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THE FREE PRODUCT OF TWO GROUPS WITH 
A MALNORMAL AMALGAMATED SUBGROUP 

A. KARRASS AND D. SOLITAR 

1. Introduction. In [1], B. Baumslag denned a subgroup U of a group G 
to be malnormal in G if gug~l G U, 1 9e u G U, implies that g G U. Baumslag 
considered the class of amalgamated products (A * B; U) in which U is 
malnormal in both A and B. These amalgamated products play an important 
role in the investigations of B. B. Newman [13] of groups with one defining 
relation having torsion. In this paper, we shall be concerned primarily with 
a generalization of this class. 

Let U be a subgroup of a group G and let u G U. Then the extended nor-
malizer EG(u, U) of u relative to U in G is defined by 

E0(u, u) = {ge Gigur1 e u\, 
if u y£ 1, and by EG(u, U) = Uy if u = 1. The extended normalizer EG(U) of 
U in G is the union of all EG(u, U), u in U. We abbreviate EG(u, U) by 
EG(u) if the context makes clear which subgroup U is involved. The extended 
normalizer need not be a subgroup. 

With this notation, U is malnormal in G if and only if EG(U) = U. 
Let G = (A *B; U). Then U is r-step malnormal in G if the maximum 

syllable length \EG(U)\ of an element of EG(U) does not exceed r; U is 
elementwise malnormal in G if, for each u G U, \E0(u)\ < co. (Note that the 
syllable length of an element of U is zero.) If U is r-step malnormal in G we 
shall call G an r-step malnormal product, or simply a malnormal product. 

If £ = £i • • • gr is a reduced form of an element in EG(u) — U, then it is 
easy to see that any terminal segment gt . . . gr is in EG(u) and that g~l is in 
EG(gug~x). Hence, U is 0-step malnormal in G if and only if U is malnormal in 
both A and B. 

Moreover, U is 1-step malnormal in G if and only if, for each u G U, 
EA(u) = U or EB(u) = U (for, if a, b are in EG(u), then ab~l G EG{bub~1)). 
This class of amalgamated products was used by T. Lewin in [8]. 

The 0-step malnormal products given by the groups {A * B; a = b) where 
A, B are free a ^ 1, b ^ 1, and a, b are not proper powers (in A and B, 
respectively) were investigated by G. Baumslag in [2]; these include the 
fundamental groups of orientable two dimensional manifolds of genus k > 1. 

B. B. Newman [13] has shown that if G is an infinite group with one defining 
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934 A. KARRASS AND D. SOLITAR 

relator having torsion, say, 

(1) G = (a,b,c,. . . ;Rn),n > 1, 

and N <\ G with G/N infinite cyclic, then N is a 0-step malnormal product , 
and, in fact, N can be built up from groups with one defining relator by 
repeatedly forming 0-step malnormal products . 

Theorem 10 implies t h a t any group G in (1) can be embedded in an r-step 
malnormal product {A * B ; U) in which U is free, A = X * K, B = Y * K, 
where X, Y are infinite cyclic and K is a group on one defining relator R0

n of 
shorter length than that of the original relator (r depends upon the relator R). 

Moreover (Theorem 11), if in (1), R has zero exponent sum on some generator, 
then G is a finite extension of a 1-step malnormal product (T * S; U), where T 
is a free group and S is a 0-step malnormal tree product (i.e., any two neighbour­
ing vertices of S together with their amalgamated subgroup form a 0-step 
malnormal product ) , 

5 = KQ * Ki * . . . * K2r-i, 

where the K^ are isomorphic one-relator groups with relators R/1 of shorter length 
than Rn, and the Lt are free groups of the same rank. (For a definition of tree 
product see [6].) 

T h e subgroup s t ructure in r-step malnormal products is simpler than t h a t 
of the general amalgamated product {A * B; U)\ indeed, malnormal products 
have a number of properties in common with free products (which clearly 
are 0-step malnormal products ) . 

Let G = (A * B ; U) be an r-step malnormal product. The centraliser of an 
element of G is infinite cyclic or contained in a conjugate of A or B; the normalizer 
of an infinite cyclic subgroup is infinite cyclic, infinite dihedral, or contained in a 
conjugate of A or B; if H is a subgroup of G satisfying a non-trivial law, then H 
is infinite cyclic, infinite dihedral, or contained in a conjugate of A or B. More­
over, if r = 0, then any indecomposable {with respect to amalgamated product) 
subgroup of G is infinite cyclic or contained in a conjugate of a factor; any two-
generator subgroup of G is the free product of two cyclic groups or is contained in a 
conjugate of A or B. 

In the case of 0-step malnormal products , we can give a more detailed 
description of the general s t ructure of a subgroup H than t h a t given in [6] 
for a rb i t ra ry {A * B; U)\ see Theorems 4 and 5. 

Several types of examples of 0- and 1-step malnormal products are given in 
§ 5, and other examples of r-step malnormal products are described in § 6. 

An extension of some of these ideas to HNN groups is also discussed in § 6. 

2. Centralizers and normalizers. 

L E M M A 1. Let G = (A * B; U) be any amalgamated product. Suppose that 
H < G and \H\ < oo. Then H is contained in a conjugate of A or B. 
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Proof. The proof is by induction on \H\. If \H\ ^ 1, then since H is a sub­
group, H < A or H < B. Suppose that \H\ = m > 1, and let h = gi . . . gs 

be a reduced form for an element of H of syllable length 5 > 1. Since hn G H, 
we have gsgi G U, and so h = gihxgr1, where hi G grlHgi and |&i| = |A| — 2. 
Let k = pih2pi~1 (with h2 G p\~lHpi) be any other element of i7 of syllable 
length greater than 1, where \h2\ = \k\ — 2. Since (hk)n G -H", we have that 
gi^Pi G U and, therefore, & = g\hzgrl, where |A3| = |/z2|. Moreover, if 
g £ H and |g| g 1, then (/*g)w G # implies that g f 1 ^ ! G U. Thus, 
|gi_1ijTgi| < |i2"|, and so by the inductive hypothesis H is contained in a 
conjugate of a actor. 

COROLLARY. Under the same hypothesis as above, if \H\ = r, /Ae» H < U or 
H < cAc~l or H < cBc~\ where \c\ = (r - l ) /2 . 

Proof. If iiT < Î7, choose c of smallest syllable length (c = 1 if |c| = 0), so 
that H is in cAcr1 or cBcr1, say cAc1. Then c cannot end in an ^4-syllable, 
and cat - 1 G H, for some a G A — U; hence, 2\c\ + 1 = r. 

THEOREM 1. Let G = (A * B; U) be an elementwise malnormal product, and 
let 1 9^ g G G. If g is not in a conjugate of a factor, then the centralizer C(g) of g 
is infinite cyclic; otherwise, C(g) is in a conjugate of a factor. 

Proof. If g is properly contained in a factor (i.e., g is in a factor but not in a 
conjugate of U), then C(g) is contained in that factor (by [9, Theorem 4.5]). 

If g is in U, then C(g) is a subgroup of EG(g, U), so \C(g)\ < oo and, by 
Lemma 1, C(g) is in a conjugate of a factor. 

Suppose now that g is not in a conjugate of a factor; then C(g) has trivial 
intersection with any conjugate of a factor (for, if v ^ 1 is in C(g), then g is 
in C(v)). Hence, by a theorem of H. Neumann (see [12] or [9, Corollary 4.9.2]), 
C(g) is a free group; but C(g) has a non-trivial centre, so C(g) must be infinite 
cyclic. 

T. Lewin [8] gave a different proof of Theorem 1 when G is 1-step malnormal. 

COROLLARY. Let G = (A *B;U) be an elementwise malnormal product. 
Then any element not in a conjugate of a factor has at most one nth root. In 
particular, the class of groups in which each element has at most one nth root 
(n ranging over a set of positive integers) is closed under taking {elementwise) 
malnormal products. 

Proof. Suppose that g, h are in G and gn = hn. If gn is not in a conjugate 
of a factor, then C(gn) is infinite cyclic and contains g and h; but any element 
in an infinite cyclic group has at most one nth root, and so g = h. 

Suppose, moreover, that each element in a factor has at most one nth root. 
If gn is in a conjugate of a factor, then C(gn) is in a conjugate of a factor, and, 
therefore, both g and h are in that conjugate, so g = h. 

THEOREM 2. Let G = (A * B; U) be an elementwise malnormal product, 
and let H = gp{h), where 1 F^ h G G. If h is in a conjugate of a factor, then the 
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normalizer N(H) of H is in a conjugate of a factor; if h is not in a conjugate of a 
factor and h is not the product of two elements of order two, then N(H) = C(h) 
is infinite cyclic; finally, if h is not in a conjugate of a factor and h is the product 
of two elements of order two, then N(H) is infinite dihedral and C(h) has index 
two in N(H). 

Proof. Suppose that h is properly contained in a factor. We show that 
N(H) is in that same factor. Let xhx~l = hs, with x (? U, and let x = gi . . . gn 

be a reduced form of x. Then by examining 

gi • • • gnhgn~l . • • gi~\ 

it is easy to see that n = 1, and g\ is in the same factor as h. Hence, N(H) is 
in the same factor as h. 

On the other hand, if h G U, then N(H) is a subgroup of EG(h, U), and, 
therefore, N(H) is contained in a conjugate of a factor. 

