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Abstract

Advances in incremental Datalog evaluation strategies have made Datalog popular among use
cases with constantly evolving inputs such as static analysis in continuous integration and deploy-
ment pipelines. As a result, new logic programming debugging techniques are needed to support
these emerging use cases.

This paper introduces an incremental debugging technique for Datalog, which determines
the failing changes for a rollback in an incremental setup. Our debugging technique leverages a
novel incremental provenance method. We have implemented our technique using an incremen-
tal version of the Soufflé Datalog engine and evaluated its effectiveness on the DaCapo Java
program benchmarks analyzed by the Doop static analysis library. Compared to state-of-the-art
techniques, we can localize faults and suggest rollbacks with an overall speedup of over 26.9×
while providing higher quality results.

KEYWORDS: logic programming methodology and applications

1 Introduction

Datalog has achieved widespread adoption in recent years, particularly in static analysis

use cases Grech et al. (2018, 2019); Allen et al. (2015); Grech et al. (2018, 2019); Zhou

et al. (2010); Huang et al. (2011); Backes et al. (2019) that can benefit from incremen-

tal evaluation. In an industrial setting, static analysis tools are deployed in continuous

integration and deployment setups to perform checks and validations after changes are
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Fig. 1. A scenario where an incremental update results in faults in the output.

made to a code base Distefano et al. (2019); Github CodeQL (2021). Assuming that

changes between analysis runs (aka. epochs) are small enough, a static analyzer writ-

ten in Datalog can be effectively processed by incremental evaluation strategies Zhao

et al. (2021); Motik et al. (2019); Ryzhyk and Budiu (2019); McSherry et al. (2013)

which recycle computations of previous runs. When a fault appears from a change in the

program, users commonly need to (1) localize which changes caused the fault and (2)

partially roll back the changes so that the faults no longer appear. However, manually

performing this bug localization and the subsequent rollback is impractical, and users

typically perform a full rollback while investigating the fault’s actual cause Yan et al.

(2019a); Yoon and Myers (2012). The correct change is re-introduced when the fault is

found and addressed, and the program is re-analyzed. This entire debugging process can

take significant time. Thus, an automated approach for detecting and performing partial

rollbacks can significantly enhance developer productivity.

For instance, consider the example in Figure 1. The diagram shows the use of incre-

mental evaluation for program analysis use cases. On the left, the source program is

updated, resulting in a change ΔE, which is input to the incremental program analysis

ΔP . After computing the incremental update, some result tuples are unchanged, some

are inserted, and some are deleted. However, some of the changes (insertions or deletions)

may be unwanted (i.e., the user does not agree with the change), and hence we can view

these as faults that appeared as a result of the incremental update.

Existing state-of-the-art Datalog debugging techniques that are available employ data

provenance Karvounarakis et al. (2010); Zhao et al. (2020) or algorithmic debugging

Caballero et al. (2017) to provide explanations. However, these techniques require a

deep understanding of the tool’s implementation and target the ruleset, not the input.

Therefore, such approaches are difficult to apply to automate input localization and

rollback. The most natural candidate for this task is delta debugging Zeller (1999); Zeller

and Hildebrandt (2002), a debugging framework for generalizing and simplifying a failing

test case. This technique has recently been shown to scale well when integrated with state-

of-the-art Datalog synthesizers Raghothaman et al. (2019) to obtain better synthesis

constraints. Delta debugging uses a divide-and-conquer approach to localize the faults

when changes are made to a program, thus providing a concise witness for the fault.

However, the standard delta debugging approach is programming language agnostic and

requires programs to be re-run, which may require significant time.

In this paper, we introduce a novel approach to automating localize-rollback debugging.

Our approach comprises a novel incremental provenance technique and two intertwined

algorithms that diagnose and compute a rollback suggestion for a set of faults (missing
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and unwanted tuples). The first algorithm is a fault localization algorithm that reproduces

a set of faults, aiding the user in diagnosis. Fault localization traverses the incremental

proof tree provided by our provenance technique, producing the subset of an incremental

update that causes the faults to appear in the current epoch. The second algorithm

performs an input repair to provide a local rollback suggestion to the user. A rollback

suggestion is a subset of an incremental update, such that the faults are fixed when it is

rolled back.

We have implemented our technique using an extended incremental version of the

Soufflé Jordan et al. (2016); Zhao et al. (2021) Datalog engine and evaluated its effec-

tiveness on DaCapo Blackburn et al. (2006) Java program benchmarks analyzed by the

Doop Bravenboer and Smaragdakis (2009) static analysis tool. Compared to delta debug-

ging, we can localize and fix faults with a speedup of over 26.9× while providing smaller

repairs in 27% of the benchmarks. To the best of our knowledge, we are the first to offer

such a debugging feature in a Datalog engine, particularly for large workloads within a

practical amount of time. We summarize our contributions as follows:

• We propose a novel debugging technique for incremental changing input. We employ

localization and rollback techniques for Datalog that scale to real-world program

analysis problems.

• We propose a novel incremental provenance mechanism for Datalog engines. Our

provenance technique leverages incremental information to construct succinct proof

trees.

• We implement our technique in the state-of-the-art Datalog engine Soufflé, including

extending incremental evaluation to compute provenance.

