgroup of G. Let Vi, Vs, ..., Vo, (n > 1) be the vertices in a
simple path joining Vi to V, in the graph of the tree product base of H when H
is expressed as an HNN group (according to [6, Theorem 5]), and let

Uy, U,y ..., Uy—1 be the subgroups corresponding to the edges of this path. If
Vi#EUi=U;1# Vyand V = gp(Vl, V,), then
2) V= (VixVy Ur = Upa),

and this amalgamated product is an r-step malnormal product.

Proof. That V has the presentation (2) follows easily from properties of a
tree product.

If n =2, then Vi, = DAD*"\ H, Vo, = DBD-' "N\ H (or vice versa), and
U, =DUD*NH. If |E,(Uy)| > 7, it follows upon conjugation by D-!
that |E¢(U)| > 7, contrary to hypothesis.

Next, let V, = D,CiDy '\ H and V,, = D,C,D,~' M\ H, where

Cl, Cn E {AyB}y

and Dy, D, are the appropriate double coset representives.

Suppose that neither D; nor D, is an initial segment of the other. Then
D;7'D, begins (ends) in a syllable in the same factor as the last syllable of
D,(D,). Moreover, U, = DyUDy~*N\ H, U,_; = D,UD,~' "\ H. Hence, if a
product

(Dig1D i 71) (D iygeDiy™) - .. (DigsDi™),

in which the factors alternate from V; — Uy and V, — U,_1, is in E,(U;)
with s > 7, then |[E¢(U)| > 7, contrary to hypothesis.
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Finally, suppose that Dy is an initial segment of D, and D, = D11V, where
¢1 € C1 (c; possibly 1). Since ¥V 5 1, we may assume that ¥ begins in a
syllable not in C;. In this case,

Vi = Dic;:Cic;"' D YN\ H,

Ve, =D:1c;YC, Y ¢s Dy ' M H,

Uy = DiciUci ‘D' H
=D, YUY ¢ Dy ' M H,

and again it follows easily that [Ey(U1)| = 7.

THEOREM 3. Let G = (4 * B; U) be an r-step malnormal product, and suppose
that H is a subgroup of G satisfying ¢ non-trivial law. Then H is infinite cyclic,
infinite dihedral, or contained in o conjugate of A or B.

Proof. According to [6, Theorem 7], if H is not in a conjugate of a factor,
then one of the following three possibilities holds:

(3) H is an ascending union of conjugates of U, and so by Lemma 2, H is
in a conjugate of a factor.

(4) H is an HNN group of the form

<t, Ug®;rel Uy, tUg% 1 = UH6,>y

where Ugx® < Ug®. Therefore, Uy’ < U™, for each positive integer k.
Hence,
U U (6-1t*) "N H < U;

but since ¢ is not in a conjugate of a factor of G, §71t%6 has syllable length = 2k.
By choosing & > r/2, we see that Ugx® = 1, and so H is infinite cyclic.

(8) H is an amalgamated product (C; * Cy; Ug?), where Ug? is of index
two in each C;, and C; are vertices in the tree product base of H; moreover, by
[6, Theorem 3], the amalgamated subgroups corresponding to the edges of
the simple path joining C; to C, (in the tree product base) are all equal to
Uyx®. Hence, by Lemma 3, H is an r-step malnormal product; therefore, since
Ug? isnormal in H, we have that Uy? = 1, and so H is infinite dihedral.

CoROLLARY 1. If, in the statement of Theorem 3, we replace ‘‘satisfying
a non-trivial law” by ‘‘containing no free subgroup of rank two’’, then we obtain
a correct result.

)

Proof. [6, Theorem 7] holds if we replace “H satisfies a non-trivial law’
by “H contains no free subgroup of rank two’.

COROLLARY 2. Let G = (4 *B; U) be such that E,(U) = N,(U) (the
normalizer of Uin A), and Eg(U) = N(U). If H is a subgroup of G satisfying
a non-trivial law, then H is contained in a conjugate of a factor, or H is an infinite
cyclic extemnsion of a subgroup of a conjugate of U, or H has the form
(Cy * Cqo; Ug?), where Uy® is of index two in each C;, and C; is a subgroup of
a conjugate of A or B.
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Proof. The hypothesis implies that Eg(U) = Ng(U). Hence, if
1 # UgPt < UyxP?, then UgxPt = UgP2 Applying [6, Theorem 7] as above,
we have the result.

For example, if
G ={ay,...,00,01...,0n w" = w7,

where pq # 0, w1 1s a non-trivial word in the a,;, and w, is a non-trivial word in
the b, then the only subgroups of G which can satisfy a non-trivial law are infinite
cyclic, free abelian of rank two, or a group with presentation (a, b; a* = b?).

4. The structure of subgroups of a malnormal product. In this
section, we give a more detailed description of a subgroup H of a 0-step mal-
normal product (4 = B; U) than that given in [6, Theorem 5]; we also indicate
a partial generalization to 7-step malnormal products.

For this purpose, we require more specific information about the way in
which the associated subgroups and amalgamated subgroups are situated in
the tree product base S of H as an HNN group given by [6, Theorem 5]. In
order to bring the associated subgroups explicitly into the picture, we enlarge
the graph of the tree product .S so as to include the associated subgroups as
extremal vertices. Specifically (using the notation of [6]), if D.E,, DsE, are
u-, v-double coset representives, respectively, which are neither a- nor (-
double coset representatives, then we join the new vertices UgzPaPs, [UgPsEv
to the vertices A zP=, ByP#, respectively, of S, and make the new vertex corres-
pond to the edge joining it to the old vertex; moreover, we extend the level
function X\ to the new vertices by defining the level of UgzP«®u, UxP8Fv to be
the syllable length of D.E,, DsE,, respectively. Clearly, the new vertices we
have adjoined are extremal, i.e., are incident with a unique edge.

LEmMmA 4. Let G be an amalgamated product (A x B; U), and let H < G.
Suppose that Ug®t, Ug®, ..., Uy’ are the subgroups corresponding to the edges
of a simple path in the enlarged graph of the tree product base S of H. Then
81716, has syllable length n — 1 1n G.

Proof. We first recall that the syllables of a word which is an «- or 8- repre-
sentative define elements which are not in U (by [6, Lemma 6, Corollary]).

Secondly, note that if DX and DY are different #- or v- double coset repre-
sentatives, where X, Y are their respective last syllables, and if X, ¥ are both
in the same factor, then X—1Y is not in U. For, otherwise, DX and DY end in
the same type (a- or 3-) of symbol, and hence are the same type of representa-
tive; therefore, DX and DY are both u- or both v- double coset representatives
for the same (H, U) double coset, and so DX = DY.

Now suppose that

lel, X2p2, ey X,,+1p"+1, n é 2,
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are the vertices of a simple path in the enlarged graph of .S, where the p; are
appropriate double coset representatives. We may assume (by reversing the
path if necessary)

AMXPY) > NXP2) > 00> MXPE) S AN X)) <L <N X ™),

where 2 < kB < n+ 1. If Ug’, ..., Ug’ are the subgroups associated with
the edges of the path, then

01 = P1, 00 = Puy1,
f2=<k<mn and

01 = p1, 00 = Pu,

if & = n + 1. Moreover, because neighbouring vertices of different levels are
associated with representatives which differ by a single syllable, it is clear that

P P1, o ooy Dot P2y Prrt Prety Prrr WPrtzs « - oy Pu Png1

are single syllables not in U, and alternate out of A4 and B. Therefore, if
k < n, then 6,71, = pr 'Puy1, which has syllable length #» — 1; and if
k=n+4+ 1,061, = pr'p,, which again has syllable length # — 1. This
completes the proof of Lemma 4.

