
A novel predictor of multilocus haplotype homozygosity:
comparison with existing predictors

I. M. MACLEOD1 , 2*, T. H. E. MEUWISSEN3, B. J. HAYES2
AND M. E. GODDARD1 , 2

1Melbourne School of Land and Environment, University of Melbourne, VIC 3010, Australia
2BioSciences Research Division, Department of Primary Industries, VIC 3083, Australia
3Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432 Aas, Norway

(Received 16 August 2009 and in revised form 16 November 2009 )

Summary

The patterns of linkage disequilibrium (LD) between dense polymorphic markers are shaped by the
ancestral population history. It is therefore possible to use multilocus predictors of LD to infer past
population history and to infer sharing of identical alleles in quantitative trait locus (QTL) studies.
We develop a multilocus predictor of LD for pairs of haplotypes, which we term haplotype
homozygosity (HHn) : the probability that any two haplotypes share a given number of n adjacent
identical markers or ‘runs of homozygosity’. Our method, based on simplified coalescence theory,
accounts for recombination and mutation. We compare our HHn predictions, with HHn in
simulated populations and with two published predictors of HHn. Our method performs consistently
better across a range of population parameters, including populations with a severe bottleneck
followed by expansion, compared to two published methods. We demonstrate that we can predict
the pattern of HHn observed in dense single nucleotide polymorphisms (SNPs) genotyped in a cattle
population, given appropriate historical changes in population size. Our method is practical for use
with very large numbers of individuals and dense genome wide polymorphic DNA data. It has
potential applications in inferring ancestral population history and QTL mapping studies.

1. Introduction

High density DNA markers contain information
about the genetic history of a population. For in-
stance, they can be used to infer the effective popu-
lation size, recombination rate (e.g. Hudson &
Kaplan, 1985; Nielsen, 2000) or the existence of re-
cent strong selection (e.g. Sabeti et al., 2002). High
density markers are also used in a variety of multi-
marker models to estimate the probability that
individuals carry the same alleles at a putative quan-
titative trait loci (QTLs) by exploiting the presence
of linkage disequilibrium (LD) between markers and
the causal mutation (e.g. Meuwissen & Goddard,
2001; Durrant et al., 2004; Zollner & Pritchard, 2005;
Minichiello & Durbin, 2006; Lencz et al., 2007).

Some historical information can be gained by con-
sidering the markers independently (e.g. single marker
homozygosity), but further information resides in the
LD between markers (Nordborg & Tavare, 2002).
A variety of methods exist to measure pairwise LD
based on allele frequencies and frequencies of two loci
haplotypes (Zhao et al., 2007). However, it has been
pointed out that these measures are very diverse and
likely not as informative for inferring population
history or for QTL mapping compared to using data
from multiple markers along a segment (Nordborg &
Tavare, 2002).

Although we cannot observe chromosome segment
identity by descent (IBD) status directly, we can ob-
serve whether or not two haplotypes contain identical
marker alleles along a particular segment. That is,
they are observed to be identical by state (IBS) and
this run of homozygous markers may occur through
recombination. We will refer to an unbroken run of
homozygous markers as ‘haplotype homozygosity’
(HHn). The pairs of observed haplotypes may be in
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the same or different individuals in a randomly
breeding diploid population, andHHn is predicted for
observed runs of 2, 3, … to nmarkers, at any specified
recombinant distances. Sabatti & Risch (2002) devel-
oped a multilocus measure of haplotype homo-
zygosity in diploids and demonstrated its use to
measure LD. However, their method is based on ob-
served allele frequencies in the population sample,
rather than on historical population parameters, and
is computationally demanding for more than two
loci. It would not be possible, therefore, to use their
method to infer ancestral population history.

To infer information about population parameters
from multiple marker haplotype homozygosity data
or to use HHn for QTL analysis, we need theory that
adequately predicts HHn from historical population
parameters. Having developed an analytical HHn

predictor, we can then use it for example to:

1. work backwards using observed HHn sampled
from a population to predict the population para-
meters (e.g. Meuwissen & Goddard, 2007)

2. predict the likely sharing of alleles at a putative
QTL position given the observed surrounding
HHn, using either estimated population parameters
from 1 above (e.g. Meuwissen &Goddard, 2007) or
assumed parameters.

A full coalescent analysis of the data would be desir-
able but is not practical for large numbers of markers
in many individuals with recombination (e.g. Zollner
& Pritchard, 2005). A practical alternative is to con-
sider the HHn of marker data on pairs of haplotypes
which can be summarized for all possible pairs of
chromosome segments which are genotyped. Hill &
Weir (2007) present an algorithm for exact forward-
in-time predictors of ‘multilocus IBD’ (their termin-
ology for our HHn) between two haplotypes from a
randomly breeding population, based on exact two
loci methodology (Weir & Cockerham, 1974). The
authors point out, however, that their methodology is
only applicable to haploid populations and quickly
becomes cumbersome for more than four loci. An
approximate method was then developed for an ex-
tended number of loci, which can be more practically
applied to both haploid and diploid populations
(Hill & Hernandez-Sanchez, 2007). Although this
approximate method was generally a good predictor
of observedHHn in simulated populations, it becomes
less reliable when mutation is included in the model
(Hill & Hernandez-Sanchez, 2007).

In contrast to the forward-in-time prediction of
Hill & Hernandez-Sanchez (2007), Meuwissen &
Goddard (2007) published an approximate coalesc-
ence approach for the prediction of pairwise multi-
marker HHn, which they extend to estimate effective
population size and to predict allele sharing status
of a putative QTL position. Their methodology is

an extension of a previously published method
(Meuwissen & Goddard, 2001) which has proven ef-
fective for QTLmapping in farm livestock (e.g. Farnir
et al., 2002; Olsen et al., 2005; Gautier et al., 2006).
The extended methodology includes the effect of
mutation at the markers, which was not previously
accounted for (Meuwissen & Goddard, 2007). There
are, however, still some approximations in their
method and it was not developed for ancestral chan-
ges in population size (see this paper).