Next, suppose that h is not in a conjugate of a factor; we may assume that 
h is cyclically reduced. If xhx"1 = hs, then, since h is a cyclically reduced form 
of the right hand side, s = ± 1 . This implies that C(h) is of index 1 or 2 in 
N(H). 

If s = — 1 , then h is the product of two elements of order two. For, 
xhx~l = h~l implies that x2hx~2 = h. If x2 were not in a conjugate of a factor, 
then h, x would both be in C(x2), which is cyclic; hence, xhx~l = h, and so h 
would have order two, which is impossible. Hence, x2 is in a conjugate of a 
factor. If x2 9^ 1, then h is in C(x2) which is contained in a conjugate of a 
factor; but h is not in a conjugate of a factor. Consequently, x2 = 1, (hx)2 = 1, 
and h = (hx)x is the product of two elements of order two. Thus, if h is not 
in a conjugate of a factor and not the product of two elements of order two, 
then N(H) = C(h). 

Finally, suppose that h is not in a conjugate of a factor and h = hih2, where 
hi, h2 are each of order two. Now C(h) is an infinite cyclic group; let 
C(h) = gp(w), h = wk. Therefore, 

(hiwh-rl)k = hihh-r1 = h2hi = h~x — {w~l)k. 

Hence, h\whi~l = w~x (by the corollary to Theorem 1), and so (hiw)2 = 1. 
Let hz = hiw; then h = (hihz)k and C(A) = gp(hihz). Moreover, C(h) has 
index two in N(H), and N(H) is generated by &i and h\h%. Since /zi&3 generates 
an infinite cyclic group and hi(hih%)hi~l = (hihz)-1, it follows that hi and &1&3 
generate an infinite dihedral group, and so N(H) is the free product 
gpQii) *gp(h). 

3. Subgroups satisfying a law. 

LEMMA 2. Let G = (A * B; U) be an r-step malnormal product. Suppose that 
H is a subgroup which is a union of subgroups of conjugates of A or B. Then H 
is contained in a conjugate of A or B. 
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Proof. We first show that, if c, d are in A U B and c ^ 1 9^ d and 
\p\ ^ 2r + 4, then g — cpdp~l is not in a conjugate of A or B. We do this by 
showing that a cyclically reduced form of g has syllable length ^ 2. Let p have 
a reduced form p = p1 . . . ps; let i,j be the largest positive integers (if any) 
such that 

Ci = Pi~l...Prlcpi.. .pudj = ps-j+i...psdps~
l...Ps-j+r1 

are in U. Then i — 1,7— 1 ^ r, and so 5 — i — j ^ 2. Therefore, 

(Pi+r1 . . . pl~lCpi . . . pi+l)pi+2 • • • (Ps-j . • • Psdps'1 . . . Ps-T1) • • • Pi+2~1 

is a cyclically reduced form of g with syllable length ^ 2. 
Suppose now that H is the union of groups ^ C ^ A T S where C* is a non-

trivial subgroup of A or B, and that the set of non-negative integers {\qk\} is 
unbounded. Let qCq~l be a fixed subgroup in {g^C^ - 1}, and choose gfc so that 
| ^ | ^ |#| + 2r + 4. Then I*?-1*?*;! ^ 2r + 4, and the above argument shows 
that Cq~lqkCkqk~

lq is not in q~1Hq, which is a contradiction. 
Hence, the set {\qjc\} is bounded, and so \H\ < 00 ; consequently, Lemma 1 

applies and H is in a conjugate of a factor. 

LEMMA 3. Suppose that G = (A *B;U) is an r-step malnormal product, 
and that H is any subgroup of G. Let Vi, V2, . . . , Vn (n > 1) be the vertices in a 
simple path joining V\ to Vn in the graph of the tree product base of H when H 
is expressed as an HNN group {according to [6, Theorem 5]), and let 
Ui, U2, - • • , Un-i be the subgroups corresponding to the edges of this path. If 
Vi ?± Ui = Un-i 5* Vn and V = gp(Vu Vn), then 

(2) V = (7i * Vn; Ui = Un-!), 

and this amalgamated product is an r-step malnormal product. 

Proof. That V has the presentation (2) follows easily from properties of a 
tree product. 

If n = 2, then Vx = DAD'1 H H, V2 = DBD'1 H H (or vice versa), and 
Ui = DUD~ir\H. If |EF(E/i)| > r, it follows upon conjugation by D~l 

that \EG(U)\ > rf contrary to hypothesis. 
Next, let Vi = DxCiDrl H H and Vn = DnCnDn-

1 H H, where 

Ci,G. G M , S}, 

and Di, Dn are the appropriate double coset representives. 
Suppose that neither D\ nor Z)w is an initial segment of the other. Then 

D\~lDn begins (ends) in a syllable in the same factor as the last syllable of 
Di(Dn). Moreover, Ui = DxUDrl C\ H, Un-i = DnUDn'1 Pi H. Hence, if a 
product 

{Di&Dir^Dng&iC1) • • • (DugsDu-i), 

in which the factors alternate from V\ — Ui and Vn — Un-i, is in Ev(Ui) 
with s > r, then |EG(C7)| > r, contrary to hypothesis. 
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Finally, suppose that B\ is an initial segment of Dn and Dn = D\C\Y, where 
C\ £ Ci (c\ possibly 1). Since Y ^ 1, we may assume that Y begins in a 
syllable not in C\. In this case, 

Vt = D^dcrWr1 r\ H, 
Vn = D1c1YCnY-^cr1D1-' H H, 
Ux = D^UcrWr1 n H 

= DtdYUY-'c^Dr1 n H, 

and again it follows easily that \Ev(Ui)\ ^ r. 
THEOREM 3. Let G = (A * B ; U) be an r-step malnormal product, and suppose 

that H is a subgroup of G satisfying a non-trivial law. Then H is infinite cyclic, 
infinité dihedral, or contained in a conjugate of A or B. 

Proof. According to [6, Theorem 7], if H is not in a conjugate of a factor, 
then one of the following three possibilities holds: 

(3) H is an ascending union of conjugates of U, and so by Lemma 2, H is 
in a conjugate of a factor. 

(4) H is an HNN group of the form 

(t, UH
8;re\ UH\tUHH-' = UH*'), 

where UH
8f < UH

b- Therefore, UH
8 < Uf~kh, for each positive integer k. 

Hence, 
(ô-Hkô)U(ô-n-kô) r\H < U; 

but since t is not in a conjugate of a factor of G, d~1tkô has syllable length ^ 2k. 
By choosing k > r /2, we see that UH

8 = 1, and so H is infinite cyclic. 
(5) H is an amalgamated product (Ci * C2; UH

D), where UH
D is of index 

two in each Cu and Ct are vertices in the tree product base of H; moreover, by 
[6, Theorem 3], the amalgamated subgroups corresponding to the edges of 
the simple path joining C\ to C2 (in the tree product base) are all equal to 
UH

D- Hence, by Lemma 3, H is an r-step malnormal product; therefore, since 
UH

D is normal in H, we have that UH
D = 1, and so H is infinite dihedral. 

COROLLARY 1. / / , in the statement of Theorem 3, we replace "satisfying 
a non-trivial law" by ilcontaining no free subgroup of rank two1', then we obtain 
a correct result. 

Proof. [6, Theorem 7] holds if we replace "H satisfies a non-trivial law" 
by "H contains no free subgroup of rank two". 

COROLLARY 2. Let G = (A * B; U) be such that EA{U) = NA(U) (the 
normalizer of U in A), and EB(U) = NB (U). If H is a subgroup of G satisfying 
a non-trivial law, then H is contained in a conjugate of a factor, or H is an infinite 
cyclic extension of a subgroup of a conjugate of U, or H has the form 
(C\ * C2; UH

D), where UH
D is of index two in each d, and Ci is a subgroup of 

a conjugate of A or B. 
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Proof. T h e hypothesis implies t ha t EG(U) = NG{U). Hence, if 
1 5* UH

Dl < UH
D\ then UH

Dl = UH
D\ Applying [6, Theorem 7] as above, 

we have the result. 

For example, if 

G = <oi, . . . , an, 6i, . . . , bm; wx
v = w2

q), 

where pq 9^ 0, W\ is a non-trivial word in the au and w2 is a non-trivial word in 
the bu then the only subgroups of G which can satisfy a non-trivial law are infinite 
cyclic, free abelian of rank two, or a group with presentation (a, b; a2 = b2). 

4. The structure of subgroups of a malnormal product. In this 
section, we give a more detailed description of a subgroup H of a 0-step mal-
normal product (A * B ; U) than t ha t given in [6, Theorem 5] ; we also indicate 
a part ial generalization to r-step malnormal products. 

For this purpose, we require more specific information about the way in 
which the associated subgroups and amalgamated subgroups are si tuated in 
the tree product base S of H as an HNN group given by [6, Theorem 5]. In 
order to bring the associated subgroups explicitly into the picture, we enlarge 
the graph of the tree product S so as to include the associated subgroups as 
extremal vertices. Specifically (using the notat ion of [6]), if DaEu, D$EV are 
u-, zz-double coset represen tees , respectively, which are neither a- nor /3-
double coset representatives, then we join the new vertices UH

D<xEu, UH
DfiEv 

to the vertices AH
D«, BH

DP, respectively, of S, and make the new vertex corres­
pond to the edge joining it to the old vertex; moreover, we extend the level 
function X to the new vertices by defining the level of UH

D<xEu, UH
D^Ev to be 

the syllable length of DaEu, DpEv, respectively. Clearly, the new vertices we 
have adjoined are extremal, i.e., are incident with a unique edge. 