LEMMA 5. Suppose that G = (4 * B; U) 1s an r-step malnormal product,
and H < G. If Ug®t, Ug® correspond to the first and last edge of a simple path
of length n in the enlarged graph of the tree product base S of H, and n = r + 2,
then Ugx® (M Uy’ = 1. Moreover, if X*° and X, ™ are vertices in the enlarged
graph of S and the simple path joining X0 to X,*m has length m = 2r + 3,
then gp (X0, X,,Pn) s the free product X °° % X ,Pm,

Proof. By Lemma 4, 6;7%, has syllable length » — 1 = » + 1. Therefore,
since [E¢(U)| £ 7, 6:7%6,U8,7%6: M U = 1; hence, Uxg’t M Uy = 1.

Moreover, if X9 X1, ..., X, are the vertices in the simple path
joining X ¢?° to X,?m, then these n 4 1 vertices generate their tree product.
Let Uy’ ..., UgP™ be the subgroups corresponding to the edges of this
simple path. Then

Il

U},{alm UHBT+2 = ]_
since m = 2r + 3. Therefore,
Xopo N UH5r+2 =1 = mem N UH6r+2,

and so gp (X P9, X,.Pm) = X0 x X, 7m,
This completes the proof of Lemma 5.

UHém N UH57 +2’

A collection of subgroups {L;} of a group is called malnormal in K if
kLM L; =1, unlesss =jand k € L,.

For example, suppose that K = 4 = B, and {4}, {B;} are malnormal
collections in A, B respectively; and suppose that {g;} is a collection of
cyclically reduced elements of K such that each g; has syllable length =2,
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each g; has no proper root in K, and g; is a cyclic permutation of g; implies
that ¢ = j. Then the collection which is the union of {4}, {B.}, {gp(g:)} is a
malnormal collection in K. Thus, if K = {(a, b), then the collection of subgroups
{gp(a), gp ), ..., gp(a®?), ...}, with ij # 0, is a malnormal collection in K.

As another example, let K = 4 % B, where now A is a free group freely
generated by {a.},7 € I. Let {b;}, ¢ € I, be an indexed set of distinct elements
(# 1) of B. Then 4 and A" = gp(aidy, ash,, . ..) form a malnormal collection
of (free) subgroups of 4 * B. More generally, let {b,,}, ¢ € I, 7 € J, be an
indexed set of elements of B such that b,; # by, for j # k, and b, 14 #
by Wpy, for 4 5% p and j # k; and let A; = gp(aib1y, ashsj, .. .). Then the
collection of subgroups {4,}, j € J, is a malnormal collection of (free) sub-
groups of 4 % B. Thus, if 4 = (x,y) and B = {b), then {gp(xb?, yb27)},
7 ranging over the integers, is a malnormal collection in (x, vy, b).

A tree product S is called a 0-step malnormal tree product if any two neigh-
bouring vertices of .S together with their amalgamated subgroup form a 0-step
malnormal product.

LeMMA 6. Let S be a 0-step malnormal tree product of vertices A .

(@) Then any subtree product of S is malnormal in S.

(b) Moreover, if L is a subgroup of a vertex Ay of S whose conjugates in A,
have trivial intersection with the edges of S wncident with A, then each conjugate
of L in S has trivial intersection with any subtree product of S not containing A,
as a vertex.

(¢) Finally, if for each i, {L,;;}, j € J1, ts @ malnormal collection of subgroups
of the vertex A ; which includes all the edges of S incident with A ,, then the totality
of all subgroups L;;is a malnormal collection in S.

Proof. First, we observe that 4 is malnormal in G = (4 * B; U) if and only
if Uis malnormal in B. For, clearly, if U is not malnormal in B, then bud—! € U,
for some 1= u € U, b€ B— U, so b€ Eg(4d) = A. Conversely, suppose
that U is malnormal in B, and that gag7' € 4, 1#a € A4, g€ G— A4,
where g has shortest possible syllable length. Then g has a reduced form
g =g1...gs with g, € B — U. Since gag™! has syllable length =1, ¢ must be
in U, and so s = 1; but then gag~' € BN\ A = U, contrary to the mal-
normality of U in B.

To establish (a), we first show that each vertex of .S is malnormal in S. It
clearly suffices to show this when S is a tree product of finitely many vertices;
in this case, S has an extremal vertex, say 4,. Hence, we may write S as an
amalgamated product (4, *.S¢; Up), where Sy is a 0-step malnormal tree
product with fewer vertices than S, and U, is malnormal in 4, as well as in a
vertex of So. Then, by the transitivity of malnormality and the preceding
remark, an inductive argument shows that each vertex of .S is malnormal in .S.

Moreover, given a subtree product of .S, we may contract it to a vertex;
using the transitivity of malnormality, and that each vertex in a O-step
malnormal tree product is malnormal in it, it follows that the contracted graph
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is a 0-step malnormal tree product; hence, the given subtree product is mal-
normal in S.

To show (b), suppose that a subtree product of .S does not contain 4; then
S = (S1 %Sy; U1), where U is an edge incident with A4, and Sy, Sy are the
subtree products which result from deletion of U; from .S, and 4, is a vertex
of S;, and the given subtree product is a subtree product of S,. Since 4, is
malnormal in S, if g € S and gLg~ ' M\ U # 1, then g € A4,, contrary to hy-
pothesis. Therefore by [9, Theorem 4.6], any conjugate of L has trivial inter-
section with S» and hence with the given subtree product. Since any edge of S
is contained in a vertex different from 41, it follows that the conjugates of L
in S intersect each edge of S trivially.

To show (c), let L;; and L,, be distinct subgroups in the given collection of
subgroups. If p = 4, then since 4, is malnormal in S, the conjugatesof L,; in S
have trivial intersection with L. Suppose that ¢ # p. If L;; is not an edge
incident with 4, then by (b), the conjugates of L;; have trivial intersection
with 4, and hence with L,,. Assume, therefore, that L;; is an edge incident
with 4 ;. Now if the edge L;; is deleted from .S, .S decomposes into two subtree
products Sy, S», and S = (S1 *.Se; Lyy). If L,, is in .Sy, then since .S; is mal-
normal in S, it suffices to show that the conjugates of L;; in S; have trivial
intersection with L,,. But L;; is not an edge in .S; and hence (b) applies.