Effective population sizes (N) are likely to change
over time; for example, some human populations
are thought to have undergone a bottleneck (i.e.
sharp reduction in size) followed by expansion (e.g.
Pluzhnikov et al., 2002; Tenesa et al., 2007). This is
likely to affect the observed homozygosity patterns,
so the theory needs to predict HHn under these con-
ditions. In fact, it has been demonstrated with simu-
lations that estimates of segment homozygosity for a
wide range of chromosome segment lengths can be
used to estimateN at multiple times in the past (Hayes
et al., 2003).

We develop a new method to predictHHn that aims
to avoid some of the approximations of the above two
methods of Hill & Hernandez-Sanchez (2007) and
Meuwissen & Goddard (2007), and accommodates
recombination and mutation as well as changing
population size. It is based on coalescence theory,
but considers multilocus data in pairs of haplotypes,
summarized across all possible pairs by HHn. We
compare results from our methodology with the
above two published predictors ofHHn, as well as our
modified version of the Meuwissen & Goddard (2007)
method. We compare these results with HHn data
from simulated populations, including comparisons
where population sizes vary over time.

Our method is consistently equal to or more accu-
rate than the above methods, given a wide range
of parameters tested. Using simulated populations
with and without bottlenecks, we demonstrate that
depending on the density of markers, HHn patterns
can be considerably altered by ancestral changes in
N. McQuillan et al. (2008) found that the proportion
of longer runs of homozygous single nucleotide
polymorphism (SNP) markers within individuals in
European populations (300 000 SNP panel) is clearly
related to variations in recent population history. We
demonstrate that our new method (herein referred to
as MHH) predicts a pattern of HHn that matches the
pattern observed in a genotyped cattle population,
given appropriate estimates of changing past popu-
lation size.

2. Methods

Notation used in this section is detailed in Table 1.
Populations are assumed to be panmictic, diploid,
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with no selfing and no selection or migration.
Mutation rate is assumed equal across all alleles. The
recombination rate can vary between allele pairs for
all analytical methods tested, and marker haplotypes
are assumed known without error. A range of para-
meters were tested to both represent realistic marker
densities now available for QTL and population gen-
etics studies in humans and animals, but also to test
the robustness of the different methodologies to more
extreme parameters similar to full genome sequence
data.

HHn can be modelled in an ‘equilibrium popu-
lation’ with constant size and subject to the balancing
forces of drift, recombination and mutation. Ad-
ditionally, HHn predictions can be extended to a

dynamic population which varies in size over time and
may not be in equilibrium.

(i) New method of predicting multilocus HHn – MHH

MHH predicts the probability of multilocus HHn

for a pair of randomly sampled haplotypes with
n markers, using a simplified coalescence approach.
Multiple adjacent markers along only one pair of
chromosome segments are traced backwards in
time. Figure 1 outlines some possible events when
tracing a pair of chromosome segments back in time,
until coalescence with their most recent common
ancestor, with ancestral changes in N expressed as
‘phases’.

Table 1. General notation presented in this section

Symbol Definition

T Total number of generations of breeding in a finite constant size population
t Any given generation counted backwards in time from the most recent generation of a population (i.e. the

present day generation is t=0)
r Recombinant distance between two adjacent marker loci measured in Morgans (M)
c Recombinant length of a chromosome segment with n markers (Morgans)
N Effective population size
m Mutation rate per loci per generation
IBD Identity-by-descent
R 4Nr
U 4Nm

Phase 2
N2 = 1000 
T2 = 500 

Phase 3
N3 = 20,000
T3 >> N3

Equilibrium 

C mutates to c 

ABc ABC

*

ABC

A. Coalescence to
ABC - the most 
common recent
ancestor

A mutates to a →

B. Recombination occurs
before coalescence of
two segments AB & C

ABC

ABC

aBC

CaB

Recombination →

AB

C

*

Recombination ---------→

Phase 1 - Present day
N1 = 100 
T1 = 10 

Fig. 1. Two possible coalescence pathways for a pair of chromosome segments with three markers, in a population which
changes in size ancestrally (divided into three ‘phases’). Tracing two DNA segments back in time, in coalescence A there is
no recombination or coalescence in phase 1, and coalescence occurs in phase 2 with a mutation event on one segment. In
coalescence B, both gametes recombine in phase 2 and in phase three loci ‘a ’ mutates, followed by coalesce of segments
AB and C.
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Assuming first a constant-sized population, the
joint probability of homozygosity for all n markers
(HHn) can be split into two periods, where n is the
total number of markers on a segment of recombinant
distance c Morgans:

1. No coalescence, no recombination and no mu-
tation (i.e. ‘no event’) for t generations. Let the
probability of no event in one generation be written
as

a= 1x
1

2N

� �
(1xc)2(1xm)2n: (1)

2. At generation t+1 an event takes place ; either
coalescence or recombination, and no mutation.
The probability of coalescence at generation t+1
(no recombination and no mutation) is

b=
1

2N
(1xc)2(1xm)2n: (2)

If the event is recombination, we calculate the
probability of recombination in each possible in-
terval between two adjacent markers k and k+1
and include the joint probability that all markers
on both recombined segments will then coalesce or
recombine without mutation. For more than two
markers on a segment, we have to sum all possible
recombination probabilities for each interval be-
tween adjacent markers k and k+1. Additionally,
we trace back the HH1 to k and HHk+1 to n prob-
abilities of the recombined segments, therefore
sequentially computing haplotype homozygosity
probabilities first for all two loci segments, then
three loci, to four, etc. The probability of recom-
bination in any given marker interval, including the
joint HH of the recombined segments, is

t � g
nx1

k=1

(1x(1xrk, k+1)
2)(1xm)2n 1x

1

2N

� ��

[(HH1 to k)(HHk+1 to n)]

�
,

(3)

where rk,k+1j is the recombinant distance between
marker k and k+1. We ignore the possibility of
more than one recombination per segment within
one generation.