L E M M A 4. Let G be an amalgamated product {A * B ; U), and let H < G. 

Suppose that UH
01, UH

82, • • • , UH
5n are the subgroups corresponding to the edges 

of a simple path in the enlarged graph of the tree product base S of H. Then 
bi~lbn has syllable length n — 1 in G. 

Proof. W e first recall t ha t the syllables of a word which is an a- or 0- repre­
sentat ive define elements which are not in U (by [6, Lemma 6, Corollary]). 

Secondly, note t ha t if DX and D Y are different u- or v- double coset repre­
sentatives, where X, Y are their respective last syllables, and if X , Y are both 
in the same factor, then X~lY is not in U. For, otherwise, DX and DY end in 
the same type (a- or /3-) of symbol, and hence are the same type of representa­
t ive; therefore, DX and D Y are both u- or both v- double coset representatives 
for the same (H, U) double coset, and so DX = DY. 

Now suppose tha t 

Xf\ Xi\ . . . , Xn+i*»+i, n è 2, 
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are the vertices of a simple path in the enlarged graph of S, where the pt are 
appropriate double coset representatives. We may assume (by reversing the 
path if necessary) 

X(X/0 > \(X?*) > . . . > \(Xk**) £ X(Xk+1
p^) < . . . < X ( J W + 1 ) , 

where 2 ^ k ^ n + 1. If UH
81, . . . , UH

8n are the subgroups associated with 
the edges of the path, then 

5l = pi, àn = Pn+U 
if 2 ^ k S n, and 

5l = pu an = Pre, 

if k = n + 1. Moreover, because neighbouring vertices of different levels are 
associated with representatives which differ by a single syllable, it is clear that 

p2~1pU • • • , pk-l~lpk-2, Pk+I~lpk-U Pk+l~1pk+2, . . . , pn~
lpn+l 

are single syllables not in U, and alternate out of A and B. Therefore, if 
k S n, then br1^ = pi~lpn+u which has syllable length n — 1; and if 
k = n + 1, 5i—15n = pi~lpn, which again has syllable length n — 1. This 
completes the proof of Lemma 4. 

LEMMA 5. Suppose that G — {A *B; U) is an r-step malnormal product, 
and H < G. If UH

81, UH
8n correspond to the first and last edge of a simple path 

of length n in the enlarged graph of the tree product base S of H, and n ^ r + 2, 
then UH

bl P UH
8n = 1. Moreover, if X0

P0 and Xm
Pm are vertices in the enlarged 

graph of S and the simple path joining X0
P0 to Xm

Pm has length m ^ 2r + 3, 
then gp(X0

P0, Xm
Pm) is the free product X0

Po * Xm
p™. 

Proof. By Lemma 4, <5i_1<5w has syllable length n — 1 ^ r + 1. Therefore, 
since \E0(U)\ Sr, brlànUbn-

lbi Pi U = 1; hence, UH
H H UH

8n = 1. 
Moreover, if X0

Po, XiP l , . . . , X?/w are the vertices in the simple path 
joining X0

Po to Xm
Pm, then these n + 1 vertices generate their tree product. 

Let UH
01, • • • , £VW be the subgroups corresponding to the edges of this 

simple path. Then 

uH
8ir\ uH

8r+2 = i = uH
8™r\ uH

h*+\ 
since m ^ 2r + 3. Therefore, 

i 0
p ° n uH

8r+2 = i = xm
p^r\ uH

ôr+>, 
and so gp(X0

P0, Xm*«) = X0
p° * Xro*". 

This completes the proof of Lemma 5. 

A collection of subgroups {Lt} of a group is called malnormal in K if 
kLtk~l C\ Lj = 1, unless i = j and k £ Lt. 

For example, suppose that K = A * B, and {̂ 4*}, {£z} are malnormal 
collections in A, B respectively; and suppose that {gt} is a collection of 
cyclically reduced elements of K such that each gt has syllable length ^ 2 , 
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each gi has no proper root in K, and gt is a cyclic permutation of gj implies 
that i = j . Then the collection which is the union of {̂ 4*}, {Bt}, {gp(gi)\ is a 
malnormal collection in K. Thus, if K = (a, 6), then the collection of subgroups 
{gp(a)> gp(6), • • • , gpi^b*), . . .}, with i/ F^ 0, is a malnormal collection in K. 

As another example, let K = A * B, where now A is a free group freely 
generated by {at}, i G 7. Let {6*}, i G / , be an indexed set of distinct elements 
( ^ 1) of B. Then 4̂ and ^4' = gp(ai6i, a2b2, . . .) form a malnormal collection 
of (free) subgroups of A * B. More generally, let {6^}, i G I, j G / , be an 
indexed set of elements of 5 such that 6^ ^ 6a» for j ^ k, and bi~lbik ^ 
bpj^bpjc, for Î V ^ and j ^ k\ and let ^ = gp(ai6i;-, a262^, . . .). Then the 
collection of subgroups {^} , j G / , is a malnormal collection of (free) sub­
groups of A *B. Thus, if A = (x,y) and B = (6), then {gp(xbj, yb2i)}, 
j ranging over the integers, is a malnormal collection in (x, y, b). 

A tree product 5 is called a 0-step malnormal tree product if any two neigh­
bouring vertices of 5 together with their amalgamated subgroup form a 0-step 
malnormal product. 

LEMMA 6. Let S be a 0-step malnormal tree product of vertices A t. 
(a) Then any subtree product of S is malnormal in S. 
(b) Moreover, if L is a subgroup of a vertex A\ of S whose conjugates in A\ 

have trivial intersection with the edges of S incident with A\, then each conjugate 
of L in S has trivial intersection with any subtree product of S not containing A i 
as a vertex. 

(c) Finally, if for each i, {Ltj}, j G Ji, is a malnormal collection of subgroups 
of the vertex A t which includes all the edges of S incident with A u then the totality 
of all subgroups Ltj is a malnormal collection in S. 

Proof. First, we observe that A is malnormal in G = {A * B ; U) if and only 
if U is malnormal in B. For, clearly, if U is not malnormal in B, then 6^6_1 G U, 
for some 1 ^ w G U, b G B — U, so b ^ EG(A) ^ A. Conversely, suppose 
that U is malnormal in B, and that gag-1 (z A, 1 5* a £ A, g £ G — A, 
where g has shortest possible syllable length. Then g has a reduced form 
g — gi • • • gs, with gs G B — U. Since gag~l has syllable length ^ 1, a must be 
in U, and so 5 = 1; but then gag-1 G B P\ A = U> contrary to the mal-
normality of U in B. 

To establish (a), we first show that each vertex of S is malnormal in S. It 
clearly suffices to show this when S is a tree product of finitely many vertices; 
in this case, S has an extremal vertex, say A0. Hence, we may write 5 as an 
amalgamated product (A0*So] Uo), where S0 is a 0-step malnormal tree 
product with fewer vertices than 5, and Uo is malnormal in A 0 as well as in a 
vertex of 50. Then, by the transitivity of malnormality and the preceding 
remark, an inductive argument shows that each vertex of 5 is malnormal in S. 

Moreover, given a subtree product of S, we may contract it to a vertex; 
using the transitivity of malnormality, and that each vertex in a 0-step 
malnormal tree product is malnormal in it, it follows that the contracted graph 
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is a 0-step malnormal tree product ; hence, the given subtree product is m a l -
normal in 5 . 

T o show (b) , suppose t h a t a subtree produc t of S does not contain A\, then 
S = (Si * S 2 ; Ui), where JJ\ is an edge incident with A\, and Si, S2 are the 
subtree products which result from deletion of JJ\ from S, and A\ is a ver tex 
of Si, and the given subtree product is a subtree product of S2 . Since A\ is 
malnormal in S, if g £ S and gLg~l C\ JJ\ ^ 1, then g G ^4i, con t ra ry to hy­
pothesis. Therefore by [9, Theorem 4.6], any conjugate of L has trivial inter­
section with S2 and hence with the given subtree product . Since any edge of S 
is contained in a ver tex different from A\, it follows t h a t the conjugates of L 
in S intersect each edge of S trivially. 

T o show (c), let Ltj and Lvq be dist inct subgroups in the given collection of 
subgroups. If p = i, then since A t is malnormal in S, the conjugates of L z i in S 
have trivial intersection with Liq. Suppose t h a t i ^ p. If Ltj is not an edge 
incident with Au then by (b) , the conjugates of Ltj have trivial intersection 
with Av and hence with Lvq. Assume, therefore, t h a t Ltj is an edge incident 
with A i. Now if the edge Ltj is deleted from S, S decomposes into two subtree 
products Si, S2, and S = (Si * S2 ; Ltj). If Lpq is in Si, then since Si is mal­
normal in S, it suffices to show t h a t the conjugates of Ltj in Si have trivial 
intersection with Lvq. Bu t LtJ is not an edge in Si and hence (b) applies. 