TuEOREM 4. Let G = (A * B; U) be a 0-step malnormal product, and let
H < G. Then, in the description of H as an HNN group (given by (6, Theorem 5])
(6) H = <t1, tz, e ey S; rel S, t]thl_l = ]‘[1, tsztg—l = Afg, .. .>,
each pair of associated subgroups L;, M ; generate their free product L; x M ;, and
gp(ty, L;) 1s the free product (t;) * L. In particular, H is the tree product of the
groups (t;) * L, and S with the subgroups L; * M ; amalgamated from the single
factor S. Moreover, S itself is a O-step malnormal tree product. Finally, let V be
any vertex of S; then the collection { Uy®t, Ug®?, . . .} of amalgamated and associ-
ated subgroups corresponding to the edges incident with V in the enlarged graph
of S form a malnormal collection of subgroups in V; more generally, the collection
of all amalgamated and associated subgroups corresponding to the edges in the
enlarged graph of S form a malnormal collection of subgroups of S.

Proof. According to [6, Theorem 5], a pair of associated subgroups L;, M;
have the form Uyg®, Uyx® respectively, where the corresponding {; = §' P!
with P € U. Moreover, ¢; is not in any conjugate of A or B. Hence, 6~ has
syllable length =2; and so the vertices Uy?, Uy® of the enlarged graph of S
have a simple path of length =3 joining them. Hence, by Lemma 5,

gp(Ux®, Ug”) = Ug® * Ug".
Therefore,
gp(ti, UHB) = <lf1, UHS, UHN, rel UHs, 1"61 UH‘S/, tiUHﬁti—l = UH6/>
= <ti, Uya; rcl UH8>
= <t,> % Uya.
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In particular, H is a tree product as asserted (see last Corollary to
[6, Theorem 5]).

Since neighbouring vertices and their corresponding amalgamated subgroup
have the form Ag?, Bg?, and Ug?, they clearly form a 0-step malnormal
product.

To prove the final assertion of Theorem 4, let V' be, say, Az%=. Then in a
subgroup Ug?%, §; has the form D,a,, where a; € 4 and §; is a u-double coset
representative. If now & = D,aD,~! € H (where ¢ € 4), and

RU%ht N\ Uy 5 1,

then aa; = au, where u € U. Hence, HD,a,U = HDjaa;U = HD,a;U, and
so §; = §;. Moreover, since Ug®i is malnormal in 4% = Ay« we have that
h € Ugx®%. Lemma 6 (c) implies that the totality of all amalgamated and
associated subgroups form a malnormal collection in S. This completes the
proof of Theorem 4.

COROLLARY 1. Let G = (A = B; U) be an r-step malnormal product and let
H < G. In the description (6) of H as an HNN group, if the syllable length of
cyclically reduced form of t; = 2v + 2, then gp(Ly M) = L, x M, and

gp(ts, L) = (t;) * L.

CoROLLARY 2. Let G = (A * B; U) be an r-step malnormal product, and let
H < G. In the description (6) of H as an HNN group, if the syllable length of a
cyclically reduced form of t;istand o -7 = v + 1, then gp (4,2, L;) = (t,*°) » L,.

Proof. First we establish the following: If
H = {, K;rel K, tLt* = M)

is an HNN group such that 'Lt M L = 1, then gp(#*°, L) = (t*) = L.

For, the normal subgroup N, of H generated by K and ¢ is an HNN group
with free part generated by #9; its base .S, is the tree product of the factors
K, =t'Kt™*, 0 £ ¢ < ¢, with the subgroups "=Vt~ = ('Lt~ amalga-
mated between K, ; and K;; moreover, the pair of associated subgroups for
N, are L, tLt~% (This follows easily by using the Reidemeister-Schreier
theorem on N,.)

Now

Sap = (S, # 1°S,477; t°Lt~0).
Since LN Lte =1 = 2L N ¢°Li~°, we have that gp(L, Lt %0) =
L 12 Lt=%; hence, gp (22, L) = (t*7) = L.

To prove the corollary, let L, = Ug®, M; = Ug¥,and t;, = §'Ps, P € U.
Then L, N teLit = 1; for, -6 has syllable length ¢ -7 = r 4 1, and
G is r-step malnormal.

COROLLARY 3. Any indecomposable (with respect to amalgamated product)
subgroup of a 0-step malnormal product is either infinite cyclic or contained in a
conjugate of a factor.

https://doi.org/10.4153/CJM-1971-102-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-102-8

944 A. KARRASS AND D. SOLITAR

Proof. This follows easily from [6, Theorem 6], Theorem 4, and Lemma 2.
COROLLARY 4. Under the same hypotheses as in Theorem 4,
gp(t;, S) = ((t;% L) *S; L;* M),
which s a 1-step malnormal product.

Proof. That gp (¢4, .S) is the amalgamated product indicated holds because
(t;) * L; and S generate their subtree product in H.

To establish the 1-step malnormality, we show that the hypotheses of
Lemma 8 of § 6 are satisfied. Now L;, M; occur in different vertices of .S.
Hence one can find an edge Q and S such that S = (C *x D; Q), where C, D
are the subtree products of S which result from deletion of Q from .S, and the
vertex of S containing L, is a vertex of C whereas the vertex of .S containing M,
is a vertex of D. By Lemma 6, each conjugate of L; or M; in S intersects Q
trivially. Hence, Lemma 8 applies.

THEOREM 5. Let G = (4 * B; U) be a O-step malnormal product in which
A, B are both finite. Then any subgroup H of G 1is the free product of a free group
(possibly trivial) and factors of the type Ay®, BgP, or (Ag® * Bg?; UgxP).

Proof. In the HNN description of H as given by [6, Theorem 5], each of the
associated and amalgamated subgroups is malnormal in its corresponding
vertices (by Theorem 4). Now in a finite group any two proper (1) mal-
normal subgroups are conjugate (see the remarks at the beginning of § 5).
Hence, by the last part of Theorem 4, any vertex in the tree product base
of H cannot contain more than one corresponding non-trivial associated or
amalgamated subgroup. Hence, the tree product base .S decomposes into the
free product of groups of the type 452, Bx?, or (Ax? * By?; UgP).

Moreover, any generator ¢ of the free part of H which has trivial associated
subgroups can be factored out of H as a free factor. Furthermore, any generator
¢ of the free part of H with a non-trivial associated subgroup corresponds to
vertices, A%, Bg® all of whose other associated and amalgamated subgroups
must be trivial; hence,

I" = gp(t, Ax®, Bg®) = (t, Ax® Byp¥;rel Ay’ rel By¥, tUgt™' = Ugx®)

is a factor of H (as a free product). Moreover, ¢ = §’Ps~!, where P € U.
Hence, A5 = tAx%!, and

T = (t, Ax", Bg¥;rel Ag¥, rel Bg¥, Ug® = Uyg¥) ={t) * (Ax® * Bg¥; Ug®).
Consequently, H is a free product as claimed.

The two generator subgroups of a 0-step malnormal product have a parti-
cularly simple description:

THEOREM 6. If G = (A * B; U) is a 0-step malnormal product, then any
two-generator subgroup of G is the free product of two cyclic groups or is contained
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in a conjugate of a factor. More generally, if G is a O-step malnormal tree product,
then the same result holds.

Proof. The proof is essentially the same as that in B. Baumslag [1]. Assume
the theorem false and let @ be the least possible syllable length of an element
of G, which together with another element of G makes the theorem false.
Furthermore let ¥ be of minimal syllable length with respect to the property
that there exists an x of syllable length « and gp (x, y) makes the theorem false.