Combining the two periods above gives the total
probability of marker haplotype homozygosity as

HHn= g
Tx1

t=0
(a)t

� �
(b+t): (4)

To accommodate changing effective population sizes
going back in time, we model the probabilities of no
event followed by an event within each of the different
historical population sizes, which we refer to as
‘Phases ’. Figure 1 shows a population, where effective

size (N) has reduced from very large ancestrally to
small in the present day, and the changes are attrib-
uted to three major historical phases (1, 2 and 3 going
back in time). We calculate the probability of no event
for t generations, followed by the event of coalescence
or recombination occurring within any given ith
phase of variable population size, and then sum
the probabilities across all phases (HHAll Phases now
dropping the ‘n ’ subscript for simplicity).

The probability of no event occurring for any given
number of t1 generations followed by an event within
phase 1 is as before :

HHPhase 1= g
T1x1

t=0
(a1)

t

� �
(b1+t1)=

1xaT1
1

1xa1

� �
(b1+t1),

(5)

where subscript ‘1’ refers to phase 1 (present day)
population parameters.

For each ith phase going back in time (before
present), we calculate the probability of no event for
t generations in phase i, and the probability that no
event had occurred in any of the more recent phases :

HHAll Phases={HHPhase 1}+

g
most ancestral Phase

i=2

Yix1

h=1

(ah)
Th

" #
1xaTi

i

1xai

� �
(bi+ti)

" #
,

(6)

where subscript i refers to a particular phase counting
from the present day, with a stable population size Ni,
h designates phases more recent to phase i, and Ti or
Th is the total number of generations in phase i or h.
The joint HH of the two recombined segments
(HH1, k*HHk+1, n) in ‘ti ’ above, should be traced back
in time from the generation in which recombination
took place within a given phase. To simplify this
computationally, we approximate by assuming re-
combination always takes place in the first generation
of a given phase. Any associated error can be mini-
mized by splitting a long phase into a number of
shorter phases (see section 3). To avoid this approxi-
mation, each phase can be reduced to a single gen-
eration, although computing time may ultimately
enforce practical limitations.

(ii) Meuwissen & Goddard method – MG

The method developed by Meuwissen & Goddard
(2007) (hereafter called ‘MG’) predicts the prob-
ability of observed markers on a pair of haplotypes
being homozygous. Their model is also a simplified
coalescence approach that assumes that all haplotype
pairs eventually coalesce or recombine if traced an
infinite number of generations back in time. Their
probability of observing marker homozygosity de-
pends on the probability of the unobserved under-
lying IBD pattern at and between the markers. It was
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developed for constant-sized equilibrium populations
only.

(iii) Modifications to Meuwissen &
Goddard – MGmod

We develop a modified version of MG (MGmod) that
allows for variable ancestral population sizes and
includes two other minor improvements. Implemen-
tation for MGmod is given in Appendix A.

(iv) Hill and Hernandez–Sanchez method – HHF

The approximate HHn predictor (tracing events
forward in time) developed by Hill & Hernandez-
Sanchez (2007), can be used for either equilibrium or
dynamic populations with variable N. The method
(hereafter called HHF) initially predicts non-IBD
probability which is then used to calculate HHn (or
‘multilocus IBD’), for any number of markers on the
segment (Hill & Hernandez-Sanchez, 2007). Their
method predicts IBD of alleles with respect to a base
population in which all alleles are considered unique,
while our coalescence method considers observed
IBS. The Hill & Hernandez-Sanchez (2007) definition
of ‘multiloci IBD’ is that each pair of homozygous
loci trace back to a common ancestor, but adjacent
homozygous loci may coalesce in different ancestors if
there has been intervening recombination. The meth-
od is based on an approximation for multilocus seg-
ments which requires all adjacent two loci non-IBD
probabilities are calculated by the exact transition
matrix method of Weir & Cockerham (1974). In this
paper, we consider only diploid populations and in-
clude mutation, recombination and variable ancestral
population size in the transition matrix calculations.

(v) Simulated genotype data and observed patterns
of HHn

We forward simulated Wright–Fisher randomly
breeding populations of diploid individuals with no
selfing. To save computational time, we simulate a
given number of pre-determined marker positions
on chromosome segments, with an equal probability
of recombination between each adjacent marker. All
alleles in the founder population are unique and
simulations were designed to reach equilibrium before
varying population sizes in more recent generations.
Alleles have equal probability of mutation and each
mutation event is recorded uniquely, giving an infinite
alleles model. Variable input parameters include : ef-
fective population size, number of generations, as well
as mutation and recombination rate. Simulations ac-
commodate changing population parameters for any
given number of generations, i.e. ‘ i phases’ with dif-
ferent Ni, ri and mi for Ti generations.