T H E O R E M 4. Let G = (A * B; U) be a 0-step malnormal product, and let 
H < G. Then, in the description of H as an HNN group (given by [6, Theorem 5]) 

(6) H = (h, h, . . . , S; rel S, hLrfr1 = Mh t2L2t2~
l = M2, . . .) , 

each pair of associated subgroups Liy Mt generate their free product Lt * Mt, and 
gp(tiy Lt) is the free product (tt) * Lt. In particular, H is the tree product of the 
groups (ti) * Lt and S with the subgroups Lt * Mi amalgamated from the single 
factor S. Moreover, S itself is a 0-step malnormal tree product. Finally, let V be 
any vertex of S; then the collection { UH

81, UH
02, • • •} of amalgamated and associ­

ated subgroups corresponding to the edges incident with V in the enlarged graph 
of S form a malnormal collection of subgroups in V; more generally, the collection 
of all amalgamated and associated subgroups corresponding to the edges in the 
enlarged graph of S form a malnormal collection of subgroups of S. 

Proof. According to [6, Theorem 5], a pair of associated subgroups Lf, Mt 

have the form UH
8, UH

0' respectively, where the corresponding tt = ô 'Pô - 1 

with P G U. Moreover, tt is not in any conjugate of A or B. Hence, ô~1ô/ has 
syllable length ^ 2 ; and so the vertices UH

8, UH
8f of the enlarged graph of S 

have a simple pa th of length ^ 3 joining them. Hence, by L e m m a 5, 

g p ( £ V , Uan = UH
S*UH*'. 

Therefore, 

gp(*„ £ V ) = {U, UH\ UH", rel UH
S, rel UH

S', hU^tc1 = UH
6') 

= {tu £ V ; r e l UH
S) 

= {tt) * U„s. 
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In particular, H is a tree product as asserted (see last Corollary to 
[6, Theorem 5]). 

Since neighbouring vertices and their corresponding amalgamated subgroup 
have the form AH

D, BH
D, and UH

D, they clearly form a 0-step malnormal 
product. 

To prove the final assertion of Theorem 4, let V be, say, AH
D<*. Then in a 

subgroup UH
8i, at has the form Daat, where at £ A and ôt is a w-double coset 

representative. If now h = DaaDa~
1 £ H (where a £ A), and 

huH
bih~ir\ uH

bi * i, 

then aat = afi, where u G U. Hence, HDaaiU = HDaaaiU = HDaajU, and 
so 8i = ôj. Moreover, since UH

8i is malnormal in AH
8i = AH

D<x, we have that 
h G £/#5i. Lemma 6 (c) implies that the totality of all amalgamated and 
associated subgroups form a malnormal collection in S. This completes the 
proof of Theorem 4. 

COROLLARY 1. Let G = (A * B\ U) be an r-step malnormal product and let 
H < G. In the description (6) of H as an HNN group, if the syllable length of a 
cyclically reduced form of tt ^ 2r + 2, then gp(Li} M{) = Lt * Mi and 

gp(tuLi) = (tt) *Lt. 

COROLLARY 2. Let G = (A * B ; U) be an r-step malnormal product, and let 
H < G. In the description (6) of H as an HNN group, if the syllable length of a 
cyclically reduced form of tt is r and a • r ^ r + 1, then gp(ti2a, L7) = (ti2°) * Lt. 

Proof. First we establish the following: If 

H = {^K^relKjLt-1 = M) 

is an HNN group such that taLt~a O L = l, then gp{t2a, L) = (t2(T) * L. 
For, the normal subgroup Nq of H generated by K and tQ is an HNN group 

with free part generated by tQ; its base Sq is the tree product of the factors 
Ki = tlKt~\ 0 S i < q, with the subgroups ^ « I r ^ " = PLlr* amalga­
mated between K^i and Kt; moreover, the pair of associated subgroups for 
Nq are L, tQLt~Q. (This follows easily by using the Reidemeister-Schreier 
theorem on Nq.) 

Now 
S 2a = (S9*FS0t-*\FLlr°). 

Since L C\ t'Llr* = 1 = t2<TLt~2<r C\ t'Llr*, we have that gp (L, t2<TLt-2(T) = 
L * t2<TLt~2(T\ hence, gp(t2(T, L) = {t2(T) * L. 

To prove the corollary, let Lt = UH
Ô, Mt = UH

8', and tt = ô'P8r\ P £ U. 
Then Lt H tfLitr* = 1; for, b~Hfb has syllable length o- • r ^ r + 1, and 
G is r-step malnormal. 

COROLLARY 3. Any indecomposable {with respect to amalgamated product) 
subgroup of a 0-step malnormal product is either infinite cyclic or contained in a 
conjugate of a factor. 
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Proof. This follows easily from [6, Theorem 6], Theorem 4, and Lemma 2. 

COROLLARY 4. Under the same hypotheses as in Theorem 4, 

gp(tiy S) = ((tt * Lt) * 5 ; Li * Mi), 

which is a l-step malnormal product. 

Proof. That gp(tuS) is the amalgamated product indicated holds because 
(ti) * Lt and S generate their subtree product in H. 

To establish the l-step malnormality, we show that the hypotheses of 
Lemma 8 of § 6 are satisfied. Now Lu Mt occur in different vertices of S. 
Hence one can find an edge Q and S such that 5 = (C * D; Q), where C, D 
are the subtree products of S which result from deletion of Q from S, and the 
vertex of 5 containing Lt is a vertex of C whereas the vertex of S containing Mt 

is a vertex of D. By Lemma 6, each conjugate of Lt or Mt in S intersects Q 
trivially. Hence, Lemma 8 applies. 

THEOREM 5. Let G = (A *B;U) be a 0-step malnormal product in which 
A, B are both finite. Then any subgroup H of G is the free product of a free group 
{possibly trivial) and factors of the type AH

D, BH
D, or (AH

D * BH
D; UH

D)-

Proof. In the HNN description of H as given by [6, Theorem 5], each of the 
associated and amalgamated subgroups is malnormal in its corresponding 
vertices (by Theorem 4). Now in a finite group any two proper ( ^ 1 ) mal­
normal subgroups are conjugate (see the remarks at the beginning of § 5). 
Hence, by the last part of Theorem 4, any vertex in the tree product base 
of H cannot contain more than one corresponding non-trivial associated or 
amalgamated subgroup. Hence, the tree product base 5 decomposes into the 
free product of groups of the type AH

D, BH
D, or (AH

D * BH
D\ UH

D). 
Moreover, any generator t of the free part of H which has trivial associated 

subgroups can be factored out of H as a free factor. Furthermore, any generator 
/ of the free part of H with a non-trivial associated subgroup corresponds to 
vertices, AH

8, BH
8/ all of whose other associated and amalgamated subgroups 

must be trivial; hence, 

T = gp(/, AH\ BHn = (t, AH\ BH
8'; rel AB\ rel BB", WHH^ = UH*') 

is a factor of H (as a free product). Moreover, / = à'Ptir1, where P G U. 
Hence, AH

8' = tAHH~\ and 

T = (t, AH
8', BH

8'; rel AH
8', rel BH*\ £ V ' = UH") = (t) * {AH

8' * BH"; UH
8'). 

Consequently, i f is a free product as claimed. 

The two generator subgroups of a 0-step malnormal product have a parti­
cularly simple description: 

THEOREM 6. If G = (A * B; U) is a 0-step malnormal product, then any 
two-generator subgroup of G is the free product of two cyclic groups or is contained 
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in a conjugate of a factor. More generally, if G is a 0-step malnormal tree product, 
then the same result holds. 

Proof. The proof is essentially the same as that in B. Baumslag [1]. Assume 
the theorem false and let a be the least possible syllable length of an element 
of G, which together with another element of G makes the theorem false. 
Furthermore let y be of minimal syllable length with respect to the property 
that there exists an x of syllable length a and gp(x, 3;) makes the theorem false. 

Case 1. a = 0, i.e., x £ U. 
Clearly, we may assume that ft > 1 and that y = fi . . . fp is a reduced form 

for y. Since U is closed in A (i.e., an £ U, n > 0, implies that a £ U) and in B, 
it is easy to show that if yk 9e- 1, k > 0, then yk has a reduced form which 
begins with fi and ends with fp. Since f\~lxyfi g U when xy 9^ 1, if fp = / i - 1 , 
then gp(x, y) = gp(x) * gp(;y). Moreover, iîfpxyfi Ç U, then y can be replaced 
(without changing gp(x, y)) by an element whose first and last syllables are 
inverses. Hence, we may assume that when xy 7* 1, neither fpxyfi, nor/i - 1^7 /^ - 1 , 
nor f$xyf$~l is in U. It then follows again that gp(x, y) = gp(x) * gp(j) . 

Case 2. a = 1, 0 = 1. 
To be specific, suppose that x £ A — U. If 0 = 1, then y £ B — U. 

Therefore, gp(x) H [ / = l = gp(y) ^ U. Hence, gp(x,y) = gp(x) *gp(y). 

The remaining cases follow as in B. Baumslag [1], simply by using the fact 
that U is closed in A and B, and by replacing conditions such as uxy, y 9^ 0" 
by u

x
y 9± 1". 

If G is a 0-step malnormal tree product then one can assume that G has 
finitely many vertices and use a standard inductive argument. 

COROLLARY. Let G = (A * B; U) be a 0-step malnormal product, and suppose 
that x, y are two elements of finite order which are not both in a single conjugate 
of a factor. Then gp{x,y) = gp(x) *gp(y). More generally, the result holds 
if G is a 0-step malnormal tree product. 