Casel.a = 0,1.e,x € U.

Clearly, we may assume that 8 > 1and thaty = f;... fs is a reduced form
for y. Since U is closed in 4 (i.e., ¢ € U, n > 0, implies thata € U) and in B,
it is easy to show that if y* £ 1, £ > 0, then »* has a reduced form which
begins with f; and ends with fs. Since fi~'xf; ¢ U when xv = 1, if f5 = fi1,
then gp(x, ¥) = gp(x) * gp(y). Moreover, if fegx?f; € U, then y can be replaced
(without changing gp(x, y)) by an element whose first and last syllables are
inverses. Hence, we may assume that when x¥ £ 1, neither fzxf;, nor fi~x"fs 1,
nor fex?fg~! is in U. It then follows again that gp(x, y) = gp(x) * gp(¥).

Case2.aa = 1,8 = 1.
To be specific, suppose that x € 4 — U. If B =1, then y € B — U.
Therefore, gp(x) N U =1 = gp(y) N U. Hence, gp(x,y) = gp(x) *gp(y).

The remaining cases follow as in B. Baumslag [1], simply by using the fact
that U is closed in 4 and B, and by replacing conditions such as “‘x7, y £ 0"’
by “xv # 17,

If G is a 0-step malnormal tree product then one can assume that G has
finitely many vertices and use a standard inductive argument.

COROLLARY. Let G = (4 * B; U) be a 0-step malnormal product, and suppose
that x, y are two elements of finite order which are not both in a single conjugate
of a factor. Then gp(x,y) = gp(x) *gp(y). More generally, the result holds
if G is a O-step malnormal tree product.

Proof. If H = gp(x, y) is cyclic, then clearly it is contained in a conjugate
of a factor. Hence, H = gp(p) * gp(g); moreover, we may assume (after
conjugation) thatx € gp(p). Since the conjugates of gp(p) cannot generate H,
v isin a conjugate of gp(g). But gp(p) and a conjugate of gp(g) generate their
free product; thus, H = gp(x) *gp(¥).

5. Examples of 0- and 1-step malnormal products. As noted in the
introduction, (4 * B; U) is a 0-step malnormal product if and only if U is
malnormal in 4 and B. Thus, to construct examples of 0-step malnormal
products, we need to be able to construct groups having malnormal subgroups.
Moreover, if U is malnormal in 4 or in B, then any amalgamated product
(4 * B; U) is 1-step malnormal. In this section, we describe several types of
examples of groups having malnormal subgroups.
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(Note, however, that the condition “ (4 * B; U) is 1-step malnormal”’ is not
equivalent to the condition that ‘U is malnormal in 4 or in B”. For example,
let A4 = {a,u;au? = ua,u’), B = (b, u;bu® = u’b, us), and U = (u;u®).
Then in (4 * B; U), clearly E4,(U) = A # U # B = E(U); on the other
hand, E,(u*) = U, for n = 1,3,5, and Ezw") = U, for n = 1,2,4,5, so
(4 % B; U) is 1-step malnormal. This example is a special case of a class of
1-step malnormal products (called ‘‘free products with centralized subgroups’”)
which we describe at the end of this section.)

If 1 # U< A, the condition Ey(4) = U s equivalent to U being ils own
normalizer and having trivial intersection with each of its distinct comjugates.
Thus, if 4 is finite and U is malnormal in 4 with 1 &2 U # 4, then 4 is a
familiar type of group, namely, a Frobenius group with complement U. As is
well known, when A4 is finite the elements of 4 outside of U and its conjugates,
together with 1, form a normal subgroup of 4 (called the kernel of 4) with
complement U; moreover, any pair of Frobenius complements are conjugates
(see, for example, [14, p. 354]). (If 4 is infinite, neither of these results neces-
sarily holds.)

Obvious examples of such groups are obtained by taking 4 to be a transitive
permutation group in which each permutation different from the identity
permutation has at most one fixed point, and taking U to be the subgroup that
leaves a given point fixed. (Indeed, this permutation description of a group
with a malnormal subgroup is equivalent to the abstract description.) For
example, let 4 be the group of linear functions (under resultant composition)
f(x) = ax + b over a field F, where b ranges over F and a ranges over a sub-
group M of the multiplicative group of F. The subgroup U of functions, which
have fixed point 0, viz., ax with ¢ € M, is a malnormal subgroup of 4.

Since the literature on finite groups having malnormal subgroups is extensive,
we shall concentrate our attention on infinite groups having malnormal
subgroups.

First, we prove a theorem which allows us to determine the malnormal
cyclic subgroups of an r-step malnormal product.

THEOREM 7. Let G = (A * B; U) be an elemeniwise malnormal product.
Suppose that h(#1) s in G and H = gp(h). Then, if h is not in a conjugate of
A or B, E¢(H) = N(H); if, additionally, h is not the produci of two elements
of order two and h has no proper roots (i.e., H is @ maximal cyclic subgroup of G),
then Eq;(H) = H.

If b is in a factor A or B but H intersects each conjugate of U trivially, then
Eq(H) is in that same factor.

Finally, if k" (#1) is in U, then E ¢(H) is in a conjugate of a factor, provided
that either U is malnormal in A or in B, or h has prime power order, or h has
wnfinite order and |E ¢ (gp(h"))] < .

Proof. Let x € E¢(H) and xh?x~1 = h?, where h? # 1.
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Suppose that % is not in a conjugate of a factor. Then we may assume that %
is cyclically reduced and of length =2. Since x4?x~1 = h¢, it is easy to see (by
using length arguments on cyclically reduced forms) that p = =+q. Therefore,
(xhx~1)? = h?, ¢ = 4 1. Hence (by the corollary to Theorem 1), xhx~! = ke,
ie., xisin N(H), and so E¢(H) = N(H). Moreover, if % is not the product of
two elements of order two and H is maximal cyclic, then N(H) = C(h) is
cyclic, and so Eq(H) = H.

Suppose next that % is in a factor, but H intersects each conjugate of U
trivially. Then %?, h? are properly contained in a factor and so x must also be
in that factor. Hence, E4(H) is in the same factor as 4.

Suppose now that U is malnormal in 4 or B, say E,(U) = U. Hence, by the
first remark in the proof of Lemma 6, B is malnormal in G; therefore, E 4 (U)
isin B. If #*(21) isin U for some #, then A is in E 4 (k"), and so % is in B; hence,
H < B and Es(H) is in B.

Suppose next that % has infinite or prime power order. We first observe
that E¢(H) is a subgroup. For, clearly x € E,(H) implies that x~! € E(H).
Suppose also that y € Eg(H) and yhy~! = k', h* # 1. If & has infinite order,
then xyh®?y=Tx~! = h' with A% # 1, and so Eq(H) is a subgroup. If % has
prime power order p;* then we may assume that p = p® and s = p.8. Since
h? has order p/*= and %' has order p:*#, we have that plg and s|t. Letting
v = lem(p, s), we see that A7 ¢ 1 and

xyh’)‘y—lx—l = x(yhsy‘l)‘r/sx—l = xhvWx—1 = h('v‘ll)/(Ps)‘

and again E4(H) is a subgroup.