• We evaluate our technique with Doop static analysis for large Java programs and

compare it to a delta-debugging approach adapted for the localization and rollback

problem.

2 Overview

2.1 Motivating example

Consider a Datalog points-to analysis in Figure 2. Here, we show an input program to

analyze (Figure 2a), which is encoded as a set of tuples (Figure 2b) by an extractor , which

maintains a mapping between tuples and source code Jordan et al. (2016); Schäfer et al.

(2017); Vallée-Rai et al. (2010). We have relations new, store, load, and assign captur-

ing the semantics of the input program to analyze. These relations are also known as the

Extensional Database (EDB), representing the analyzer’s input. The analyzer written in

Datalog computes relations vpt (Variable Points To) and alias as the output, which is

also known as the Intensional Database (IDB). For the points-to analysis, Figure 2c has

four rules. A rule is of the form:

Rh(Xh) :- R1(X1), . . . , Rk(Xk).

Each R(X) is an atom, with R being a relation name and X being a vector of variables

and constants of appropriate arity. The predicate to the left of :- is the head and the

sequence of predicates to the right is the body . A Datalog rule can be read from right
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(a) (b)

(c)

Fig. 2. Program analysis datalog setup.

to left: “for all rule instantiations, if every tuple in the body is derivable, then the

corresponding tuple for the head is also derivable”.

For example, r2 is vpt(Var, Obj) :- assign(Var, Var2), vpt(Var2, Obj), which can

be interpreted as “if there is an assignment from Var to Var2, and if Var2 may point

to Obj, then also Var may point to Obj”. In combination, the four rules represent a

flow-insensitive but field-sensitive points-to analysis. The IDB relations vpt and alias

represent the analysis result: variables may point to objects and pairs of variables that

may be an alias with each other.

Suppose the input program in Figure 2a changes by adding a method to upgrade a

user session to an admin session with the code:

upgradedSession = userSession;
userSession = admin.session;

The result of the points-to analysis can be incrementally updated by insert-

ing the tuples assign(upgradedSession, userSession) and load(userSession,

admin, session). After computing the incremental update, we would observe that

alias(userSession, sec) is now contained in the output. However, we may wish to

maintain that userSession should not alias with the secure session sec. Consequently,

the incremental update has introduced a fault , which we wish to localize and initiate a

rollback.

A fault localization provides a subset of the incremental update that is sufficient to

reproduce the fault, while a rollback suggestion is a subset of the update which fixes
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Fig. 3. Fault localization and repair system.

the faults. In this particular situation, the fault localization and rollback suggestion

are identical, containing only the insertion of the second tuple, load(userSession,

admin, session). Notably, the other tuple in the update, assign(upgradedSession,

userSession), is irrelevant for reproducing or fixing the fault and thus is not included

in the fault localization/rollback.

In general, an incremental update may contain thousands of inserted and deleted

tuples, and a set of faults may contain multiple tuples that are changed in the incre-

mental update. Moreover, the fault tuples may have multiple alternative derivations,

meaning that the localization and rollback results are different. In these situations, auto-

matically localizing and rolling back the faults to find a small relevant subset of the

incremental update is essential to provide a concise explanation of the faults to the user.

The scenario presented above is common during software development, where making

changes to a program causes faults to appear. While our example concerns a points-to

analysis computed for a source program, our fault localization and repair techniques are,

in principle, applicable to any Datalog program.

2.1.1 Problem statement

Given an incremental update with its resulting faults, automatically find a fault

localization and rollback suggestion.

2.2 Approach overview

An overview of our approach is shown in Figure 3. The first portion of the system is the

incremental Datalog evaluation. Here, the incremental evaluation takes an EDB and an

incremental update containing tuples inserted or deleted from the EDB, denoted ΔEDB.

The result of the incremental evaluation is the output IDB, along with the set of IDB

insertions and deletions from the incremental update, denoted ΔIDB. The evaluation

also enables incremental provenance, producing a proof tree for a given query tuple.

The second portion of the system is the fault localization/rollback repair. This process

takes a set of faults provided by the user, which is a subset of ΔIDB where each tuple

is either unwanted and inserted in ΔIDB or is desirable but deleted in ΔIDB. Then, the

fault localization and rollback repair algorithms use the full ΔIDB and ΔEDB, along

with incremental provenance, to produce a localization or rollback suggestion.
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The main fault localization and rollback algorithms work in tandem to provide localiza-

tions or rollback suggestions to the user. The key idea of these algorithms is to compute

proof trees for fault tuples using the provenance utility provided by the incremental

Datalog engine. These proof trees directly provide localization for the faults. For fault roll-

back, the algorithms create an Integer Linear Programming (ILP) instance that encodes

the proof trees, with the goal of disabling all proof trees to prevent the fault tuples from

appearing.

The result is a localization or rollback suggestion, which is a subset of ΔEDB. For

localization, the subset S ⊆ΔEDB is such that if we were to apply S to EDB as the diff,

the set of faults would be reproduced. For a rollback suggestion, the subset S ⊆ΔEDB is

such that if we were to remove S from ΔEDB, then the resulting diff would not produce

the faults.

