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Abstract

Let i > 2 be a positive integer. We introduce the concept of minimal restricted asymptotic bases and obtain
some examples of minimal restricted asymptotic bases of order 4.
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1. Introduction

Let N be the set of all nonnegative integers. For A C N, s > 2, the h-fold sum of A,
denoted hA, is the set of sums of & not necessarily distinct elements of A and A"A is
the set of sums of /4 distinct elements of A. Let W be a nonempty subset of N. Denote
by F*(W) the set of all finite, nonempty subsets of W. Given positive integers g, h > 2,
denote

A(W) = {Zafgf l<aj<g-1LFe F*(W)}.
feF

Fori=0,1,....,h—1,let W = {n € N : n = i (mod h)} and let
Agn = AW UALW) U - u A, (W)

The set A is an asymptotic basis of order & if hA contains all sufficiently large
integers. An asymptotic basis A of order 4 is minimal if A \ {a} is not an asymptotic
basis of order / for every nonnegative integer a € A. In 1974, Nathanson [4] first
gave an explicit construction of a minimal asymptotic basis of order 2 by using
properties of binary representations. In 2010, Jaiczak and Schoen [3] constructed a
dense minimal asymptotic basis of order two. Nathanson’s method has been widely
used in the construction of minimal asymptotic bases. For related problems concerning
minimal asymptotic bases, see [2, 6, 7]. The study of asymptotic bases and minimal
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asymptotic bases is closely related to the famous Erdés—Turdn conjecture in additive
number theory (see [1, 5]).

It is natural to introduce a parallel concept of minimal restricted asymptotic bases.
We call A a restricted asymptotic basis of order & if h"A contains all sufficiently
large integers. A restricted asymptotic basis A of order % is minimal if A \ {a} is not a
restricted asymptotic basis of order £ for every nonnegative integer a € A. Does there
exist a minimal restricted asymptotic basis of order 4?

Our study begins with a result of Sun and Tao on minimal asymptotic bases.

THEOREM 1.1 [8]. Let h > 2. Then for any g > h, the set Ay, is a minimal asymptotic
basis of order h.

We obtain the following results.

PROPOSITION 1.2. Fork >0, g = 2:

(1) 2g2k+1 ¢ 2Aﬂg,2;
(2) 2g3k+2 +1¢ 3/\?{;;,3;
(3) 2-4%3 1+ 5¢4 Ay,

THEOREM 1.3. Let h > 4. Then for any g > max{h,5}, the set A, is a minimal

restricted asymptotic basis of order h.

2. A preliminary lemma

LEMMA 2.1. Given positive integers h > 2, g > 5 and u > 2, let the g-adic representa-
tion of n be

n= elgil 4ot eu—lgi“_l " gi“,
where 0 < iy < - <i,and 1 <ej<g—1forj=1,...,u—1.Thenn € (u+ 1) A, .
PROOF. If iy <y =1, orif iy = iy = 1, €41 ¢ {1, g = 1}, then because g > 5 and
n=eg' +-+egt 8" + (g - g

we see that n € (u + 1) A .
Ifi, 1 =i,—1and e, =1, then because g > 5 and

n= elgil 4+t eu_zgiu-z + giu—l 4 Zgi“_l +(g- 2)gi”_l’

we see that n € (u + 1) Ay .
Ifi,, =i,—1lande, = g — 1, then because g > 5 and

n= elgil TS eu_zgi“’z + giu—l +(g— 2)giu_1 + giu’

againn € (u + 1) "Ag .
This completes the proof of Lemma 2.1. o
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3. Proof of Proposition 1.2

2k+1

(1) Assume that 2g%*! = ay + a; € 2" A, with0 < ap < a;. Thenay < g**' and a; <

2g**+1. Since ag, a1 € Ay,

2k-3

ap+a; <(g-D@E"+- -+ g2+ g + (g - D(g' +- -+ g%+ g%y + ¥

< 2g2k+1,

which is a contradiction. Hence, 2g**! ¢ 2" A, , for all g > 2.
(2) Assume that 2g%**2 + 1 € 3" A, ;. Write

282 1l =ap+ a1 +ar, ap<a <a. (3.1)

Then a; < g**? and a, < 2g**2. By (3.1), there exists at least one a; € Ag(Wé3)).
Ifa, ¢ Ag(Wf)), thena, < (g - 1)(g' + g* + -+ + g**). Thus,

aptar+ar<(@-DE+g+ -+ +20g- D' +g" + + g

3k+2

<2g + 1,

which is a contradiction.
If ay € A,(WS)), then as < (g — 1)(g> + g + -+ + g°1) + g%*2. Thus,

ata+ta<@-DE"+g + -+ + - +gt -+ g

+(g_ 1)(g2+g5+'._+g3k—l)+g3k+2

3k+2

<2g +1,

which is a contradiction.
Hence, 2g%*2 + 1 ¢ 3" A, for all g > 2.
(3) Assume that 2 - 4443 + 5 € 4" A, 4. Write

2-44k+3+5:ao+a1+a2+a3, apg < a; <ap <as. (32)

Then az < 2 - 4%+3,

Ifay ¢ Ag(W), thenay < 3(4% + 4 + -+ + 4%+2) Since 2 - 4%+3 + 5 = 5 (mod 16),
it follows from (3.2) that

ap+ar+ay+az <4A%+3x @+ +4%) 141 £ 3 (@ + -+ 4%
F2X3X (42445 4. 44802
<2.4%3 45

which is a contradiction.