Let 1"(£1) be in U. If k has infinite order, then x#**x~! = h%; hence, x is in
Eg(gp(#*)). If k has prime power order pi¥, then we may assume that n = p,°
and p = p1= Letting d = lcm (n, ) we have that

xhixl = (xhPx—1)¥? = pelcn,

hence, x is again in Eg(gp(h")). In both cases, E¢(H) is a subgroup of
Eg(gp(#™)), and therefore by Lemma 1, E¢(H) is in a conjugate of a factor.

COROLLARY 1. Let G be a 0-step malnormal tree product, 1 £ h € G, and
H = gp(h). If h is in some vertex then Eo(H) is in that vertex. Suppose that h
is not in o conjugate of any vertex of G, h has no proper roots (i.e., H is maximal
cyclic mn G), and h is not the product of two elements of order two; thew H 1s
malnormal in G.

Proof. Clearly, it suffices to show that the assertions hold when G has only
finitely many vertices. Since each vertex of G is malnormal in G, if % is in some
vertex, E¢(H) is also. Suppose, then, that % satisfies the last conditions in the
hypotheses above. If 4, is an extremal vertex of G, then G = (41 * G1; Uy),
where G, is the subtree product arising from G by deleting 4, and its edge Us.
If & is in a conjugate of Gy, then by inductive hypothesis, H is malnormal in
that conjugate of Gy, and therefore H is malnormal in G. Otherwise, Theorem 7
applies and again H is malnormal in G.

https://doi.org/10.4153/CJM-1971-102-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-102-8

948 A. KARRASS AND D. SOLITAR

COROLLARY 2. If we take an amalgamated product of two free groups with the
amalgamated subgroup maximal cyclic in one of the factors, then take an amalga-
mated product of two such groups with the amalgamated subgroup again maximal
cyclic in one of the factors, and continue to repeat the process finitely often, we
always arrive at 1-step malnormal products; if at each stage the amalgamated
subgroup is maximal cyclic in both factors, then we always arrive at 0-step mal-
normal products.

COROLLARY 3. Let G = (4 = B; U) be an r-step malnormal product. Suppose
thata € A — U, b € B — U. If either coset Ua or Ub has no elements of order
two, then gp(ab) is malnormal in G.

Proof. Clearly, H = gp(ab) is maximal cyclic in G. It is easy to show by
using length arguments that, if ab = ¢d where ¢ and d have order two, then
Ua and Ub have elements of order two.

As an application, let G be presented by

7)Y G= {1, b1,..., a5 bp 81,y SayCly..,Cr;

S, oy s Rt RSt L L sge ™ L L L )

where k; = [a;, 0,0 < t; < m;, 0 < my; it follows from elementary number
theory that without loss of generality we may assume that ¢;|n;. Then G can
be expressed as a 1-step malnormal product (in which the amalgamated subgroup
is malnormal in one of the factors) unless one of the following degenerate cases
occurs: p+d+r=2; p=r=0,d=3; p=r=0, d=4, and each
n/t; =2;p=1,7r=0,d =2,and eachn;/t; =2;,p =0,r =1,d = 2, and
each n;/t; = 2. For example, if p =7 = 0, d = 4, and n,/t; # 2, then

G = ({51, S25 51", $"2) * (3, S4; 8§53, 5); 51"15,"2 = sy lasgH);

hence, by Corollary 3 above, with 4 = gp(s1), B = gp(s2), U = 1, ¢« = 5,1,
b = s5'%, we see that G is a malnormal product as stated. Thus, except for the
degenerate cases, the groups G in (7) have the cyclic centralizer property; more-
over, the only subgroups satisfying a non-trivial law are cyclic. In each of the
excluded cases there are groups which fail to have the cyclic centralizer
property.

The groups G in (7) include as a special case the finitely generated orienta-
tion-preserving discrete groups of motions of the hyperbolic plane; these
hyperbolic groups all have the cyclic centralizer property (see Greenberg [3]).

Next, we generalize an example of T. Lewin [8].

THEOREM 8. Let {L.}, 1 € I, be a malnormal collection of subgroups of a group
K, and let {x} be a collection of distinct elements of a group X. Then the subgroup
U generated by the subgroups x;Lx;71,

U= H* (x:Lxit),

1s malnormal in X * K.
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Proof. The proof is similar to that of [1, Lemma 2]. As in that proof, let
A = X % K, and let {x,} denote the elements of X, where o ranges over an
index set containing /. Then the normal subgroup N of 4 generated by
K, N = K4, is the free product of the conjugates K*°. Moreover, ifa; € 4 — U,
then a; has the form

ay = X, kY1 .. kYT uw = au,

where v, = %55, 0 = 1,...,7, X0, % € X, k: € K, 0; # 0441, # € U, and if
o, € I then k, ¢ L,,.

Suppose that E,(U) % U; let d(#1) be an element of U of smallest
syllable length s such that ada=! € U, for some a € E (U) — U. Now d has
the form

d = 6121 o 632’,

where 2, = x,;, 0 =1,...,s, 7, € I, ¢; € L., and 7; # 7,1, hence,
ada™! = RV, || RFVre Fett | ¢ Fotsk, T | Ry TaVL,

First, suppose that x, = 1. If ¢, # 7, or o, # 7, then the presence of the
syllable k,*r or k,~¥r prevents ada™! from being in U; if 0, = 71 = 74, then the
presence of the syllable (k,c1)?t, (c;k,~1)*, or (k.cik,~1)* prevents ada™! from
being in U.

Hence, we may suppose that x, # 1. In this case, ¢;*** cannot be a syllable
of ada™?; for, if wsx,, = %, j € I, then since L; N L,; = 1, we have ¢; ¢ L,
and so ada=! ¢ U. Hence, r > 0 and 7y = o, = 7,. If s > 1, then ¢’ = ac,?,
d = c¢c... (c1)® would have the same properties as a, d although d’ has
shorter syllable length than d. Finally, if s = 1, then w.x. = x;, j & 7,
k,L.k; ' L; =1, so again we have ada~! ¢ U. This completes the proof
of Theorem 8.

As an illustration, let K = gp(u) x4, and let X = gp(v), where 4 is
arbitrary and X is infinite cyclic. If a4, a9, . . . are distinct elements (1) of 4,
then {gp («), gp (ua1), gp (uaz) . . .} is a malnormal collection of subgroups of K
(see the first illustration following the definition of a malnormal collection of
subgroups). Hence,

gp (u, v uaw, v 2uagw?, . . .)

is a malnormal in gp(#) = gp(v) * A. This special case was proved by T. Lewin
(see [8, p. 394, lemma]).

COROLLARY. Let € be a class of groups including the infinite cyclic group and
let D be a class of groups including the infinite cyclic and infinite dihedral groups.
If A is a countable group having one of the following properties, then A can be
embedded in a three-generator group having that property: the centralizer of any
non-trivial element of A belongs to € ; the normalizer of any infinite cyclic sub-
group of A belongs to D; the subgroups of A satisfying a particular non-trivial
law belong to &; any indecomposable (with respect to amalgamated product)
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subgroup of A belongs to €; any two-generator subgroup of A is free (or more
generally is a free product of two cyclic groups). Moreover, if A is an n-relator
group, then the three-generator group is an n-relator group.