3 Incremental Provenance

3.1 Background

3.1.1 Provenance

Provenance Caballero et al. (2017); Zhao et al. (2020); Raghothaman et al. (2019)

provides machinery to explain the existence of a tuple. For example, the tuple

vpt(userSession, L3) could be explained in our running example by the following

proof tree:

assign(userSession, ins)
new(ins, L3)

r1
vpt(ins, L3)

r2
vpt(userSession, L3)

This proof tree explains the derivation of vpt(userSession, L3) through input and

intermediate tuples and which Datalog rules were involved in the derivation. Therefore,

these proof trees provide a link between faulty tuples and the structure of the program

itself. This forms the basis for our incremental Datalog debugging approach.

A two-phase approach for computing provenance was introduced in Zhao et al. (2020).

The key idea is to instrument the Datalog program to compute some provenance infor-

mation alongside the actual tuples, and then to use this information to produce proof

trees.

The two-phase process consists of:

1. Instrumented Datalog evaluation: annotating each tuple with provenance anno-

tations while computing the IDB. In particular, for each tuple t, the system

stores the height of the minimal height proof tree for t. For an EDB tuple,

the height is 0, meanwhile the height of an IDB tuple is computed by h(t) =

max{h(t1), . . . , h(tk)}+ 1 if t is derived by a rule instantiation t :- t1, . . . , tk.

2. Provenance query answering: using the annotated IDB to answer provenance

queries of the form of “explain vpt(userSession, L3)”. Internally, the system

generates and solves constraints using the provenance annotations to construct the

proof trees one level at a time.
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For the running example, the tuple vpt(userSession, L3) gets a height annotation

of 2 during the instrumented evaluation phase. Then, during the query answering, the

system generates a constraint saying “find the tuples matching the body of a rule for vpt

with height less than 2”.

3.1.2 Incremental evaluation

Incremental Datalog evaluation provides an efficient method of updating the results

of a computation given some small changes to the input (where some tuples are

inserted and/or deleted). Previous incremental evaluation approaches, such as Delete-

Rederive (DRed) Gupta et al. (1993), had shortcomings concerning over-deletion and

the re-derivation step required to resolve this. However, modern incremental evaluation

approaches typically use a counting-based approach. For these strategies, each IDB tuple

is associated with a count representing the number of different derivations for that tuple.

When an EDB tuple t is inserted or deleted, tuples depending on t have their counts

incremented or decremented respectively. If a tuple’s count reaches 0, then that tuple is

removed from the IDB.

To handle recursion, techniques such as Differential Dataflow McSherry et al. (2013)

propose storing counters for each tuple per iteration of the recursion. Note that if rules are

alternately increasing and decreasing, then they would be operating in different iterations.

Therefore, each tuple is associated with an iteration number and a count. This increases

the space overhead for keeping the auxiliary information but allows for precise recording

of the incremental updates in a recursive setting. Variations of this idea, such as Elastic

Incremental Evaluation Zhao et al. (2021), propose a trade-off of lower space overhead at

the cost of requiring some recomputation to maintain precision of the derivation counts.

In our running example, the insertion of two lines in the source program result in

the insertion of two EDB tuples for the pointer analysis: assign(upgradedSession,

userSession) and load(userSession, admin, session).

Using a counting approach Zhao et al. (2021); McSherry et al. (2013), we can apply

incremental counting versions of the Datalog rules to compute an updated IDB. In this

instance, we can apply rule r2 as

vpt(upgradedSession,L3)+1 :-
assign(upgradedSession,userSession)+1,
vpt(userSession,L3).

The superscripts denote the changes in count as a result of the newly inserted EDB

tuple assign(upgradedSession,userSession). These updated counts are then prop-

agated in subsequent rules, until the IDB has reached fixpoint. Further details are

described in Zhao et al. (2021).

3.2 Combining provenance and incremental evaluation

For fault localization and rollback, a novel provenance strategy is required that builds on

incremental evaluation. Incremental provenance restricts the computations of the proof
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load(u,a,s)(+) store(a,s,s)
new(a,L1)
vpt(a,L1)

new(a,L1)
vpt(a,L1)

new(s,L2)
vpt(s,L2)

vpt(userSession,L2)(+)
new(s,L2)
vpt(s,L2)

alias(userSession,sec)(+)

Fig. 4. The proof tree for alias(userSession,sec). (+) denotes tuples that are inserted as a
result of the incremental update, red denotes tuples that were not affected by the incremental

update.

tree to the portions affected by the incremental update only. For example, Figure 4 shows

an incremental proof tree for the inserted tuple alias(userSession,sec). The tuples

labeled with (+) are inserted by an incremental update. Incremental provenance would

only compute provenance information for these newly inserted tuples and would not

explore the tuples in red already established in a previous epoch.

To formalize incremental provenance, we define inc− prov as follows. Given an incre-

mental update ΔE, inc− prov(P, E, t,ΔE) should consist of tuples that were updated

due to the incremental update.

Definition 3.1.

Let P be a Datalog program, E be an EDB, ΔE be an incremental update, and t be a

tuple contained in both E and ΔE. Then, inc− prov(P, E, t,ΔE) is the set of tuples that

appear in the proof tree for a tuple t, that are also inserted as a result of ΔE. In the

remainder of the paper, we omit P and E if they are unambiguous.