The average single and multiple marker HHn can
be calculated over any given number of replicated
populations (calculating a mean standard error of
HHn estimated across replicates). Results from simu-
lations are averaged over 1000–5000 replications,
having found this number to give standard errors of
less than 1% of the mean. To improve computational
efficiency in simulations where population size and
number of generations were very large (No1000), we
scaled down the N and T, with the corresponding
r and m scaled up proportionately to maintain original
R and U values, (as implemented by Hayes &
Goddard, 2003 and Hoggart et al., 2007). This has
almost no effect on the final HHn predictions because
it is the U and R values that control the coalescence of
linked markers (Hudson, 1991). TheHHn results from
the simulations were used to benchmark the different
analytical predictions of HHn.

(vi) Observed HHn in a panel of dense SNPs
genotyped in dairy cattle

We use a panel of dense bovine SNP genotypes to
check whether or not we can use our method to pre-
dict the observed HHn patterns in real data, given
appropriate estimates of the population parameters.
Individual SNP genotypes were obtained for 798,
Australian Holstein–Friesian bulls with an outbred
pedigree, using the Illumina1 Infinium BovineSNP50
BeadChip with approximately 56 000 SNPs. Samples
were screened for the proportion of missing geno-
types, and animals with greater than 10% missing
genotypes were removed. The SNPs were included
only if they met the following criteria; call rate>90%
and minimum allele frequency (MAF)>0.05. SNPs
with no recorded heterozygotes were excluded and
any animals with genotypes incompatible with pedi-
gree were removed. After screening, 730 out of the 798
animals were retained for the analysis. There were
38 259 SNPs that satisfied all selection criteria and
only autosomal SNPs were used.

The SNPs were ordered by chromosome position
using Bovine Genome Build 4.0 (http://www.ncbi.
nlm.nih.gov/projects/genome/guide/cow/). For ani-
mals with <10% of missing genotypes, we imputed
alleles using fastPHASE (Scheet & Stephens, 2006),
having first confirmed the likely high accuracy of
this by deleting and imputing a small proportion of
known genotypes in our data set. According to the
physical positions of the SNPs, the average spacing of
the markers retained for this study across the genome
is 0.066 megabase pairs (Mb).

HHn was measured within animals to avoid
inaccuracies in haplotyping or bias due to some
sampled animals possibly being more highly related
than the average of the population. Genotypes were
checked for unbroken runs of homozygous markers,
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and we recorded the number of adjacent homozygous
SNPs, as well as the physical length of each homo-
zygous segment. We do not have data for the re-
combinant distance between SNPs so we assume
1 Mb is approximately equal to the recombinant dis-
tance of 1 centi-Morgan (cM) (Arias et al., 2009 esti-
mated an average of 1 Mb=1.25 cM in cattle).

We define HHn in this data as the probability of
n adjacent SNPs being homozygous. We calculated
HHn assuming equal recombinant distance between
markers genome wide:

HHn=g
S

i=1
xi

.
(SA),

where n is a given number of markers on a homo-
zygous haplotype for which HHn probability is being
calculated, i is every possible overlapping segment
with n markers along the entire genome, numbered 1
to S, xi is the total number of individual animals
homozygous for each segment i and A is the total
number of animals genotyped.

(vii) Estimating effective population size from
observed cattle HHn

We explored the feasibility of using our HHn meth-
odology to work backwards to estimate population
size given observedHHn in the above data. We exploit
the theory that LD over shorter distances reflects
more ancestral population parameters than LD at
larger distances. LD on a segment size of cMorgans is
most affected by the population size approximately
1/(2c) generations in the past, assuming a linearly
changing population size (Hayes et al., 2003). We
used the following steps with iterations until a close
fit of predicted HHn to the observed HHn was
achieved:

1. Assume prior knowledge of the most ancestral
population size.

2. Assume the recombination distances are known
without error.

3. Adjust mutation rate to match single marker
homozygosity observed in the data.

4. Assess the fit of predicted HHn to observed HHn

across each segment length with 2, 3, 4, etc.
markers, using the chosen parameters and reject
Ni. if :

j(HHPredictedxHHObserved)j=HHObservedod,

where d is a predetermined threshold (we used
0.07).

5. If the data does not fit the observed HHn pattern:
start at the poor fit position with the smallest
segments (c Morgans), and estimate the approxi-
mate number of generations back in time (Ti) for

which the estimate of population size is incorrect
(y1/(2c)). Then either :

(a) Introduce a new ‘phase’ of changed popu-
lation size from this generation forward in time
if HHn is not accurately predicted for all seg-
ment sizes larger than that being considered.

(b) Or, if only a section of the curve fits poorly
then adjust population size in an existing or
new phase, only over the generations for which
HHn is not well predicted.

Repeat steps 3, 4 and 5 until the predictedHHn fits the
observed HHn pattern across all segment lengths.

3. Results

We show limited results for MGmod because this
method was equal to or less accurate than MHH for
all comparisons.

(i) Equilibrium constant sized population

The analytical methods were first compared under the
assumption of a neutral Wright–Fisher constant sized
equilibrium population. Studies of physical and link-
age maps in cattle and humans found that on average
1.25 and 1.27 cM are equivalent to 1 Mb (Kong et al.,
2004; Arias et al., 2009), implying that intersite
recombination rates are approximately 1.3r10x8.
Given that single nucleotide mutation rates are gen-
erally considered to be of a similar order (Nachman &
Crowell, 2000), we start with values of r similar to m.
Figure 2A and B compare methods with identical
population parameters U=4Nm=0.4, except for a
change in the recombination rate between markers
(r) ; R=4Nr=2 in Fig. 2A and R=0.4 in Fig. 2B. In
Fig. 2A, all methods give results which are close to
those of simulated populations with identical popu-
lation parameters. In contrast, the parameters in Fig.
2B show that HHF considerably overestimates the
probability ofHHn compared to the simulated results,
particularly as the number of markers on the segment
increases. In Fig. 2A and B, MHH and MG, agree
closely with the simulated HHn, across a range of
segment lengths. Computationally, MHH is fast and
can easily be implemented with multilocus predictions
for hundreds of markers.