Proof. We modify an argument in T. Lewin [8]. Let a4, as, . . . be distinct
generators (#1) of A4; let Fi = (,v) and F, = {(x,v). Then u, v='ua,
v 2uaq?, . . . freely generate a malnormal subgroup .S of F; * 4. Moreover, it
can be shown that xyx, x2y2x?, x3y3x?, ... freely generate a malnormal sub-
group 1" of F.. Hence, the amalgamated product (Fy* (FixA4); T =S8) isa
0-step malnormal product, which is clearly generated by x, y, v. Furthermore,
the relations resulting from 7" = S, merely serve to define u, ai, @s, ... In
terms of x, y,v. These relations may be deleted provided we replace the a;
in the defining relators of A by their equivalents in terms of x, y, v. Hence,
if A is an n-relator group, then the three-generator group is an n-relator group.

An interesting class of groups with malnormal subgroups is provided by
groups with one defining relation

(8) G={a,byc,...;R"»),n>1

having torsion. B. B. Newman [13] has shown that the subgroup generated by
any proper subset of the generators of G is malnormal in G. Hence, if we use
the standard Magnus embedment to embed G in a one-relator group with
torsion having zero exponent sum on one of the generators, then the normal
subgroup N generated by all the other generators is a 0-step malnormal tree
product whose vertices are ‘‘shorter one-relator’” groups having torsion.

Also, in (8), if R is not ilself a proper power in the free group on a, b, c, . . .,
then gp(R) is malnormal in G (see [5]).

Finally, we describe two other types of examples of 0- and 1-step malnormal
products: free products with commuting subgroups and free products with
centralized subgroups ({9, pp. 220-221, exercises 22 and 27]). Specifically, let
H,, K, be malnormal subgroups of 41, Bj, respectively.

For the first construction, form the group G with presentation obtained by
writing down a presentation for 4; * By and then adjoining defining relations
which state that each word in a given set of generators for H; commutes with
each word in a given set of generators for K;. It is easily shown that

G = (A4 *B; U), where 4 = gp(4,, K1) = (41 * (H, X K,); Hy),
B = gp(Hy, B1) = ((H1 X K1) * By; Ky),

and U = H; X K; (direct product). Since H;, K; are malnormal in 4, B;,
respectively, U is malnormal in 4 and in B (see the first remark in the proof
of Lemma 6). Thus, G is a 0-step malnormal product. For example, the group

G = {a, b, b, k; ad h? (ah)? b3, k2, (bk)?, hk = kh)

is the free product of two symmetric groups of degree three with commuting
cyclic subgroups of order two. It then follows, e.g., that the abelian subgroups
of G are infinite cyclic, cyclic of order two or three, or Z; X Z,.
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For the second construction, form the group G with presentation obtained by
writing down a presentation for 4, * B, and then adjoining defining relations
which state that each Ai-generator commutes with a set of words which
generate K, and that each Bj-generator commutes with a set of words which
generate Hy. It is easily shown that G = (4 * B; U), where 4 = 4; X K,
B =H; X Biyand U = H; X K1. Nowin G, ifu = (h, k1), then E,(u) = U,
when %; # 1, and Eg(u) = U, when k; 5% 1. Thus, G is a 1-step malnormal
product (although ordinarily U is not malnormal in 4 or in B since E,(U) = 4
and E3z(U) = B).

For example, if 41 = {a,¢;¢?), By = (0, d;d*), H; = gp(c), K1 = gp(d),
then the group

G = {a,b,c,d;ad = da, bc = ¢b, cd = dc, ¢?, d%),
is the free product of 4; and B, with the centralized subgroups H; and K;;
since U = H; X K; = gp(u) is cyclic of order six,
G = {a,b, u; au® = u2a, bu® = u’b, u),

which is the group given near the beginning of this section.

6. Examples of r-step malnormal products. The examples of r-step
malnormal products we give in this section all arise from HNN groups

(9) G = <51, foy o vuy K; rel K, t1L1t1_1 = <p1(L1), Iszztzvl = €02(L2)y . .>,

where {¢;} is a collection of isomorphisms of {L,} into K; as usual we denote
o:(L;) by M; or L_,. To construct these examples, we use the standard
embedment (of Higman, Neumann, and Neumann [4]) of the HNN group
given by (9) in the amalgamated product

(10) =(A4A*B;U)=Xx=+xG=7Yx%gG,
where

A:X*K,BZ Y*K,U=K*...*xiLixf1*...
= Kx...xy My 1%...,

and X, Y are free groups on x4, y, respectively, and ¢; = y, %, = 1,2, ... .

LEMMA 7. Let A be the free product X = K of two groups X and K, and let
xo = 1,%1,...,%, be distinct elements of X such that xx;7' # x,x,", unless
i=jori=p, where 0 £ 1,7, p,q = n. Suppose that Ly = K, Ly, ..., L, are
subgroups of K and that U = xoLoxg™t * ... % x,L,x,7%, and let ¢, € A — U.
If a,Uar "M U # 1, then a,Uay M U = ax.Lyx; e M U, where a1 = auy,
uy € U. Moreover, if L/ < L, then the intersection ax.;L/x;a=* M U, if non-
trivial, is ux,;(L; N RL/k=V)x w2, for some 0 £ j < n, u € U, and k € K;
furthermore, @ = uxke; ",k # Lork ¢ L;, and i 5 0 or j = 0.

Proof. This is the same as that of [7, Lemma 2].
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THEOREM 9. Let G be an HNN group
G=({K;rel K, tLt7' = M)

satisfying the following conditions:
(a) L and M are malnormal in K.
(b) There exists r > 0 such that for any ki, ..., k, € K,

(11) LNAL™M N\ Lottt e =

Then the amalgamated product corresponding to G, E = (A * B; U), described
in (10), is a 2r-step malnormal product.

Proof. Now, condition (b) is equivalent to
(12) MO M% A ME% OO M %= ]

for any ki, ...,k € K (simply conjugate the left hand side of (11) by
th,"% ... kiU,
We first show that if

(13) baxL'x=ta~0"1 M U

is non-trivial, where L' < L, a € A — U, b € B — U, then (13) equals
wix (L N R L B 1) x uy 1,

where #; € U. For, by Lemma 7,

(14) axL'x a7 M U = ugx;(L; M kL Ry Y)x; lus™t,

and ¢ = ux;kix!. Now j = 0, for, otherwise, L, = L > L', and so k; € L
which implies that @ € U, contrary to the definition of a. Hence,

axL'x"'a ' M U = u,L'us™1,

and so (13) equals

(15) bug(yoL’yo—l)uz‘lb‘l N U.

Hence, again applying Lemma 7, we have that du, = wuyyky,~! and (15)
becomes

(16) wyy (M M kL' k=1)y=1y;—1;

since t~! = x~1y, (16) equals
A7) w7 ' (M N EL' Vit uy! = uyx (L N %L~ 14)x uy 1
It is now easy to show by induction that
bra,...biaixLx~ a1, . a0, N U
= ux(L N L7 N\ Ltkatmtes A\ Ltk otk =1y -1
which by hypothesis is trivial.
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Clearly, because of the symmetric conditions on L and M, we may assume
that
a,b, N (Z1b1yMy_1b1_ldl_l e b,“la,‘l NU=1.