To compute provenance information efficiently in an incremental evaluation setting,

we introduce a novel method combining the provenance annotations of Zhao et al. (2020)

with the incremental annotations of Zhao et al. (2021). Recall, from Section 3.1, that

provenance annotations include the height of the minimal height proof tree for a tuple,

computed by taking the maximum height of all tuples in its derivation. Also recall that

incremental annotations include the iteration number in which a tuple is derived.

To combine these two, we can observe a correspondence between the iteration number

and provenance annotations. A tuple is produced in some iteration if at least one of the

body tuples was produced in the previous iteration. Therefore, the iteration number I

for a tuple produced in a fixpoint is equivalent to

I(t) =max{I(t1), . . . , I(tk)}+ 1

if t is computed by rule instantiation t :- t1, . . . , tk. This definition of iteration num-

ber corresponds closely to the height annotation in provenance. Therefore, the iteration

number is suitable for constructing proof trees similar to provenance annotations.

For fault localization and rollback, it is also important that the Datalog engine produces

only provenance information that is relevant for faults that appear after an incremental

update. Therefore, the provenance information produced by the Datalog engine should

be restricted to tuples inserted or deleted by the incremental update. Thus, we adapt

the user-driven proof tree exploration process in Zhao et al. (2020) to use an automated

procedure that enumerates exactly the portions of the proof tree that have been affected

by the incremental update.
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As a result, our approach for incremental provenance produces proof trees containing

only tuples inserted or deleted due to an update. For fault localization and rollback, this

property is crucial for minimizing the search space when computing localizations and

rollback suggestions.

4 Fault localization and rollback repair

This section describes our approach and algorithms for both the fault localization and

rollback problems. We begin by formalizing the problem and then presenting basic ver-

sions of both problems. Finally, we extend the algorithms to handle missing faults and

negation.

4.1 Preliminaries

We first define a fault to formalize the fault localization and rollback problems. For a

Datalog program, a fault may manifest as either (1) an undesirable tuple that appears

or (2) a desirable tuple that disappears. In other words, a fault is a tuple that does not

match the intended output of a program.

Definition 4.1

(Intended Output). The intended output of a Datalog program P is a pair of sets (I+, I−)
where I+ and I− are desirable and undesirable tuple sets, respectively. An input set E is

correct w.r.t P and (I+, I−) if I+ ⊆ P (E) and I− ∩ P (E) = ∅.
Given an intended output for a program, a fault can be defined as follows:

Definition 4.2

(Fault). Let P be a Datalog program, with input set E and intended output (I+, I−).
Assume that E is incorrect w.r.t. P with (I+, I−). Then, a fault of E is a tuple t such

that either t is desirable but missing, that is t∈ I+ \ P (E) or t is undesirable but produced,

that is t∈ P (E)∩ I−.

We can formalize the situation where an incremental update for a Datalog program

introduces a fault. Let P be a Datalog program with intended output I� = (I+, I−) and
let E1 be an input EDB. Then, let ΔE1→2 be an incremental update (or diff ), such that

the application operator E1 �ΔE1→2 results in another input EDB, E2. Then, assume

that E1 is correct w.r.t I�, but E2 is incorrect.

4.1.1 Fault localization

The fault localization problem allows the user to pinpoint the sources of faults. This is

achieved by providing a minimal subset of the incremental update that can still reproduce

the fault.

Definition 4.3

(Fault Localization). A fault localization is a subset δE ⊆ΔE1→2 such that P (E1 � δE)

exhibits all faults of E2.
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Fig. 5. A fault localization is a subset of input changes such that the faults are still reproduced.

Algorithm 1 Localize-Faults(P , E2, ΔE1→ 2, F ): Given a diff ΔE1→ 2 and a set of fault
tuples F , returns δE ⊆ΔE1∈2 such that E1 � δE produces all t ∈F

1: for tuple t∈ F do
2: Let inc-prov(P, E2, t,ΔE1→2) be an incremental proof tree of t containing tuples

that were inserted due to ΔE1→2

3: end for
4: return ∪t∈F (inc− prov(t,ΔE1→2)∩ΔE1→2)

4.1.2 Rollback suggestion

A rollback suggestion provides a subset of the diff, such that its removal from the diff

would fix all faults.

Definition 4.4

(Rollback Suggestion). A rollback suggestion is a subset δE× ⊆ΔE1→2 such that P (E1 �
(ΔE1→2 \ δE×)) does not produce any faults of E2.

4.2 Fault localization

In the context of incremental Datalog, the fault localization problem provides a small

subset of the incremental changes that allow the fault to be reproduced. On its own, fault

localization forms an important part of the reproduction step of any fault investigation.

Moreover, it is also fundamental for rollback repair of missing tuples or negations (see

Section 4.4).

Consider the example in Figure 5. This diagram illustrates that a fault localization is

a subset of the input changes L⊆ΔE such that when L is used as the input changes in

the incremental evaluation, the resulting update still produces the faults.