A further comparison of predicted and observed
HHn was made with U constant at 0.6 (N=15 000,
m=1r10x5), while R is 36 (i.e. r=60m) or R=1.8.
Given this N, the marker spacing with R=36 is
similar to that for 60 000 SNPs evenly spaced on the
bovine or human genome assuming approximate
genome size of 35 M (Kong et al., 2004; Arias et al.,
2009), while R=1.8 is approximately equivalent
to 1.2 million SNPs. With R=36 and r=60m, all
methods agree almost exactly with the simulated
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populations (results not shown), but with R=1.8,
HHF over predicts HHn compared to the simulation
values (Table 2). HHF is sensitive to the rate of
mutation relative to recombination rates, performing
well when m5r but less well as they approach similar
values.

(ii) Dynamic population – large ancestral size to small
present day

All methods were tested for scenarios where the
population size varies over time, excluding the MG
method because it was not developed for changing
population sizes. For this example, parameters reflect
estimated population dynamics in domestic cattle and
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Fig. 2. (A, B) Graphs show HHn for chromosome segments with 2, 3, 4, etc. markers, that are evenly spaced. All
populations have reached a drift–recombination–mutation equilibrium, assuming N=500, T=8000, m=0.0002. In (A)
marker intervals (r) are 0.001 M compared to (B), where r=0.0002. Comparisons are made between HHn predictions using
three analytical methods and observed HHn in simulated populations (average of 2000 replicates).

Table 2. Observed (simulated data) and predicted
HHn (three methods) with population parameters;
N=15 000, T=300 000, m=0.00001 and r=0.00003

Segment length
in Morgans
(number of
markers in
brackets)

Simulation
(2500 reps
with S.E.M. in
brackets) MHH MG HHF

0.00003 (2) 0.4235 (0.00377) 0.4258 0.4125 0.4296
0.00006 (3) 0.3010 (0.00296) 0.3059 0.3087 0.3165
0.00015 (6) 0.1437 (0.00157) 0.1410 0.1476 0.1634
0.0003 (11) 0.0623 (0.00056) 0.0614 0.0637 0.0823
0.00045 (16) 0.0361 (0.00026) 0.0367 0.0365 0.0523
0.0006 (21) 0.0249 (0.00015) 0.0258 0.0250 0.0375
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their ancestors (Gautier et al., 2007; de Roos et al.,
2008). The population is characterized by four distinct
‘phases ’ decreasing from a very large ancestral size
(in equilibrium) to very small :

Phase 4 : ancestral size of 100 000 (600 000 gener-
ations) in equilibrium.
Phase 3 : N=2500 for 1500 generations.
Phase 2 : N=300 for 270 generations.
Phase 1 : N=100 for five generations (from present
day).

Phases 1–3 are not in equilibrium. The marker inter-
val is 0.0015 M (i.e. approximately 20 000 markers
on the bovine genome) and m=1r10x5. These para-
meters result in average single marker homozygosity
of 0.62 in the simulations (equivalent to bovine SNP
data analysed in this study).

Figure 3 shows that HHF and MGmod method
lie reasonably close to the observed values of HHn

in simulated data. MHH, overestimates HHn when
calculated over four phases of changing N. This is
expected due to the approximation of following the
HHn probability of recombined segments back in
time from the most recent generation of each different
phase of changed population size, when in fact
the recombination may take place at any gener-
ation within each phase (see Methods section). We
correct the overestimation by splitting longer non-
equilibrium phases into an increased number of
shorter phases and Fig. 3 shows two extraHHn curves
calculated with MHH using this correction (16 or
1776 phases).

The ‘16 phase’ HHn is calculated by splitting
Phase 2 into nine phases and Phase 3 into five. The
‘1776 phase’ is Phases 1–3 split into single generation
phases to eliminate approximation error. Phase 4 is
not split because it is in equilibrium. Splitting up of
longer phases results in HHn prediction which is very
close to that of the simulated data (Fig. 3). Compari-
sons with the above parameters show that when the
ith phase is split into j shorter phases, once Tj=0.03Ni,
there was very little change inHHn if phases were split
further (Table 3). We therefore split long phases to
Tjf0.03Ni for all further results with MHH.

(iii) Large population with bottleneck and expansion

We test whether or not there is sufficient difference in
the HHn pattern, to distinguish between populations
that have undergone an ancestral bottleneck or no
bottleneck, given they have the same single marker
homozygosity. The population with no bottleneck
is an equilibrium population; N=50 000 and T=
507 000. The contrasting population undergoes a
severe bottleneck, and then expands again to the
original size :

Phase 3 : N=50 000 for 500 000 generations (ancestral
equilibrium population).
Phase 2 : N=2500 for 2000 generations – bottleneck.
Phase 1 : N=50 000 for 5000 generations (present day
back in time).

To maintain single locus homozygosity of 0.62 in both
populations, a mutation rate of 3r10x6 was used for
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Fig. 3. Predictions of HHn using three analytical methods compared to observed values in simulated populations (average
of 5000 replicates). Population size is changing over time from very large ancestral N=100 000, and gradually decreasing
to present day N=100. (r=0.0015 M and m=10x5). There are four phases of differing population size. HHn predicted by
MHH is shown for these four phases, but also calculated with non-equilibrium phases split into a number of shorter
phases (16 or 1776 phases total), to reduce approximation error.
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the equilibrium population, and a slightly higher rate
of 5.5r10x6 for the bottleneck population.