To prove Theorem 9, suppose that p € Ex(U) and |p| = 27 + 1. Now,
using Lemma 7, it is easy to show that

pUP N U = pix Lx7pr N U, i =0o0r1,

where |p1] = |p|. If i = 1, the preceding argument shows that pUp~1 N\ U = 1;
hence, ¢ = 0. Because of the symmetrical hypothesis, we may assume that
p1 = ga, where a, the last syllable of p;, isin A — U. But then by Lemma 7,

aKa ' U = uxLx~u™1,
and, therefore,
pUp' M U = (qu)xLx " (qu)~* N U,

where |gu| = 2r. Thus, again by the preceding argument, pUp~1 N\ U = 1.
This completes the proof of Theorem 9.

We shall see (in Theorem 10) that the groups G in Theorem 9 include one-
relator groups having torsion and zero exponent sum on some generator.
Using similar arguments we may prove Corollaries 1 and 2.

COROLLARY 1. Let G be an HNN group
G={K;rel K, tLt7' = M)

satisfying the following conditions:

(@) L and M are malnormal in K.

(b) RLEEXN M = 1 unless k € LM\ M.

(c) There exists an integer r > 0 such that L M t"Li~" = 1.
Then the amalgamated product corresponding to G, E = (A *= B; U), described
in (10), is a 2r-step malnormal product.

For example, let
G = <t, A1y, A2y o o oy Ay, t701t—1 = ZU2>,

where w;, w; are words in the @; which are not proper powers, and which,
when cyclically reduced, are not cyclic permutations of each other. Then the
conditions of Corollary 1 are clearly satisfied with L = gp(w:), M = gp(w,),
K =<{ai,...,a,)and r = 1.

COROLLARY 2. Let G be an HNN group
G = (tl, t2, e ey K, rel K, tlthl_l = L_l, tngtz_l = L_z, . e .)

satisfying the following conditions:
(@) Foreachk € K, and each pairi,j, kL k2 M\ L; = 1, unlessk € L; M\ L.
(b) There exists an integer r > 0 such that, if W(t,...,t,) is a freely
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reduced word of length r in the free part of G, then WL, W=\ L; = 1, for euch
1, § for which ¢j > 0.
Then the amalgamated product E in (10) s a 2r-step malnormal product.

Any HNN group satisfying the conditions of Theorem 9, Corollary 1, or
Corollary 2 will be called an HNN group with r-step malnormal associuted
subgroups, or simply an r-step malnormal HNN group.

It follows, for example, that iz an r-step malnormal HNN group, the centralizer
of an element (#£1) s infinite cyclic or contained in a conjugate of K, the nor-
malizer of a cyclic subgroup (#1) is infinite cyclic, infinite dihedral, or contuined
in a conjugate of K; a subgroup of G satisfying a non-trivial law is infinite cyclic,
infinite dihedral, or contained in a conjugate of K.

COROLLARY 3. Let G be an HNN group
G = <t1, t2, ey K; rel K, tlthl_l = L_.l, t2L2t2_1 = L_Q, .. >

in which the centralizer of an element (#£1) is cyclic or contained in « conjugate
of K; then the free part T = gp(ly, to, . . .) s malnormal in G. In particular,
if G is an r-step malnormal HNN group, then its free part is malnormal in G.

Proof. If N = K€, then any element g of G has the form g = nw, where
n € N, w € T. Suppose that w; (1), w, are in 7" and nww,w~n"! = w,.
Since T is a retract of G with kernel NV, ww,w—! = w,, and so # is in the cen-
tralizer of we. If # # 1, then a non-zero power of w, would be in N, which is
impossible.

COROLLARY 4. Let G be an HNN group
G = <t1, to, ..., Kirel K, t1L1ty7Y = L_y, toloty™ = L_y, .. )

in which the collection of associated subgroups {L;} is a malnormal collection in
the base K. Then G is a 1-step malnormal HNN group; moreover, euch associated
subgroup L; is malnormal in G.

Proof. Let N = K¢ Then N is the tree product of the vertices wKw™!,
where w ranges over all freely reduced words in the free part 7" of G; for each
w the collection of subgroups {wL w~!} corresponds to the collection of edges
incident with the vertex wKw~!, and is malnormal in wKw~!. Hence, N is a
0-step imalnormal tree product; moreover, Lemma 6 (c) implies that the
collection of subgroups corresponding to all the edges of N is malnormal in M.
It follows, therefore, that the hypotheses of Corollary 2 above are satisfied
with # = 1, and so G is a 1-step malnormal HNN group.

To show that L; is malnormal in G, suppose that nwLwn"1 M\ L, # 1,
where n € N, w € 7. If w # 1, then wL,w™! and L, are part of a malnormal
collection in N; hence, w = 1 and # € L;, so L, is malnormal in G. This
completes the proof of Corollary 4.

It should also be noted that for particular cases of r-step malnormal HNN
groups, the standard embedment may not be the most economical. For
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example, if G is an HNN group whose base is a free product K = K; * K_;
such that {L.}, {M,} are malnormal collections of subgroups of K;, K_,
respectively, then G is a 1-step malnormal HNN group; the standard embed-
ment E yields a 2-step malnormal product. On the other hand, G can be
embedded in the group

(18) (X * Ky) * (Y * K_y); I %Lt = H*yiMiyi‘l)
i i

where X and Y are as in the standard embedment; using Theorem 8, we see
that (18) is a 0-step malnormal product.

An important class of r-step malnormal HNN groups is provided by one-
relator groups G having torsion. If the relator R*, » > 1, is such that some
generator of G occurs exactly once in R, then G is the free product of a free
group and a cyclic group of order #; if some generator does not occur in R,
then again G is a free product. Hence, we may restrict ourselves to relators
R"™ in which each generator occurs at least twice in R.

THEOREM 10. A group with one defining relator R", n > 1, such that R has
zero exponent sum on some generator involved in R 1s an r-step malnormal HNN
group

G =, K;rel K, L7 = M),
where K is a group on one relator P* with P of shorter length than R, and L, M
are free.

Proof. Let
G = {ab,c, ..., RY,

where R has zero exponent sum on a; for convenience of notation, we assume
that G has three generators «, b, c. Moreover, as Moldavanski [10] has
observed, G is an HNN group

(19) G = {, K;R" tLt1 = M),

where ¢t = a; Ry is the word obtained from R by rewriting R in terms of the
conjugates b; = a'ba!and ¢; = a’ca~?; K is the group with the single defining
relator R¢" and with generators 0;, ¢;, where ¢ ranges between the minimum
subscript A = A(0) and the maximum subscript ¢ = u(b) occuring on b in
Ry, and, similarly, N = N(¢) = j = ' = u(c); and L is the free group on

b)\v sy b#—ly Ny o ooy Oyt

Moreover, R, has shorter length then R. Also, since each generator occurs at
least twice in Q, we may assume that A < u.

We shall prove that, if » = max(u — \, ¢’ — \'), then G (when written as
in (19)), satisfies the conditions of Theorem 9. To do this, we use some results
of B. B. Newman [13].