We begin by considering a basic version of the fault localization problem. In this basic

version, we have a positive Datalog program (i.e., with no negation), and we localize a

set of faults that are undesirable but appear (i.e., P (E)∩ I−). The main idea of the fault

localization algorithm is to compute a proof tree for each fault tuple. The tuples forming

these proof trees are sufficient to localize the faults since these tuples allow the proof

trees to be valid and, thus, the fault tuples to be reproduced.

The basic fault localization is presented in Alg. 1. For each fault tuple t∈ F , the

algorithm computes one incremental proof tree inc-prov(t,ΔE1→2). These proof trees

contain the set of tuples that were inserted due to the incremental update ΔE1→2
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Fig. 6. An input debugging suggestion is a subset of input changes such that the remainder of
the input changes no longer produce the faults.

and cause the existence of each fault tuple t. Therefore, by returning the union

∪t∈F (inc-prov(t,ΔE1→2)∩ΔE1→2), the algorithm produces a subset of ΔE1→2 that

reproduces the faults.

4.3 Rollback repair

A rollback repair is a subset of the input changes such that the remaining changes ‘fix’

the faults. Consider Figure 6, which shows that a rollback repair is a small subset of the

input changes, such that the remainder of the changes no longer produce the faults when

used as an incremental update.

The rollback repair algorithm produces a rollback suggestion. As with fault localization,

our presentation begins with a basic version of the rollback problem, where we have only

a positive Datalog program and wish to roll back a set of unwanted fault tuples. The

basic rollback repair algorithm involves computing all non-cyclic proof trees for each

fault tuple and ‘disabling’ each of those proof trees, as shown in Alg. 2. If all proof trees

are invalid, the fault tuple will no longer be computed by the resulting EDB.

Alg. 2 computes a minimum subset of the diff ΔE1→2, which would prevent the pro-

duction of each t∈ F when excluded from the diff. The key idea is to use integer linear

programming (ILP) Schrijver (1998) as a vehicle to disable ΔEDB tuples so that the

fault tuples vanish in the resulting IDB. We phrase the proof trees as a pseudo-Boolean

formula Hooker (1992) whose propositions represent the ΔEDB and IDB tuples in the

proof trees. In the ILP, the faulty tuples are constrained to be false, and the ΔEDB

tuples assuming the true value are to be maximized, that is we wish to eliminate the

least number of tuples in ΔEDB for repair. The ILP created in Alg. 2 introduces a vari-

able for each tuple (either IDB or ΔEDB) that appears in all incremental proof trees for

the fault tuples. For the ILP model, we have three types of constraints:

1. to encode each one-step proof tree,

2. to enforce that fault tuples are false, and

3. to ensure that variables are in the 0-1 domain.

The constraints encoding proof trees correspond to each one-step derivation which can

be expressed as a Boolean constraint, where t1, . . . , tk and th are Boolean variables:

t1 . . . tk
th

≡ t1 ∧ . . .∧ tk =⇒ th
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Algorithm 2 Rollback-Repair(P , E2, ΔE1→ 2, F ): Given a diff ΔE1→ 2 and a set of fault
tuples F , return a subset δE ⊆ΔE1→ 2 such that E1 � (ΔE1∈2\δE) does not produce tr

1: Let all-inc-prov(t,ΔE1→2) = {T1, . . . , Tn} be the total incremental provenance for a
tuple t w.r.t P and E2, where each Ti is a non-cyclic proof tree containing tuples
inserted due to ΔE1→2.
Construct an integer linear program instance as follows:

2: Create a 0/1 integer variable xtk for each tuple tk that occurs in the proof trees in
all-inc-prov(t,ΔE1→2) for each fault tuple t∈ F

3: for each tuple tf ∈ F do
4: for each proof tree Ti ∈ all-inc-prov(tf ,ΔE1→2) do
6: for each line th← t1 ∧ . . .∧ tk in Ti do
6: Add a constraint xt1 + . . .+ xtk − xth ≤ k− 1
7: end for
8: end for
9: Add a constraint xtf = 0

10: end for
11: Add the objective function maximize

∑
te∈EDB xte

12: Solve the ILP
13: Return {t∈ΔE1→2 | xt = 0}

Using propositional logic rules, this is equivalent to t1 ∨ . . .∨ tk ∨ th. This formula is then

transformed into a pseudo (linear) Boolean formula where ϕ maps a Boolean function to

the 0− 1 domain, and xt corresponds to the 0-1 variable of proposition t in the ILP.

ϕ
(
t1 ∨ . . .∨ tk ∨ th

)≡ (1− xt1) + . . .+ (1− xtk) + th > 0

≡ xt1 + . . .+ xtk − xth ≤ k− 1

The constraints assuming false values for fault tuples tf ∈ F are simple equalities, that

is xtf = 0. The objective function for the ILP is to maximize the number of inserted

tuples that are kept, which is equivalent to minimizing the number of tuples in ΔE1→2

that are disabled by the repair. In ILP form, this is expressed as maximizing
∑

t∈ΔE1→2
t.

max.
∑

t∈ΔE1→2
xt

s.t. xt1 + . . . xtk − xth ≤ k− 1
(
∀ t1 ... tk

th
∈ Ti

)

xtf = 0 (∀tf ∈ F )

xt ∈ {0, 1} (∀tuples t)
The solution of the ILP permits us to determine the EDB tuples for repair, that is

{t∈ΔE1→2 | xt = 0} This is a minimal set of inserted tuples that must be removed from

ΔE1→2 so that the fault tuples disappear.