Figure 4A contrasts observed and predictedHHn in
the bottleneck and non-bottleneck populations, with
marker spacing of 0.0005 M (equivalent to approx.
70 000 SNP evenly spread across the human genome).
The same contrasts are made in Fig. 4B except that
r=2.5r10x5 M (approx. 1.4 million SNP evenly
spread on the human genome). The analytical pre-
dictions and observed HHn in Fig. 4A are indistin-
guishable for both bottleneck and non-bottleneck
populations. Therefore, given this marker spacing
and no prior knowledge of the population ancestral
histories, it would not be possible to use the analytical
methods to detect the bottleneck.

In Fig. 4B, marker intervals are much smaller and
the simulation HHn displays a different pattern in the
bottleneck compared to non-bottleneck population.
In both populations, MHH predicts similar HHn to
simulated values. Although HHF is in good agree-
ment for the non-bottleneck population, it is mark-
edly less accurate in the bottleneck population where
the value of m is closer to r (Fig. 4B).

In Fig. 5, the above bottleneck population is
compared to one with no large ancestral population,
to test whether or not the bottleneck masks the an-
cestrally larger population effect on the HHn pattern.
This contrasting population had the following struc-
ture:

Phase 2 : N=2500 for 52 000 generations – most
ancestral phase – equilibrium.
Phase 1 : N=50 000 for 5000 generations – most re-
cent phase.

As before, single marker homozygosity was main-
tained at 0.62 with m=2.64r10x5 for the population

with no large ancestral N. In both populations
r=2.5r10x5 M. The analytical methods predict dif-
ferent HHn patterns for the two populations, but
again HHF overestimates HHn (mBr), while the
MHH prediction is close to that observed in the
simulated populations (Fig. 5).

(iv) Prediction of observed bovine HHn and
estimation of population size

Figure 6 shows the HHn of observed dense SNP data
from a population of dairy bulls genotyped for 38 259
SNPs, with a single marker homozygosity of 0.62.
Marker spacing was relatively even, at an average
of 0.066 Mb. We used MHH to predict the observed
HHn pattern, given the marker spacing and assuming
100 Mb is equivalent to one Morgan recombinant
distance. It was not possible to accurately predict the
observed cattle HHn using one phase of constant
population size, with single marker homozygosity of
0.62 (Fig. 6). With constant N, HHn could be mod-
elled moderately closely for few markers, but as the
haplotype length increased to more than 12 markers
on the haplotype, HHn was considerably under pre-
dicted. To more closely model the observed HHn, we
allowed the population size to vary over time (see
Method section). We assumed a starting ancestral
population of 50 000 in equilibrium, because previous
studies suggest a very large ancestral bovine popu-
lation size (Hayes et al., 2003; de Roos et al., 2008).

We found that a decreasing population size (to
present day) gave a much closer prediction of the ob-
served data than a constant size (Fig. 6). In particular,
modelling of HHn was sensitive to changes in popu-
lation size in most recent 760 generations (approxi-
mately 1/(2r)). Repeated estimation of parameters,

Table 3. Observed HHn (simulated population with 5000 replicates) compared with MHH predicted HHn,
splitting each long phase of constant population size into an increasing number of shorter phases (population
parameters as for Fig. 3)

Ancestral changes in N
Simulation
HHn (S.E.M)

HHn with long phases split into shorter phases (below)

4 phases 12 phases 62 phases 306 phases 1776 phases

N4=100 000, T4=600 000 1 1 1 1 1
N3=2500, T3=1500 1 5 30 30 1500
N2=300, T2=270 1 5 30 270 270
N1=100, T1=5 1 1 1 5 5

Segment length (M)
(No. markers)
0.0015 (2) 0.4630 (0.00261) 0.4971 0.4647 0.4549 0.4535 0.4529
0.0030 (3) 0.3698 (0.00221) 0.4170 0.3705 0.3561 0.3536 0.3531
0.0060 (5) 0.2568 (0.00170) 0.3043 0.2578 0.2421 0.2391 0.2388
0.012 (8) 0.1473 (0.00104) 0.1750 0.1478 0.1373 0.1350 0.1348
0.018 (13) 0.0974 (0.00062) 0.1129 0.0977 0.0916 0.0899 0.0899
0.0255 (18) 0.0667 (0.00039) 0.0748 0.0669 0.0637 0.0626 0.0626
0.030 (21) 0.0561 (0.00029) 0.0617 0.0562 0.0540 0.0531 0.0530
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which predict HHn with a good fit to the observed
bovine HHn followed a similar pattern of decreasing
population size. Estimated parameters which closely
predict the observed HHn (Fig. 6) are:

Phase 6 : N=50 000, T=100 000 (equilibrium) – most
ancestral population.
Phase 5 : N=2500, T=696 (split into 12 phases of 58
generations each).
Phase 4 : N=1000, T=20.
Phase 3 : N=500, T=18 (split into two phases of nine
generations each).
Phase 2 : N=200, T=18 (split into three phases of six
generations each).
Phase 1 : N=80, T=6 (split into three phases of two
generations each).

The mutation rate used to match the single marker
homozygosity (0.62) in the observed data was

4.7r10x6. The predictedHHnwas not sensitive to the
population size in the most ancestral phase; smaller
or larger N in equilibrium (e.g. 10 000 or 100 000)
with appropriately adjusted mutation rates gave very
similar results. This is in keeping with the findings
that chromosome segment homozygosity over short
recombinant distances reflects effective population
size more distant in the past than longer segments
(Hayes et al., 2003). Simplifying the above six phases
to three, by averaging the most recent 40 generations
to N=285 and the next 718 ancestral generations to
N=2460, and the most ancestral toN=50 000, gives a
much poorer prediction of the observed HHn (Fig. 6).