If a3 € Ay(WS"), then a3 < 3(4% +47 + - + 4%=1) 4 4%3 If g5 > 4%3 then we

have ay + a3 > 2 - 4%*3 1+ 5, which is a contradiction. It follows that a, < 4**3, Again
by (3.2) and 2 - 4%+3 + 5 = 5 (mod 16),
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ap+ay+ay+az <4 +3x @+ 14 14 3 (@ + -+ 4%
F3(47 +45 4 4 A L343 1 47 4 4Ty gt
<2.4%3 45,
which is a contradiction.

Hence, 2 - 4%+3 + 5 ¢ 4" Ay 4.
This completes the proof of Proposition 1.2.

4. Proof of Theorem 1.3

By Theorem 1.1, A, , is a minimal asymptotic basis of order /. Thus, we only need to
prove that A, 5, is a restricted asymptotic basis of order 4.

Let n > g#2"+1 and let the g-adic representation of n be
n=eg" +---+e 18 +eg",
where 0 <ij <---<ijand1 <ej<g-1forj=1,...,1
Case 1:t = 1. Then i; > h. Note that
n=(e—Dgh+(g—Dg"™" +--- + (g = gm0 4 g =170,

where 6 = 0 if ¢; = 1 and otherwise 6 = 1. Hence, n € h’\?lg,h.
Case 2: 2 <t < h-2.If there exists ak € {2,...,t} such that iy — i;_; > h —t, then

n= (e = 1)gh+(g= g™+t (g = Dh D gh D N e,

where ¢ = 0 if ¢, = 1 and otherwise ¢ = 1. Hence, n € h" Ay .
If it — ity <h—tfor all k€ {2,...,1}, then by n > g"2*1 we have iy > h —t.
Otherwise, if ij < h —t, then i; < t(h — t), so that

i+1 (h-2)*+1
2

n=elgi‘ +---+e,_1gi"‘ +e,gi’ <g <g

which is a contradiction. Thus,

where § = 0 if ¢; = 1 and otherwise 6 = 1. Hence, n € h" Ay .
Case 3:t =h—1. Then

n= elgi’ + ezg"2 + e+ e;l,lgi”*],
where 0 <ij <.+ <, 1<ej<g-1forj=1,...,h-1.
If there exists ak € {1,...,h — 1} such that 3 < ¢; < g — 1, then
n= ) 8"+ + (e - g,
JEI\{k}

where I = {1,...,h— 1}, and thus n € K" A, .
Now we consider what happens if 1 <¢; <2forj=1,...,h— 1.
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(a) Suppose e;_; = 1. Then by Lemma 2.1, n € h"Ag .
(b) SllppOSC el =€6)=- =€ =¢€1= 2.
If there exist i, < i, with 1 < u,v < h — 1 such that i, = i, (mod %), then because

28" +2g" = 2" +g") +g" + (g - g

and i, > h, we have n € h" A, .
If ig £ i; (mod h) for 1 <s # t < h— 1, then because & > 4, there exist i, (> 1), i,
with u,v € {1,2,...,h— 1} such that i, = i, + 1 (mod %). Since g > 5 and
28" +2g" = 2¢" + ") + (g - Dg" ™ +g",

ne h/\ﬂg,h.
(c) Suppose e;-; = 2, e, = 1 for some k € {2,...,h —2}. Then

n=>eigh+ g+ ) egh,
JjEK Jel
where K = {1,...,k—1}and I ={k+1,...,h— 1}. By Lemma 2.1,
Z ejgif' + gik € (k+ l)Aﬂg,h
JjeK
and son € K" Agy,.
(d) Suppose ej-1 = epp =---=ey=2,e; = 1. If i; > 0, then

n=glH(g-g' Tt > 20

and so n € h" A,
If iy = 0, then

(d1) There exists a k € {2,...,h — 1} such that iy = 0 (mod /). Then
n=(+g)+g " +(g- g+ T 2l
JE2,... A= 1]\ {k}

Thus, n € K" Ag,.
(d2) Suppose iy # 0 (mod h) forall k € {2,...,h — 1}.
If A > 5, then one of the following two cases must occur.
Case (i): There exist i, < i, with 2 < u,v < h — 1 such that i, = i, (mod h). Since

2giu + 2gi,. — (2giu +giv) + gi‘,—l + (g _ l)giv—l

and i, > h, we have

2gij (S (h - I)A(ﬂg,h\{l})‘

Thus, n € K" Ay .

https://doi.org/10.1017/5S0004972722001083 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722001083

[6] Minimal restricted asymptotic bases 373

Case (ii): iy # i, (mod h) for 2 < s # t < h— 1. Then there exist i, (> 1), i, for some
u,ve{2,...,h—1}such thati, =i, + 1 (mod h). Because g > 5 and
2¢" +2g" = (2" +g" )+ (g - Dg" T +g",
we have
DL 28 € (=D A\,
jet2.h—1)

Thus, n € K" Ay, ,.

Now suppose i = 4. Since i, i3 # 0 (mod 4), there is one further case in addition to
(1) and (ii), namely, {i, (mod 4), i3 (mod 4)} = {1 (mod 4), 3 (mod 4)}. We may assume
that i, = 1 (mod 4). Because g > 5 and

n=(1+g""+(g-Dg" +g" +2g",
we have n € 4" Ay 4.

Case4:t > h.
Write I = {iy,...,i}. Since |I| > h, it is possible to write / as a union of 4 nonempty
sets I, ..., I, where each /; is a subset of some W,ih). It follows that n € hAﬂg,h.

This completes the proof of Theorem 1.3.
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