This ILP formulation encodes the problem of disabling all proof trees for all fault tuples

while maximizing the number of inserted tuples kept in the result. If there are multiple

fault tuples, the algorithm computes proof trees for each fault tuple and combines all

proof trees in the ILP encoding. The result is a set of tuples that is minimal but sufficient

to prevent the fault tuples from being produced.
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4.4 Extensions

4.4.1 Missing tuples

The basic versions of the fault localization and rollback repair problem only handle a

tuple which is undesirable but appears. The opposite kind of fault, that is a tuple which

is desirable but missing, can be localized or repaired by considering a dual version of the

problem. For example, consider a tuple t that disappears after applying a diff ΔE1→2,

and appears in the update in the opposite direction, ΔE2→1. Then, the dual problem of

localizing the disappearance of t is to roll back the appearance of t after applying the

opposite diff, ΔE2→1.

To localize a disappearing tuple t, we want to provide a small subset δE of ΔE1→2

such that t is still not computable after applying δE to E1. To achieve this, all ways

to derive t must be invalid after applying δE. Considering the dual problem, rolling

back the appearance of t in ΔE2→1 results in a subset δE such that E2 � (ΔE2→1 \ δE)

does not produce t. Since E1 =E2 �ΔE2→1, if we were to apply the reverse of δE (i.e.,

insertions become deletions and vice versa), we would arrive at the same EDB set as E2 �
(ΔE2→1 \ δE). Therefore, the reverse of δE is the desired minimal subset that localizes

the disappearance of t.

Similarly, to roll back a disappearing tuple t, we apply the dual problem of localizing the

appearance of t after applying the opposite diff ΔE2→1. Here, to roll back a disappearing

tuple, we introduce one way of deriving t. Therefore, localizing the appearance of t in the

opposite diff provides one derivation for t and thus is the desired solution. In summary, to

localize or rollback a tuple t that is missing after applying ΔE1→2, we compute a solution

for the dual problem. The dual problem for localization is to roll back the appearance of

t after applying ΔE2→1, and similarly, the dual problem for rollback is localization. We

note the fault localization on its own is an important part of the investigation process,

in case algorithm will compute a fault localization for the diff in the reverse direction.

4.4.2 Stratified negation

Stratified negation is a common extension for Datalog. With stratified negation, atoms

in the body of a Datalog rule may appear negated, for example

Rh(Xh) :- R1(X1), . . . , !Rk(Xk), . . . , Rn(Xn).

The negated atoms are denoted with !, and any variables contained in negated atoms must

also exist in some positive atom in the body of the rule (a property called groundedness

or safety). Semantically, negations are satisfied if the instantiated tuple does not exist in

the corresponding relation. The ‘stratified’ in ‘stratified negation’ refers to the property

that no cyclic negations can exist. For example, the rule A(x) :- B(x, y), !A(y) causes a

dependency cycle where A depends on the negation of A and thus is not allowed under

stratified negation.

Consider the problem of localizing the appearance of an unwanted tuple t. If the

Datalog program contains stratified negation, then the appearance of t can be caused

by two possible situations. Either (1) there is a positive tuple in the proof tree of t that

appears, or (2) there is a negated tuple in the proof tree of t that disappears. The first

case is the standard case, but in the second case, if a negated tuple disappears, then
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its disappearance can be localized or rolled back by computing the dual problem as in

the missing tuple strategy presented above. We may encounter further negated tuples

in executing the dual version of the problem. For example, consider the set of Datalog

rules A(x) :- B(x), !C(x) and C(x) :- D(x), !E(x). If we wish to localize an appearing

(unwanted) tuple A(x), we may encounter a disappearing tuple C(x). Then, executing

the dual problem, we may encounter an appearing tuple E(x). We can generally continue

flipping between the dual problems to solve the localization or repair problem. This

process is guaranteed to terminate due to the stratification of negations. Each time the

algorithm encounters a negated tuple, it must appear in an earlier stratum than the

previous negation. Therefore, eventually, the negations will reach the input EDB, and

the process terminates.

4.4.3 Changes in datalog rules

The algorithms are presented above in the context of localizing or debugging a change

to the input tuples. However, with a simple transformation, the same algorithms can

also be applied to changes in Datalog rules. For each Datalog rule, introduce a predicate

Rule(i), where i is a unique number per rule. Then, the unary relation Rule can be

considered as EDB, and thus the set of rules can be changed by providing a diff containing

insertions or deletions into the Rule relation. For example, a transformed set of rules may

be:

P(x, y) :- E(x, y), Rule(1).
P(x, z) :- E(x, y), P(y, z), Rule(2).

Then, by including or excluding 1 or 2 in the EDB relation Rule, the underlying Datalog

rules can be ‘switched on or off,’ and a change to the Datalog program can be expressed

as a diff in the Rule relation.

4.5 Full algorithm

The full rollback repair algorithm presented in Alg. 3 incorporates the basic version of

the problem and all of the extensions presented above. The result of the algorithm is

a rollback suggestion, which fixes all faults. Alg. 3 begins by initializing the EDB after

applying the diff (line 1) and separate sets of unwanted faults (lines 2) and missing faults

(3). The set of candidate tuples forming the repair is initialized to be empty (line 4).