4. Discussion

This study demonstrates that our new method
(MHH) is consistently more accurate across a range
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Fig. 4. (A, B) Both graphs show predictions of HHn in two different populations, using two analytical methods compared
to observed values in simulated populations (average of 1000 replicates). One population is in equilibrium with constant
size (N=50 000) and a second is of the same ancestral and present size, but with a bottleneck (N=2500, T=2000), 5000
generations before present day. In (A), the marker intervals (r) are 0.0005 M, while in (B), r=2.5r10x5 M. The mutation
rates in the two different populations have been adjusted to maintain the same single marker homozygosity.

I. M. MacLeod et al. 422

https://doi.org/10.1017/S0016672309990358 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672309990358


of input parameters (N, T, r and m), than the other
methods tested, particularly when recombination and
mutation rates were of similar value. We were also
able to predict the observed pattern ofHHn in a cattle
population, given appropriate estimates of historical
population sizes changing over time. When accom-
modating changes in population size, our method
approximates the HHn of recombinant segments
from the most recent generation of each phase,
causing some overestimation of HHn. However, we
demonstrate that this is overcome by splitting long

non-equilibrium phases into a number of shorter
phases. There are other ways to overcome this ap-
proximation, and all are likely to increase the com-
puting time; ours resulted in a linear increase in user
CPU time for every extra phase.

The theory for HHn developed here applies directly
to the situation where sites in the genome are defined
without knowledge of whether or not they are poly-
morphic. This would be the case if the data were
genome sequence data where all sites are recorded. In
this case, the mutation rate and recombination rate
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Fig. 6. Observed genome wide HHn in cattle, genotyped for 38 259 SNPs (38 K data), compared with MHH predicted
HHn. Predictions are shown for constant population size (N=120), as well as sharply decreasing population size with three
or six ancestral sizes (from N=50 000 to N<300).
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are both about 10x8 per base (Nachman & Crowell,
2000; Kong et al., 2004; Arias et al., 2009). Under
coalescence theory for the standard neutral model, it is
the R and U parameters that are critical in deter-
mining the coalescence patterns (e.g. Przeworski et al.,
2000). Therefore our results with the mutation rate
and the recombination rate of 10x5 could apply to
sequence data but with N increased by 1000-fold.
However, our results would also apply approximately
in the following situation. Consider a sequence of
1000 bases as a single ‘ locus’ with a mutation rate
1000 times the per base mutation rate. Any mutation
that occurs in any of these 1000 bases is recorded as a
mutation in the locus. Now the mutation rate and the
recombination rate will be approximately 10x5 per
locus. In practice, the data often consist of genotypes
at sites that are known to be polymorphic. This data
will also approximate the data from the 1000 base
locus described above because the ascertainment of
polymorphisms could be described approximately as
sequencing 1000 bases, for instance, and selecting one
site that is polymorphic to be genotyped. In predicting
HHn at such known polymorphic SNPs, we set
the mutation rate so that the observed single SNP
homozygosity matches that predicted. In this way, the
match of the predicted to the observed data depends
on the pattern of LD and is not influenced by the
match at single SNPs. The bias that use of the ana-
lytical HHn method would introduce if the same
higher mutation rates were assumed in order to pre-
dict homozygosity at a postulated QTL position given
the SNP HHn, needs further investigation.

The original MG methodology was not developed
for changing population size and has three main
approximations, two of which have been corrected
in this paper, that work in opposing directions and
therefore sometimes cancel each other out. However,
both the modified and original methods still apply
a third approximation; the assumption that, con-
ditional on a recombination occurring on the
chromosome segment underlying the markers, marker
coalescence on the segments separated by recombi-
nation are calculated independently. This assumption
ignores the fact that they share a joint coalescence up
to the time the recombination takes place. The result
of this approximation is particularly evident where
the population size is decreasing rapidly to the present
day (Fig. 3). In smaller populations, the method
under-predicts the HHn, because it does not account
for the correlation in the time taken for the markers to
coalesce given a recombination occurs. MHH models
more accurately the multi-marker probability of
coalescence before and after the segments recombine,
which gives better performance under a range of
parameters.

The main drawback of HHF is that marker HHn

probabilities are increasingly over predicted as the

mutation rate approaches the recombination rate be-
tween markers (e.g. Fig. 2B). This is apparent also in
Fig. 4B (r=5 m), with marker density close to that
already feasible in the human genome, and expanding
N similar to human populations which are estimated
to be large and expanding (Zhao et al., 2006; Tenesa
et al., 2007). Hill & Hernandez-Sanchez (2007) give a
derivation explaining why their approximate method
performs less well in the presence of mutation.
However, they point out that for livestock popu-
lations their method should perform well, because the
influence of mutation is relatively minor due to small
present day population sizes in livestock.

The parameters for the bottleneck populations
were chosen to verify that the multi-marker HHn

patterns are strongly influenced by marker intervals
only for a finite number of ancestral generations
backwards in time from the present day. Chromo-
some segment homozygosity on a segment of ‘c ’
Morgans is influenced by the population size at ap-
proximately 1/(2c) generations ago, assuming a linear
change in population size (Hayes et al., 2003). Our
results in Fig. 4A clearly demonstrate that no dis-
tinction was possible between the populations with
and without a bottleneck 5000 generations ago when
marker intervals were 0.0005 M. In this case, we
would expect a two marker haplotype to be influenced
by population size only up to 1000 generations ago.
We did detect different patterns of HHn in the bottle-
neck versus no bottleneck populations with much
smaller marker intervals of 2.5r10x5 M (Fig. 4B).