First of all, L, M are malnormal in K; indeed, as we have already indicated,
any proper subset of the generators of a one relator group having torsion
generates a malnormal subgroup of the group.
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Next, we show that if # € K and

D=kgpy...,0u—s00y.e.,Cu_sg )k 1M 5#1,
then

(20) D =migpOrity -+« bus, Oty ooy Cus)mi~t, my € M.
For, suppose that klw,l='k~' = mw.m~!, where /, w; are in

gPOny - ooy Dy, Onry v vy Curs),

w; (#1)iscyclically reduced, m,ws € M,and ws(51) iscyclically reduced. Now,
wy, we are both in L M M. For, it follows from [13, Lemma 2.3.1], that either
wyorwyisin LM M;if w, € LM M, since L is malnormal in K, I; = m—kl € L.
But L = gp( o) * (LM M) (since by the Spelling Theorem in [13],
LNM=gplri,-««ybu1, 0041, ...,¢r_1)) and w; is a cyclically reduced
element of L which is conjugate in L to an element of L /M M; therefore, w,
isalso in L M M. Similarly, w; € L M M implies that w, € L M M. Moreover,
since L M M is malnormal in K, I; € L N M. Therefore, if m; = ml,

D = my(gpn, - oy bucs, Onry o ooy Cur—s) M M)my1
=M1 gP sty -+« Du—s, ONrg1y v v vy Curg)my™ L.
Consequently,
LALLM = (M N L)t
= M1gPOrsty e v vy Duety Oty o o oy Cur)my™ 1) !
=1logpxn, .oy bu—s, Onry v ooy Cw—2)la™l Iy € L.

By induction on s, it follows that
(21) LNLT* i N\ L ks

= lsr1 8P Ony e oo s Dums1, Oy v v vy Curs_1) gyt Y,
where ly41 € L. Hence, if s =7 = max(u — \, &’ — )\’), then (21) is trivial.
This completes the proof of Theorem 10.

It follows then, for example, that in a one-relator group G having torsion, the
centralizer of am element (#1) is cyclic (this is also proved in [13]); an
element of infinite order has at most one qth root for any q; the normalizer of a
cyclic subgroup is cyclic, or imfinite dihedral; @ maximal cyclic subgroup
H = gp(h) of G is malnormal in G unless h is the product of two elements of
order two; and a subgroup of G satisfying a non-trivial law must be cyclic or
infinite dihedral (for another proof of this last result, see [7]).

COROLLARY. Using the notation of Theorem 10, no subgroup H of G can be
a union of subgroups of conjugates of K unless H is in a conjugate of K.

LeMMA 8. Let G be the HNN group
G = {t,S;rel S, tLi™ = M),
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where S = (C * D; Q) is a O-step malnormal product, L, M are malnormal in
C, D, respectively, and the conjugates of L in C and of M in D each intersect Q
trivially. Then

(22) G = ((gp¢t) * L) » (C=D; Q); L x M),

and is a 1-step malnormal product.

Proof.Since LM Q =1 = M N Q,itfollows that U = gp(L, M) = L » M,
T = gp(, L) = gp(t) * L, and, hence, that G can be written as in (22).

Next, we note that by [7, Lemma 2] (using X = gp(¢), K = L, x; = ¢,
Li=L),ifreT — U, then tUr*N U <uLu'or tUr'N U < uMu-1,
for some u € U.

Moreover, if ¢ € S, and (6(L\J M)o=) N\ (L * M) %~ 1, then ¢ € L * M.
For, suppose, e.g., that olo=! = pup~!, where 1#£1€ L,p,n € L+ M,
n cyclically reduced in L * M. Now the syllable length of an element of
L x M in the free product L * M is the same as its syllable length in (C * D; Q).
Hence, by [6, Theorem 4.6], » has syllable length 1; moreover, since in D the
conjugates of M intersect Q trivially,n € L. But L is malnormal in (C * D; Q);
hence, p~'¢ € Landsoo € L % M.

To prove Lemma 8, suppose that some element of G with syllable length
=2isin Eg(U). It follows, then, that there is an element o7 of syllable length
two in E¢(U), where ¢ € S — U, 7 € T'— U. Suppose that oru;r—1c-! € U,
where 1 # u; € U. Then 7uyr! € u(L \J M)u~?, for some u € U (by the
remark of the second paragraph). Hence, ou (L \J M)u=lo=t M (L * M) # 1;
and, therefore, by the preceding paragraph, o« and hence o are in L * M, which
is a contradiction.

THEOREM 11. Using the same notation as in Theorem 10, G is a finite extension
of a 1-step malnormal product whose factors are T = gp(t*") * L, and the 0-step
malnormal tree product S given by

S=K0*K1*... * K2T_1,
L, L, Ly

where K; = t'Kt=%, L; = t'Lt~%; the subgroup amalgamated between T and S
1s L % Ly,.
Proof. 1t follows, as in the proof of Corollary 2 of Theorem 4, that the
normal subgroup V., of G generated by " and K is the HNN group
(827, S; rel S, 2TLE2T = Lo,).
We view S as (C * D; Q), where
C = gp(KO) e vy KT—-I)v D = gp(Kﬂ ceey KZT—l)r and Q = er

and show that the hypotheses of Lemma 8 (with L = L, M = L,,) are satis-
fied. Since S is clearly a O-step malnormal tree product, each vertex K; is
malnormal in S. Hence, each L; is malnormal in S. Therefore, L, Q are mal-
normal in C, and L,,, Q are malnormal in D.
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It remains to show that c¢cLc ' Q =1, for each ¢ € C, and that
ALy d= ' M Q = 1, for each d € D.
To this end, we first show by induction on s that, if g € gp(K,, ... K1),

then

(23) ggpxn, .oy bupy Onry o ooy Cup)Z VN L

is contained in

(24) BLgpOny v v vy Dupsy Oty v vy Cur—ps)IT1E5,

withp = land? € L. If s = 0, this is clear. Suppose that s > 0. Now
(25) gp (Ko, ..., Ks 1) = (Kogxgp(Ky, ..., Ke1); Ly).

If gL’g7! is in (23) and g = g»g1, where g1 € K,, and g,, when written in
reduced form in (25), does not end in a Ky-syllable, then g,L'g;"! < L;.
Hence, as shown in the proof of (20) of Theorem 10,

g1il’gt < gigpOny v ooy bypyrry e e oy Cwp)gi P M
= mi gp (b)\_H, Ce e, b,,_,,, CN'dly o o vy c,‘:_p)ml"l, my € M.

Therefore, g € gp(Ky, ..., K1), since this factor of (25) is malnormal in
(25). Hence, (23) is contained in

ga2my gp(bx, ey b/l-p' C)\/+1y s ey C;t’-—p)mlﬁng-l N Lsy
which equals
(26) t(g3 gp(b)\y sy bﬂ—p——ly CNry oo oy C)\’——p——l)gli_l a Ls—l)t_ly

where g3 € gp(Ky, ..., K;2). By the inductive hypothesis, (26) and hence
(23) are contained in (24).

Since r = max(u — A\, ' — )’), it follows that cLc! M\ L, = 1. Moreover,
dLyd*MN L, = t"(cL,c M L)t" = 1. This completes the proof of
Theorem 11.
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