The main part of the algorithm is a worklist loop (lines 5 to 15). In this loop, the

algorithm first processes all unwanted but appearing faults (F+, line 6) by computing

the repair of F+. The result is a subset of tuples in the diff such that the faults F+

no longer appear when the subset is excluded from the diff. In the provenance system,

negations are treated as EDB tuples, and thus the resulting repair may contain negated

tuples. These negated tuples are added to F− (line 7) since a tuple appearing in F+ may

be caused by a negated tuple disappearing. The algorithm then repairs the tuples in F−

by computing the dual problem, that is localizing F− with respect to ΔE2→1. Again,

this process may result in negated tuples, which are added to F+, and the loop begins
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Algorithm 3 Full-Rollback-Repair(P , E1, ΔE1→ 2, (I+,I−)): Given a diff ΔE1→ 2 and an
intended output (I+,I ,), compute a subset δE ⊆ΔE1→ 2 such that ΔE1→ 2 \ δE satisfies the
intended output

1: Let E2 be the EDB after applying the diff: E1 �ΔE1→2

2: Let F+ be appearing unwanted faults: {I− ∩ P (E2)}
3: Let F− be missing desirable faults: {I+ \ P (E2)}
4: Let L be the set of repair tuples, initialized to ∅
6: while both F+ and F− are non-empty do
6: Add Rollback-Repair(P , E2, ΔE1→2, F

+) to L
7: for negated tuples !t∈L do
8: Add t to F−

9: end for
10: Clear F+

11: Add Localize-Faults(P , E1, ΔE2→1, F
−) to L

12: for negated tuples !t∈L doP
13: Add t to F+

14: end for
15: Clear F−

16: end while
17: return L

again. This worklist loop must terminate, due to the semantics of stratified negation, as

discussed above. At the end of the worklist loop, L contains a candidate repair.

While Alg. 3 presents a full algorithm for rollback, the fault localization problem

can be solved similarly. Since rollback and localization are dual problems, the full fault

localization algorithm swaps Rollback-Repair in line 6 and Localize-Faults in line 11.

4.5.1 Example

We demonstrate how our algorithms work by using our running example. Recall that we

introduce an incremental update consisting of inserting two tuples:

assign(upgradedSession, userSession) and load(userSession, admin,

session). As a result, the system computes the unwanted fault tuple

alias(userSession, sec). To rollback the appearance of the fault tuple, the

algorithms start by computing its provenance, as shown in Figure 4. The algorithm then

creates a set of ILP constraints, where each tuple (with shortened variables) represents

an ILP variable:

maximize
∑

load(u, a, s) such that

load(u, a, s)− vpt(u, L2)≤ 0,

vpt(u, L2)− alias(u, s)≤ 0,

alias(u, s) = 0

For this simple ILP, the result indicates that the insertion of load(userSession, admin,

session) should be rolled back to fix the fault.
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4.6 Correctness and Optimality

In this section, we discuss the correctness and optimality of our algorithms. Consider

the problem set up with a Datalog program P , an EDB E1, an incremental update diff

ΔE1→2, and a set of fault tuples F . For the fault localization algorithm, correctness

implies that the result reproduces the faults, that is that F ⊆ (E1 � δE). Meanwhile, the

correctness of a rollback repair implies that the result prevents faults from appearing,

that is that (E1 � (ΔE1→2 \ δ×E))∩ F = ∅
Optimality is measured by how minimal the solution is. For both fault localization and

rollback repair, a solution is optimal if there is no smaller subset of the solution which

correctly solves the problem.

4.6.1 Fault localization

The correctness of fault localization (Algorithm 1) lies in the semantics of the proof trees.

Consider a single proof tree. If every EDB tuple in the proof tree exists as input, then the

resulting tuple at the root of the proof tree would be computed by the Datalog program.

Therefore, since the fault localization algorithm returns all ΔEDB tuples in the proof

tree, then the resulting fault tuple will be in the result.

The optimality of the fault localization result is dependent on the properties of the

proof trees produced in the Datalog engine. If these proof trees are minimal in terms

of the number of EDB tuples, then the fault localization result will also be minimal in

size. This property can be guaranteed depending on how the proof tree generation is

implemented (see Zhao et al. (2020)), however the details are outside the scope of this

paper.

4.6.2 Rollback suggestions

The crucial step in the rollback repair algorithm (Algorithm 2) involves encoding the

proof trees as an ILP. These ILP constraints directly encode the logical formulae repre-

senting the semantics of the proof trees, with additional constraints asserting that the

faulty tuples must be false (i.e., that they are not computed by the EDB satisfying

the ILP). Therefore, the correctness of the rollback repair algorithm results from the

correctness of the ILP encoding and solving.

To consider the optimality of a rollback suggestion, we first note that the algorithm

uses all non-cyclic proof trees. This means that the properties of each proof tree do not

affect optimality, but rather, the optimality is a result of the maximization constraint

in the ILP encoding. This constraint represents that the maximum number of tuples in

ΔEDB must be kept in the solution, which is equivalent to saying that the rollback

repair includes the minimum number of necessary tuples. Hence, the solution is indeed

optimal.