Our results indicate that we should be able to pre-
dict changes in historical population sizes with an
efficient search strategy to optimize the parameters
given in the data. Clearly, it is not possible to predict
the observed HHn pattern in cattle when a constant
population size is assumed (Fig. 6). The time period
over which we can predict the changing population
sizes will depend on the marker intervals. Our esti-
mated cattle population parameters indicate a re-
duction in the population size from past to present
(over approximately 760 generations), and follow a
similar trend to estimates from studies which have
used two marker LD to predict historic cattle popu-
lation size (Gautier et al., 2007; de Roos et al., 2008).
This is also in keeping with historical events which
have resulted in decreasing effective population size in
cattle : first due to domestication approximately
1500–2000 generations ago (assuming a generation
interval of 5–7 years), then breed formation followed
by breed society registration, and finally modern
intense selection schemes with artificial breeding
techniques (approximately 5–8 of most recent gen-
erations). There is also a possibility that recent intense
selection of dairy cattle has resulted in an excess
of intermediate length homozygous segments, which
would result in a smaller estimate of present day N
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than the true N. However, the observed bovine SNP
data used for this study covered the entire genome
and is therefore less likely to be heavily biased by
selection.

The consistently better performance of MHH
compared to the others in this study for increasing
population size and very dense markers, implies that
it is a good method for use with human genotype data
where effective population size has in more recent
times been increasing rapidly (Zhao et al., 2006;
Tenesa et al., 2007). With our new analytical method,
it should be possible to develop formal search algor-
ithms to predict changing population size given ob-
served dense SNP data. We are also extending MHH
to predict local recombination rates from dense SNP
data, using a likelihood inference approach. A further
application of our method is to predict relative prob-
ability of homozygosity at a putative QTL position,
given the surrounding observed marker homozygosity
(Meuwissen & Goddard, 2007), or similarly to impute
missing marker information.

Appendix A

MGmod – Modifications to MG
Our main modification to MG is to allow for im-

plementation with changes in ancestral population
sizes, in a similar way as described for our method
in this paper (i.e. considering multiple ‘phases’ of
constant population size). Our modification of MG
follows the same framework and notation as the
Meuwissen & Goddard (2007) published method,
where the probability of homozygosity at the markers
is calculated by considering the conditional marker
homozygosity given the underlying segment IBD
pattern, and the prior probability of the IBD pattern:

P(y)= g
allp

P(yjp)*P(p): (A1)

For P(p), we calculate the probability of segment
coalescence in each ‘phase’ of a given population size
and finite number of generations, and sum the prob-
abilities across all phases for the full probability of
coalescence. For the following segment pattern, we
would first calculate each term on the right-hand side,
across all three phases. P(p=[0 1 0])=P(p=[. 1 .])
xP(p=[1 1 .])xP(p=[. 1 1])+P(p=[1 1 1]).
Likewise, we also sum P(y=1|p), over each phase of
changed population size, for each possible IBD pat-
tern. These multi-phase conditional and prior prob-
abilities are then substituted in the above equation
(A1).

Our second modification to the Meuwissen and
Goddard method (Meuwissen & Goddard, 2007) is
to replace the single conditional probability of a
marker being homozygous (i.e. no mutation before
coalescence) given it is located on an IBD segment,

with three conditional probabilities : depending on
whether or not the IBD segment is bounded by re-
combination on 0, 1 or 2 sides. If an IBD segment is
known to be bounded by recombination, the prob-
ability of mutation on this segment is higher than if
unbounded because shorter IBD segments indicate
longer coalescence times and more time for mutation
to occur.

The derivations are therefore written in full for
the modifications and the three conditional marker
probabilities are :

(a) Within or at the end of an IBD segment, which
is unbounded by any known recombination;
P(y=1|p=[1n])=P(y=1 & p=[1n])/P(p=[1n]),
where p=[1n] in n IBD adjacent intervals.

(b) Within or at the end of an IBD segment, which
is bounded on one side by recombination;
P(y=1|p=[0 1])=P(y=1 & p=[0 1])/P(p=
[0 1]), where P(y=1 & p=[0 1])=P(y=1 & p=
[. 1])xP(y=1 & p=[1 1]) and P(p=[0 1])=P
(p=[. 1])xP(p=[1 1]).

(c) Within or at the end of an IBD segment, which
is bounded on both sides by recombination;
P(y=1|p=[0 1 0])=P(y=1 & p=[0 1 0])/
P(p=[0 1 0]), where P(p=[ …0 …]) is calculated
in terms of IBD segments, thus: P(p=[0 1 0])=
P(p=[. 1 .])xP(p=[1 1 .])xP(p=[. 1 1])+
P(p=[1 1 1]) and likewise,P(y=1& p=[0 1 0])=
P(y=1 & p=[. 1 .])xP(y=1 & p=[1 1 .])
xP(y=1 & p=[. 1 1])+P(y=1 & p=[1 1 1]).

Our third modification is to calculate the joint
probability of no mutation for all markers on one
IBD segment. In the original method, the probability
of mutation when more than one marker is found on
an IBD segment is considered independent for each
marker. However, this probability is correlated be-
cause the markers occur on the same IBD segment.
We have altered the method to calculate the joint
probability of no mutation for all markers occurring
on the same IBD segment:

P(y=(1)n p=(j 1)nx1)

=
1

2N
(1xc)2* g

Tx1

t=0
1x

1

2N

� �
(1xc)2(1xm)2n

� �t
,

where n is the number of markers on the IBD seg-
ment, t is any given generation, T is the total number
of generations and c is the total recombinant distance
of the IBD segment (Morgans).
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