Proof. If H = gp(x, y) is cyclic, then clearly it is contained in a conjugate 
of a factor. Hence, H = gp(p) *gp(<z); moreover, we may assume (after 
conjugation) that x G gp(p)> Since the conjugates of gp(p) cannot generate H, 
y is in a conjugate of gp(g). But gp(£) and a conjugate of gp(g) generate their 
free product; thus, H = gp(x) *gp(3>). 

5. Examples of 0- and 1-step malnormal products. As noted in the 
introduction, (A * B ; U) is a 0-step malnormal product if and only if U is 
malnormal in A and B. Thus, to construct examples of 0-step malnormal 
products, we need to be able to construct groups having malnormal subgroups. 
Moreover, if U is malnormal in A or in B, then any amalgamated product 
{A * B; U) is 1-step malnormal. In this section, we describe several types of 
examples of groups having malnormal subgroups. 
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(Note, however, that the condition "(A * B; U) is 1-step malnormal" is not 
equivalent to the condition that " U is malnormal in A or in B". For example, 
let A = (a,u\ au2 = u2a, u%), B = (b,u; buz = u3b, u%), and U = (u; ue). 
Then in (A *B; U), clearly EA(U) = A ^ U 5* B = EB(U); on the other 
hand, EA(un) = U, for n = 1, 3, 5, and EB{un) = U, for n = 1, 2, 4, 5, so 
(/I * i3 ; £/) is 1-step malnormal. This example is a special case of a class of 
1-step malnormal products (called "free products with centralized subgroups") 
which we describe at the end of this section.) 

If 1 j* U < A, the condition Eu(A) = U is equivalent to U being its own 
normalizer and having trivial intersection with each of its distinct conjugates. 
Thus, if A is finite and U is malnormal in A with 1 ^ U ^ A, then A is a 
familiar type of group, namely, a Frobenius group with complement U. As is 
well known, when A is finite the elements of A outside of U and its conjugates, 
together with 1, form a normal subgroup of A (called the kernel of A) with 
complement U; moreover, any pair of Frobenius complements are conjugates 
(see, for example, [14, p. 354]). (If A is infinite, neither of these results neces­
sarily holds.) 

Obvious examples of such groups are obtained by taking A to be a transitive 
permutation group in which each permutation different from the identity 
permutation has at most one fixed point, and taking U to be the subgroup that 
leaves a given point fixed. (Indeed, this permutation description of a group 
with a malnormal subgroup is equivalent to the abstract description.) For 
example, let A be the group of linear functions (under resultant composition) 
f(x) = ax + b over a field F, where b ranges over F and a ranges over a sub­
group M of the multiplicative group of F. The subgroup U of functions, which 
have fixed point 0, viz., ax with a G M, is a malnormal subgroup of A. 

Since the literature on finite groups having malnormal subgroups is extensive, 
we shall concentrate our attention on infinite groups having malnormal 
subgroups. 

First, we prove a theorem which allows us to determine the malnormal 
cyclic subgroups of an r-step malnormal product. 

THEOREM 7. Let G = (A * B ; U) be an elementwise malnormal product. 
Suppose that h (?^1) is in G and H = gp(h). Then, if h is not in a conjugate of 
A or B, EG(H) = N(H); if, additionally, h is not the product of two elements 
of order two and h has no proper roots {i.e., H is a maximal cyclic subgroup of G), 
thenEG{H) = H. 

If h is in a factor A or B but H intersects each conjugate of U trivially, then 
E G (H) is in that same factor. 

Finally, if hn(^l) is in U, then EG(H) is in a conjugate of a factor, provided 
that either U is malnormal in A or in B, or h has prime power order, or h has 
infinite order and \EG(gp(hn))\ < 00. 

Proof. Let x G EG(H) and xhpx~l = hq, where hp ^ 1. 
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Suppose that h is not in a conjugate of a factor. Then we may assume that h 
is cyclically reduced and of length ^ 2. Since xhvx~l = hq, it is easy to see (by 
using length arguments on cyclically reduced forms) that p = ±g . Therefore, 
(xhx~l)v = heP, e = d=l. Hence (by the corollary to Theorem 1), xhx~l = he, 
i.e., x is in N(H), and so EG(H) = N(H). Moreover, if h is not the product of 
two elements of order two and H is maximal cyclic, then N(H) — C(h) is 
cyclic, and so EG(H) = H. 

Suppose next that h is in a factor, but H intersects each conjugate of U 
trivially. Then hp, hq are properly contained in a factor and so x must also be 
in that factor. Hence, EG(H) is in the same factor as h. 

Suppose now that U is malnormal in A or B, say EA(U) = U. Hence, by the 
first remark in the proof of Lemma 6, B is malnormal in G; therefore, EG(U) 
is in B. If hn(^\) is in U for somen, then h is in EG(hn), and so h is in B; hence, 
H < B and EG(H) Is'mB. 

Suppose next that h has infinite or prime power order. We first observe 
that EG(H) is a subgroup. For, clearly x G EG(H) implies that x~l G EG(H). 
Suppose also that y G EG(H) and yhsy~l = h\ hs ^ 1. If h has infinite order, 
then xyhsvy~lx~l = hts with hsp 9e 1, and so EG(H) is a subgroup. If h has 
prime power order p\ then we may assume that p = pf- and 5 = p^. Since 
hQ has order pik~~a and h* has order pik~^, we have that p\q and s\t. Letting 
7 = lcm (p, s), we see that hy ^ 1 and 

xyfry-ixr1 = x(yhsy-l)i,sx~l = xJp{t,s)x-1 = h^Qt)/(ps\ 

and again EG(H) is a subgroup. 
Let ~kn{y£ 1) be in [7. If A has infinite order, then xhvnx~x = /zçw; hence, x is in 

EG(gp(/£w)). If h has prime power order p\, then we may assume that n = pi8 

and p = pia. Letting d = lcm(w, £) we have that 

xhdx~l = (xhTxr1)*'* = hd/(qv); 

hence, x is again in EG(gp(hn)). In both cases, EG(H) is a subgroup of 
EG(gp(hn)), and therefore by Lemma 1, EG(H) is in a conjugate of a factor. 

COROLLARY 1. Let G be a 0-step malnormal tree product, 1 9e h ^ G, and 
H = gp(h). If h is in some vertex then EG(H) is in that vertex. Suppose that h 
is not in a conjugate of any vertex of G, h has no proper roots (i.e., H is maximal 
cyclic in G), and h is not the product of two elements of order two; then H is 
malnormal in G. 

Proof. Clearly, it suffices to show that the assertions hold when G has only 
finitely many vertices. Since each vertex of G is malnormal in G, if h is in some 
vertex, EG(H) is also. Suppose, then, that h satisfies the last conditions in the 
hypotheses above. If Ai is an extremal vertex of G, then G = (Ai * Gim, Ui), 
where G\ is the subtree product arising from G by deleting A\ and its edge U\. 
If h is in a conjugate of Gi, then by inductive hypothesis, H is malnormal in 
that conjugate of Gi, and therefore H is malnormal in G. Otherwise, Theorem 7 
applies and again H is malnormal in G. 
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COROLLARY 2. If we take an amalgamated product of two free groups with the 
amalgamated subgroup maximal cyclic in one of the factors, then take an amalga­
mated product of two such groups with the amalgamated subgroup again maximal 
cyclic in one of the factors, and continue to repeat the process finitely often, we 
always arrive at 1-step malnormal products; if at each stage the amalgamated 
subgroup is maximal cyclic in both factors, then we always arrive at 0-step mal-
normal products. 

COROLLARY 3. Let G = (A * B ; U) be an r-step malnormal product. Suppose 
that a Ç A — U, b £ B — U. If either coset Ua or Ub has no elements of order 
two, then gp(ab) is malnormal in G. 

Proof. Clearly, H = gp(ab) is maximal cyclic in G. It is easy to show by 
using length arguments that, if ab — cd where c and d have order two, then 
Ua and Ub have elements of order two. 

As an application, let G be presented by 

(7) G = (ai, bi, . . . , aP, bP, si, . . . , sd, c\, . . . , cr\ 

sin\ . . . , sd
n*, &iffl . . . V s i ' 1 • • • sa^c^ . . . cT

mr) 

where kt = [ait 6 J, 0 < tt < nt,0 < mû it follows from elementary number 
theory that without loss of generality we may assume that ti\nt. Then G can 
be expressed as a 1-step malnormal product (in which the amalgamated subgroup 
is malnormal in one of the factors) unless one of the following degenerate cases 
occurs: p + d + r ^ 2; p = r = 0, d = 3; p = r = 0, d = 4, and each 
nt/ti = 2; p = 1, r = 0, d = 2, and each nt/ti = 2; p = 0, r = 1, d = 2, and 
each nt/ti = 2. For example, if p = r = 0, d = 4, and tii/ti ^ 2, then 

G = ((su s2; s^, s2
n2) * <s3, s4; s^z, <r4

W4>; s^s2
t2 = sz-^sru); 

hence, by Corollary 3 above, with A = gp(si), B = gp(s2), U = 1, a = Si'1, 
b = s2

t2, we see that G is a malnormal product as stated. Thus, except for the 
degenerate cases, the groups G in (7) have the cyclic centralizer property; more­
over, the only subgroups satisfying a non-trivial law are cyclic. In each of the 
excluded cases there are groups which fail to have the cyclic centralizer 
property. 

The groups G in (7) include as a special case the finitely generated orienta­
tion-preserving discrete groups of motions of the hyperbolic plane; these 
hyperbolic groups all have the cyclic centralizer property (see Greenberg [3]). 

Next, we generalize an example of T. Lewin [8]. 

THEOREM 8. Let {Lt}, i £ I, be a malnormal collection of subgroups of a group 
K, and let {xt) be a collection of distinct elements of a group X. Then the subgroup 
U generated by the subgroups 

U = Yi^iXiLixr1), 
i 

is malnormal in X * K. 
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Proof. The proof is similar to that of [1, Lemma 2]. As in that proof, let 
A = X * K, and let {xa} denote the elements of X, where a ranges over an 
index set containing / . Then the normal subgroup N of A generated by 
K, N = KA, is the free product of the conjugates KX<T. Moreover, if aY G A — U, 
then a\ has the form 

ai — xa - kiVl . . . kr
Vr. u = au, 

where yt = xffi, i = 1, . . . , r, xff1 xai G X, kt G K, at ^ <ri+1, u G U, and if 
<rT G I then &r G Lar. 

Suppose that EA(U) ^ U; let rf(^l) be an element of U of smallest 
syllable length s such that adar1 G t/, for some a G EA(U) — U. Now d has 
the form 

d = CiZl. . . cs
2', 

where zt = xTiJ i = 1, . . . , s, rt G / , c* G £T,-, and n j£ ri+1; hence, 

ada-1 = kix'Vl . . . krW'Cx*'** . . . cs
x<*'krx'v* . . . krx*Vl. 

First, suppose that xa = 1. If ar ^ n or o> ̂  r5, then the presence of the 
syllable kr

Vr or kr~
Vr prevents adar1 from being in U; if <rr ~ n = rs, then the 

presence of the syllable (&rCi)Zl, (^ r
_ 1 ) z % or (^Ci^,--1)*1 prevents ada~l from 

being in U. 
Hence, we may suppose that xa ^ 1. In this case, cXaZi cannot be a syllable 

of ada-1] for, if xaxTi = xjy j G i", then since Z^ H LTi = 1, we have ct G Lj 
and so ad&_1 G U. Hence, r > 0 and n = <rr = rs. If s > 1, then a' = ac^1, 
d' = ^2Zl . . . (csC\)Zs would have the same properties as a, d although df has 
shorter syllable length than d. Finally, if s = 1, then XffXf^ Xj, J 7*- 7"i, 

krLTlkr~
l C\ Lj = 1, so again we have ada~l G U. This completes the proof 

of Theorem 8. 

As an illustration, let K = gp(u) * A, and let X = gp(z>), where A is 
arbitrary and X is infinite cyclic. If a,\, a2, . . . are distinct elements ( ^1 ) of ^4, 
then {gp(w), gp(wai), gp(wa2) . . .} is a malnormal collection of subgroups of K 
(see the first illustration following the definition of a malnormal collection of 
subgroups). Hence, 

gp(u, v~Hia\V, v~2ua2v
2, . . .) 

is a malnormal in gp(u) * gp(v) * A This special case was proved by T. Lewin 
(see [8, p. 394, lemma]). 

COROLLARY. Let ^ be a class of groups including the infinite cyclic group and 
let 2) be a class of groups including the infinite cyclic and infinite dihedral groups. 
If A is a countable group having one of the following properties, then A can be 
embedded in a three-generator group having that property: the centralizer of any 
non-trivial element of A belongs to *&; the normalizer of any infinite cyclic sub­
group of A belongs to Q>r; the subgroups of A satisfying a particular non-trivial 
law belong to 2; any indecomposable {with respect to amalgamated product) 
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subgroup of A belongs to *&; any two-generator subgroup of A is free {or more 
generally is a free product of two cyclic groups). Moreover, if A is an n-relator 
group, then the three-generator group is an n-relator group. 

Proof. We modify an argument in T. Lewin [8]. Let ai, a2, . . . be distinct 
generators ( ^1 ) of A; let T̂ i = (u,v) and F2 = (x,y). Then u,v~HtaiV, 
v~2ua2v

2, . . . freely generate a malnormal subgroup S of F\ * A. Moreover, it 
can be shown that xyx, x2y2x2, xsy3xs, . . . freely generate a malnormal sub­
group T of F2. Hence, the amalgamated product (F2 * (Fi * A); T = S) is a 
0-step malnormal product, which is clearly generated by x, y, v. Furthermore, 
the relations resulting from T = S, merely serve to define u, a±, a2, . . . in 
terms of x, y, v. These relations may be deleted provided we replace the at 

in the defining relators of A by their equivalents in terms of x, y, v. Hence, 
if A is an ^-relator group, then the three-generator group is an ^-relator group. 

An interesting class of groups with malnormal subgroups is provided by 
groups with one defining relation 

(8) G = (a, b, c, . . . ; Rn), n > 1 

having torsion. B. B. Newman [13] has shown that the subgroup generated by 
any proper subset of the generators of G is malnormal in G. Hence, if we use 
the standard Magnus embedment to embed G in a one-relator group with 
torsion having zero exponent sum on one of the generators, then the normal 
subgroup N generated by all the other generators is a 0-step malnormal tree 
product whose vertices are ''shorter one-relator" groups having torsion. 

Also, in (8), if R is not itself a proper power in the free group on a, b, c, . . . , 
then gp(R) is malnormal in G (see [5]). 

Finally, we describe two other types of examples of 0- and 1-step malnormal 
products: free products with commuting subgroups and free products with 
centralized subgroups ([9, pp. 220-221, exercises 22 and 27]). Specifically, let 
Hi, Ki be malnormal subgroups of A\, B\, respectively. 

For the first construction, form the group G with presentation obtained by 
writing down a presentation for A\ * B\ and then adjoining defining relations 
which state that each word in a given set of generators for H\ commutes with 
each word in a given set of generators for K\. It is easily shown that 
G = (A *B; U), where A = gp(A1, KJ = (A± * (Hx X i £ i ) ; # i ) , 

B = gpCffi, B±) = ((Hi X K±) * Bi; K±), 

and U = Hi X K\ (direct product). Since Hi, Ki are malnormal in Ai, Bi, 
respectively, U is malnormal in A and in B (see the first remark in the proof 
of Lemma 6). Thus, G is a 0-step malnormal product. For example, the group 

G = {a, b, h, k; az, h2, (ah)2, V, k2, (bk)2, hk = kh) 

is the free product of two symmetric groups of degree three with commuting 
cyclic subgroups of order two. It then follows, e.g., that the abelian subgroups 
of G are infinite cyclic, cyclic of order two or three, or Z2 X Z2. 
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For the second construction, form the group G with presentation obtained by 
writing down a presentation for Ai * B\ and then adjoining defining relations 
which state that each A i-generator commutes with a set of words which 
generate Ki and that each .^-generator commutes with a set of words which 
generate Hi. It is easily shown that G = (A * B; U), where A = A\ X Kly 

B = H1X 5 i , and U = Hx X Klm Now in G, if u = (fclf &i), then £A(w) = [7, 
when hi 9e 1, and EB(u) = £7, when &i ^ 1. Thus, G is a 1-step malnormal 
product (although ordinarily U is not malnormal in A or in B since EA ( U) = A 
and EB(U) = B). 

For example, if Ai = (a, c; c2), Bi = (b,d;ds), Hi = gp(c), i£i = gp(^), 
then the group 

G = (a, b, c, d; ad = da, be = cb, cd = dc, c2, dz), 

is the free product of Ai and Bi with the centralized subgroups Hi and Ki\ 
since U — Hi X Ki = gp(u) is cyclic of order six, 

G = (a, b, w, au2 = u2a, buz — usb, uQ), 

which is the group given near the beginning of this section. 

6. Examples of r-step malnormal products. The examples of r-step 
malnormal products we give in this section all arise from HNN groups 

(9) G = (h, t2,...,K; rel K, hUtr1 = *>i(Li), t2L2t2~
l = <p2(L2), . . .), 

where {cfi} is a collection of isomorphisms of {Lt} into K; as usual we denote 
<Pt(Li) by Mi or L_*. To construct these examples, we use the standard 
embedment (of Higman, Neumann, and Neumann [4]) of the HNN group 
given by (9) in the amalgamated product 

(10) E = (A * £ ; U) = X * G = F * G, 

where 

A = X *K,B = Y *K, U = K * . . . * XiL&c1 * . . . 
= K * . . . * yiMyr1 * . . . , 

and X, Y sere free groups on xu yu respectively, and tt = yf^i, 2 = 1 , 2 , . . . . 

LEMMA 7. Let A be the free product X * K of two groups X and K, and let 
x0 = 1, Xi, . . . , xn be distinct elements of X such that XiXf1 7e xpxq~

1, unless 
i = j or i = p, where 0 ^ i, j , p, q t== n. Suppose that L0 = K, Lx, . . . , Ln are 
subgroups of K and that U = XoZ^o-1 * . . . * xnLnxn~

l, and let ai £ A — U. 
If aiUar1 H [ / ^ l , then aiUar1 C\ U = aXiLiX^cr1 ^ U, where ax = auu 

m £ U. Moreover, if L/ < Lu then the intersection axiL/xf^a-1 P\ U, if non-
trivial, is uXj(Lj C\ kLi

,'krl)x3-
1u-1, for some 0 = J' = n, u £ U, and k £ K; 

furthermore, a = uXjkxi"1, k ^ 1 or k £ L3-, and i ^ 0 or j 9^ 0. 

Proof. This is the same as that of [7, Lemma 2]. 
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THEOREM 9. Let G be an HNN group 

G = (t.K^elK.tLr1 = M) 

satisfying the following conditions: 
(a) L and M are malnormal in K. 
(b) There exists r > 0 such that for any ki, . . . , kr £ K, 

( i i ) LPi'"1*!pL«-I*I'-I*2r\,. ,r\L^1^../-1^ = 1. 

Then the amalgamated product corresponding to G, E = (A * B ; U), described 
in (10), w a 2r-step malnormal product. 

Proof. Now, condition (b) is equivalent to 

(12) Mr\ Mtk^r\ Mtkitk*r\.. . p MtkK..tkr = 1, 

for any &x, . . . , kr £ K (simply conjugate the left hand side of (11) by 
tkrH. . .krH). 

We first show that if 

(13) baxUx-'a-'b-1 P U 

is non-trivial, where Lf < L, a G A — U, b £ B — U} then (13) equals 

uxx(L P t-lkL'k~lt)x-lur\ 

where u\ £ [/. For, by Lemma 7, 

(14) axZ/x-1^-1 P U = u2Xj(Lj P kiL'kr^xf^-1, 

and a = u2xjkix~1. Now j = 0, for, otherwise, Lù = L > Z/, and so &i £ L 
which implies that a £ £7, contrary to the definition of a. Hence, 

axLfx~la~l P U = u2L'u<rl, 

and so (13) equals 

(15) bu2(yoLfyo-1)u2-
1b-1 P £7. 

Hence, again applying Lemma 7, we have that bu2 = Wî yfyo-1 and (15) 
becomes 

(16) Uly (M P kUk-^y-'ur1 ; 

since £_1 = x~ly, (16) equals 

(17) u&t-^M P kLfk~l)tx~lurl = uxx(L P 1rlkL'k-H)drlurl-

It is now easy to show by induction that 

bTar . . . biaixLx~lai~lbi~l . . . aT~lbT~l P £7 

= ux{L P L'"1*! P L<-1*i«-1*2 . . . p L ' - 1 * ! - ' - 1 * ^ ^ ^ - ^ 

which by hypothesis is trivial. 
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Clearly, because of the symmetric conditions on L and M, we may assume 
that 

arbr . . . aJjxyMy^bi^ar1 . . . bT~larl C\ U = 1. 

To prove Theorem 9, suppose that p G EE(U) and \p\ ^ 2r + 1. Now, 
using Lemma 7, it is easy to show that 

pUp-1 H U = piXiLiX^pr1 r\ U, i = 0 or 1, 

where |̂ ?i| = |/>|. IH = 1, the preceding argument shows that pUp~l C\ U = 1; 
hence, i = 0. Because of the symmetrical hypothesis, we may assume that 
pi = qa, where a, the last syllable of pi, is in A — U. But then by Lemma 7, 

aKar1 C\ U = u%Lx~1u~x, 

and, therefore, 

pUp~xr\ U = {qu)xLx~l{(iu)-ir\ U, 

where \qu\ ̂  2r. Thus, again by the preceding argument, pUp~l C\ U = 1. 
This completes the proof of Theorem 9. 

We shall see (in Theorem 10) that the groups G in Theorem 9 include one-
relator groups having torsion and zero exponent sum on some generator. 

Using similar arguments we may prove Corollaries 1 and 2. 

COROLLARY 1. Let G be an HNN group 

G = (t,K;re\K,tLt-1 = M) 

satisfying the following conditions: 
(a) L and M are malnormal in K. 
(b) kLk~l H M = 1 unless k G L C\ M. 
(c) There exists an integer r > 0 such that L C\ trLt~r = 1. 

Then the amalgamated product corresponding to G, E = (A * B\ U), described 
in (10), is a 2r-step malnormal product. 

For example, let 

G = </, ai, a2> . . . , a»; twxtr
l = w2)} 

where Wi, w2 are words in the at which are not proper powers, and which, 
when cyclically reduced, are not cyclic permutations of each other. Then the 
conditions of Corollary 1 are clearly satisfied with L = gp(^i) , M = gp(^2), 
K = («i, . . . , an) and r — 1. 

COROLLARY 2. Let G be an HNN group 

G = (tu t2,...,K;rel K, hL^r1 = L_i, t2L2tr
l = L_2, . . .) 

satisfying the following conditions: 
(a) For each k 6 K, and each pair i,jy kLikr1 C\ Lû = 1, unless k G LtC\ Lj. 
(b) There exists an integer r > 0 such that, if W(h, . . . , tT) is a freely 

https://doi.org/10.4153/CJM-1971-102-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-102-8


954 A. KARRASS AND D. SOLITAR 

reduced word of length r in the free part of G, then WLiW~1 C\ Lj = 1, for each 

i,j for which ij > 0. 
Then the amalgamated product E in (10) is a 2r-step malnormal product. 

Any HNN group satisfying the conditions of Theorem 9, Corollary 1, or 
Corollary 2 will be called an HNN group with r-step malnormal associated 
subgroups, or simply an r-step malnormal HNN group. 

I t follows, for example, t h a t in an r-step malnormal HNN group, the centralizer 
of an element ( ^ 1 ) is infinite cyclic or contained in a conjugate of K, the nor-
malizer of a cyclic subgroup ( ^ 1) is infinite cyclic, infinite dihedral, or contained 
in a conjugate of K; a subgroup of G satisfying a non-trivial law is infinite cyclic, 
infinite dihedral, or contained in a conjugate of K. 

COROLLARY 3. Let G be an HNN group 

G = (h, t2,...,K; rel K, hLrfr1 = L_i, t2L2t2~
l = L_2 , . . .) 

in which the centralizer of an element ( ̂  1 ) is cyclic or contained in a conjugate 
of K; then the free part T = gp(h, t2, . . .) is malnormal in G. In particular, 
if G is an r-step malnormal HNN group, then its free part is malnormal in G. 

Proof. If AT = KG, then any element g of G has the form g = nw, where 
n G N, w G T. Suppose t h a t W\ (^l),w2 are in T and nww\W~ln~l — w2. 
Since T is a re t rac t of G with kernel N, wwiw~1 = w2, and so n is in the cen­
tralizer of w2. li n 7e- 1, then a non-zero power of w2 would be in AT, which is 
impossible. 

COROLLARY 4. Let G be an HNN group 

G = (h, t2,...,K;rél K, hLxtr1 = L_i, t2L2t2~
l = L_2 , . . .) 

in which the collection of associated subgroups {L^ is a malnormal collection in 
the base K. Then G is a 1-step malnormal HNN group; moreover, each associated 
subgroup Li is malnormal in G. 

Proof. Le t N = KG. Then A is the tree product of the vertices wKw~l, 
where w ranges over all freely reduced words in the free pa r t T of G; for each 
w the collection of subgroups {wL^w1} corresponds to the collection of edges 
incident with the vertex wKw~1, and is malnormal in wKw~l. Hence, A is a 
0-step malnormal tree product ; moreover, Lemma 6 (c) implies t ha t the 
collection of subgroups corresponding to all the edges of A is malnormal in A . 
I t follows, therefore, t h a t the hypotheses of Corollary 2 above are satisfied 
with r = 1, and so G is a 1-step malnormal HNN group. 

T o show t h a t Lt is malnormal in G, suppose t h a t nwLiw~1n~1 C\ Lt ^ 1, 
where n G A, w G T. If w ^ 1, then wL{w~Y and Lt are pa r t of a malnormal 
collection in A ; hence, w = 1 and n G Lu so Lt is malnormal in G. This 
completes the proof of Corollary 4. 

I t should also be noted t h a t for part icular cases of r-step mal normal HA A 
groups, the s tandard embedment m a y not be the most economical. For 
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example, if G is an HNN group whose base is a free product K = Ki * K_i 
such that {Li}, {Mt} are malnormal collections of subgroups of Ki, K_i, 
respectively, then G is a 1-step malnormal HNN group; the standard embed­
ment E yields a 2-step malnormal product. On the other hand, G can be 
embedded in the group 

(18) ((X*Ki) * (Y*K-1);U*x1JLixc1 = WytM&c1) 
i i 

where X and Y are as in the standard embedment; using Theorem 8, we see 
that (18) is a 0-step malnormal product. 

An important class of r-step malnormal HNN groups is provided by one-
relator groups G having torsion. If the relator Rn, n > 1, is such that some 
generator of G occurs exactly once in R, then G is the free product of a free 
group and a cyclic group of order n; if some generator does not occur in R, 
then again G is a free product. Hence, we may restrict ourselves to relators 
Rn in which each generator occurs at least twice in R. 

THEOREM 10. A group with one defining relator Rn, n > 1, such that R has 
zero exponent sum on some generator involved in R is an r-step malnormal HNN 
group 

G = (^KirelKjLr1 = M), 

where K is a group on one relator Pn with P of shorter length than R, and L, M 
are free. 

Proof. Let 
G = (a, 6, cy . . . , Rn), 

where R has zero exponent sum on a; for convenience of notation, we assume 
that G has three generators a, b, c. Moreover, as Moldavanski [10] has 
observed, G is an HNN group 

(19) G = {tiKïRfitLr1 = M), 

where t = a; RQ is the word obtained from R by rewriting R in terms of the 
conjugates bt = afba~l and ct = aica~i; K is the group with the single denning 
relator Ron and with generators bit Cjj where i ranges between the minimum 
subscript X = \(b) and the maximum subscript /z = /x(6) occuring on b in 
Ro, and, similarly, X' = X(c) ^ j ^ // = /x(c); and L is the free group on 

b\, . . . , bp-i, C\'y . . . , <V-i . 

Moreover, RQ has shorter length then R. Also, since each generator occurs at 
least twice in Q, we may assume that X < ix. 

We shall prove that, if r = max(ju — X, \x' — X;), then G (when written as 
in (19)), satisfies the conditions of Theorem 9. To do this, we use some results 
of B. B. Newman [13]. 

First of all, L, M are malnormal in K\ indeed, as we have already indicated, 
any proper subset of the generators of a one relator group having torsion 
generates a malnormal subgroup of the group. 
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Next, we show that if k G K and 

D = k gp(bx, . . . , 6M_„ c\>, . . . , c^- , )^-1 P M ?* 1, 
then 

(20) D = wi gp(6\+i, • • • , hs, cx>+i, . . . , ^ ' - J m r 1 , mi G M. 

For, suppose that klw^r1)^1 = mw2m~1, where /, w\ are in 

gp(&x, . . . , bps, cx>, . . . , <y-,), 

Wi ( F ^ I ) is cyclically reduced, m,w2 G M", and w2(9
£l) is cyclically reduced. Now, 

W\, w2 are both in L P M. For, it follows from [13, Lemma 2.3.1], that either 
w\ orw2 is in L P M ; if w2 G L P M, since L is malnormal in X, h = m~lkl G L. 
But L = gp(&x, C\') * (L C\ M) (since by the Spelling Theorem in [13], 
L P M = gp(6\+i, . . . , &/*-i, cx'+i, • . . , V - i ) ) a n d w i is a cyclically reduced 
element of L which is conjugate in L to an element of L P M ; therefore, îe/i 
is also in L P M. Similarly, W\ G L P M implies that w2 G L P M. Moreover, 
since L Pi M is malnormal in i£, /i G £ P M. Therefore, if m,\ = ra/i, 

D = mi(gp(bXj . . . , b^s, ex', . . . , <v_,) P I J w f 1 

= mi gp(6x+i, • • • , V-*> cx'+it • • • > ^ ' - J ^ f 1 -

Consequently, 

Lr\L1-1^ = ( M P L * ! ) ' " 1 

= (wi gp(6x+ii • • • > fyi-i» ̂ x'+i» • • • » ^ _ i ) w f 1 ) H 

= h gp(^X, • . • , &„-2, ^X', . . . , ^ ' - 2 ) / 2 _ 1 , /2 G L . 

By induction on s, it follows that 

(21) L P L'-1*1 P . . . P L*-1*!...'-1*. 
= ls+i gp(bx, . . . , 6/i-s-i, ex', . . . , ^/i'-s-i)^+i-1» 

where /s+i G £ . Hence, if 5 = r = max(/x — X, // — X'), then (21) is trivial. 
This completes the proof of Theorem 10. 

It follows then, for example, that in a one-relator group G having torsion, the 
centralizer of an element (?^1) is cyclic (this is also proved in [13]); an 
element of infinite order has at most one qth root for any q; the normalizer of a 
cyclic subgroup is cyclic, or infinite dihedral; a maximal cyclic subgroup 
H = gp(h) of G is malnormal in G unless h is the product of two elements of 
order two; and a subgroup of G satisfying a non-trivial law must be cyclic or 
infinite dihedral (for another proof of this last result, see [7]). 

COROLLARY. Using the notation of Theorem 10, no subgroup H of G can be 
a union of subgroups of conjugates of K unless H is in a conjugate of K. 

LEMMA 8. Let G be the HNN group 

G = (t, S; rel S, tLt~l = M), 
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where S = (C * D\ Q) is a 0-step malnormal product, L, M are malnormal in 
C, D, respectively, and the conjugates of L in C and of M in D each intersect Q 
trivially. Then 

(22) G = ((gp(/) *L) * (C*D;Q);L*M), 

and is a 1-step malnormal product. 

Proof. Since L C\ Q = I = M C\ Q,it follows that U = gp(L, M) = L * M, 
T = gp(t, L) = gp(t) * L, and, hence, that G can be written as in (22). 

Next, we note that by [7, Lemma 2] (using X = gp(t)y K — L, Xi = /, 
Li = L), if T G T - [7, then rC/r"1 C\ U < uLu~l or rCV"1 H [ / < uMu~\ 
for some u £ U. 

Moreover, if a £ 5, and (o-(L U M ) ^ 1 ) H (L * M) ^ 1, then a £ L * M. 
For, suppose, e.g., that <rlcr~l = pnp~l, where 1 ^ / f X, p, n £ L * M, 
n cyclically reduced in L * M. Now the syllable length of an element of 
L * M in the free product L * M is the same as its syllable length in (C * D; Q). 
Hence, by [6, Theorem 4.6], n has syllable length 1; moreover, since in D the 
conjugates of M intersect Q trivially, n £ L. But L is malnormal in (C * D; Q) ; 
hence, p~lcr £ L and so tr £ L * ¥ . 

To prove Lemma 8, suppose that some element of G with syllable length 
^ 2 is in EG(U). It follows, then, that there is an element ar of syllable length 
two in EG(U), where a £ S — U, r £ ^ — t/. Suppose that o-r^ir-1^-1 G £/, 
where 1 ^ wi Ç £/. Then rz/ir-1 G u{L\J M)u~1, for some u £ U (by the 
remark of the second paragraph). Hence, o-^(L U M)u~1a~1 P\ (L * ikf) ^ 1; 
and, therefore, by the preceding paragraph, au and hence a are in L * M, which 
is a contradiction. 

THEOREM 11. Using the same notation as in Theorem 10, G is a finite extension 
of a 1-step malnormal product whose factors are T = gp(t2r) * L, and the 0-step 
malnormal tree product S given by 

S = Ko * K\ * . . . * K^r—ly 

where Kt = tiKt~i
1 Lt = tiLt~i; the subgroup amalgamated between T and S 

is L * L2r. 

Proof. It follows, as in the proof of Corollary 2 of Theorem 4, that the 
normal subgroup N2r of G generated by t2r and K is the HNN group 

(t2r,S;re\S, t2rLt~2r = L2r). 

We view 5 as (C * D; Q), where 

C = gp(K0, . • • , i^r-i), D = gp(Kr, . . . , K2r-i), and Q = Lr, 

and show that the hypotheses of Lemma 8 (with L = L, M = L2r) are satis­
fied. Since 5 is clearly a 0-step malnormal tree product, each vertex Ki is 
malnormal in S. Hence, each Lt is malnormal in S. Therefore, L, Q are mal­
normal in C, and L2r, Q are malnormal in Z). 
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I t remains to show t h a t cLc~l C\ Q = 1, for each c Ç C, and t ha t 
dUrd~l r\Q = 1, for each d £ D. 

T o this end, we first show by induction on 5 tha t , if g £ gp(K0, . . . Ks_i), 
then 

(23) g gpOx, . . . , 5M_P, <v, . . . , c^_p)g~^ r\ Ls 

is contained in 

(24) t*l g p ( 6 x , . . . , &M-P-*» ^x', • • • , ^ M ' - P - , ) / - 1 / - 5 , 

with >̂ ^ 1 and / £ L. If 5 = 0, this is clear. Suppose t h a t s > 0. Now 

(25) gp(i£o, . . . , tf_i) = (Ko * g p ( X i , . . . , ^ _ i ) ; I i ) . 

If gL'g-1 is in (23) and g = g2gi, where gi Ç i£0 , and g2, when wri t ten in 
reduced form in (25), does not end in a i£0-syllable, then g\Lfgi~l < Lx. 
Hence, as shown in the proof of (20) of Theorem 10, 

giL'gr1 < gi gp(bXl . . . , 6M_P, <v, . . . , c ^ - ^ g r 1 H M 

= mi gp(&x+i> • • • , i/i-pi ^x'+i, • • • , c ^ l w f 1 , m1 £ Af. 

Therefore, g2 G gp( i^ i , . . . , i £ s - i ) , since this factor of (25) is malnormal in 
(25). Hence, (23) is contained in 

gmi gp(&\, . . . , &M-P' <*'+i, • • • , ^ ' - ^ î - 1 ^ - 1 C\ L „ 

which equals 

(26) 2(g3 gp(^x, . . . , ^ - ? - i , <V, . . . , cx>-v-i)g<rl C\ L s - i ) / _ 1 , 

where g3 G gpC^o, • . • , Ks_2)> By the inductive hypothesis , (26) and hence 
(23) are contained in (24). 

Since r = max(/z — X, / / — A'), it follows t h a t cLc - 1 P\ L r = 1. Moreover, 
dL2rd~1 Pi L r = tr(cLrc~l C\ L)t~T = 1. This completes the proof of 
Theorem 11. 
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