4.6.3 Full algorithm

Each component of the full algorithm is correct, as discussed above, and therefore it only

remains to be shown that considering the dual problem for negations is correct. This

correctness is discussed in Section 4.4, and thus the full algorithm identifies a correct

debugging suggestion.
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However, the full algorithm is not necessarily optimal in the presence of negation. For

example, consider when an initial debugging suggestion includes a negated tuple, t. Then,

the full algorithm computes the dual problem of localizing the appearance of t with the

opposite diff ΔE2→1. However, this opposite diff does not consider the initial debugging

suggestion (only the negated tuple), and thus, the result may not be optimal. In practice,

this sub-optimality rarely affects the solution, and the result is generally optimal or close

to optimal.

4.6.4 Complexity

The fault localization algorithm (Algorithm 1) simply computes the provenance for each

fault tuple. From Zhao et al. (2020), computing a proof tree requires O(h logm |IDB|)
time, where h is the height of the proof tree, m is the nesting depth of the joins in the

Datalog program, and |IDB| is the total number of tuples computed in the IDB.

The rollback suggestion algorithm computes the full provenance of the fault tuple,

which requires up to n applications of the provenance algorithm, if there are n proof

trees for the tuple. However, the integer linear programming portion is exponential in

complexity, with branch-and-bound-based algorithms Clausen (1999) taking O(2|V |) run-
time, where |V | is the number of variables. In our case, there is one variable for each tuple

in the full provenance, which is up to |IDB| in the worst case. This dominates the runtime

of our algorithm, resulting in a total complexity of O(nh logm |IDB|) +O(2|IDB|).
In practice, however, the size of the full provenance for a fault tuple is far smaller

than the full IDB, resulting in reasonable real-world performance even for large Datalog

programs.

For comparison, the delta debugging approach only needs to check a linear number

of subsets of the incremental update. However, for each subset, delta debugging needs

to evaluate an (incremental) Datalog program, which is polynomial in complexity, but

sometimes prohibitive in practice.

5 Implementation

The implementation of our algorithms first involved extending the Soufflé Datalog engine

Jordan et al. (2016). Soufflé already includes utilities for computing proof trees (also

called provenance) Zhao et al. (2020) and incremental evaluation Zhao et al. (2021).

To support fault localization and rollback suggestions, we extended Soufflé to sup-

port incremental provenance. This involved interoperability between the provenance and

incremental evaluation portions, to allow the provenance mechanism to use the same

instrumentation originally designed for incremental evaluation.

We implemented the fault localization and repair algorithms using Python.1 The imple-

mentations of the Fault Localization and Rollback Repair algorithms follow directly from

their presentations in this paper. For any operations which require calling a Datalog

engine, we call out to our modified Soufflé engine. One potential source of inefficiency in

our implementation is that Soufflé does not have direct Python interoperability, so we

1 Available at github.com/davidwzhao/souffle-fault-localization
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have to read/write tuples through the filesystem or pipes to interact with Soufflé. For solv-

ing integer linear programs, we use the GLPK solver GLPK (GNU Linear Programming

Kit) (2012) in the PuLP Python library.

For the full algorithm, we need to compute the dual versions of each problem. For

efficiency, we do not construct the full dual version of the problem as they are needed,

but instead, we maintain two instances of Soufflé: one for the forward problem, and one

for the reverse direction. Using these two instances of Soufflé, we can easily compute the

fault localizations or rollback suggestions as needed, without re-instantiating the Datalog

engine.

6 Experiments

This section evaluates our technique on real-world benchmarks to determine its effective-

ness and applicability. We consider the following research questions:

• RQ1: Is the new technique faster than a delta-debugging strategy?

• RQ2: Does the new technique produce more precise localization/repair candidates

than delta debugging?

6.1 Experimental setup2

Our main point of comparison in our experimental evaluation is the delta debugging

approach, such as that used in the ProSynth Datalog synthesis framework Raghothaman

et al. (2019). We adapted the implementation of delta debugging used in ProSynth to

support input tuple updates. Like our fault repair implementation, the delta debugging

algorithm was implemented in Python; however, it calls out to the standard Soufflé engine

since that provides a lower overhead than the incremental or provenance versions.

For our benchmarks, we use the Doop program analysis framework Bravenboer and

Smaragdakis (2009) with the DaCapo set of Java benchmarks Blackburn et al. (2006).

The analysis contains approx. 300 relations, 850 rules, and generates approx. 25 million

tuples from an input size of 4–9 million tuples per DaCapo benchmark. For each of

the DaCapo benchmarks, we selected an incremental update containing 50 tuples to

insert and 50 tuples to delete, which is representative of the size of a typical commit in

the underlying source code. From the resulting IDB changes, we selected four different

arbitrary fault sets for each benchmark, which may represent an analysis error.

6.1.1 Performance

The results of our experiments are shown in Table 1. Our fault repair technique performs

much better overall compared to the delta debugging technique. We observe a geometric

mean speedup of over 26.9×3 compared to delta debugging. For delta debugging, the

main cause of performance slowdown is that it is a black-box search technique, and

it requires multiple iterations of invoking Soufflé (between 6 and 19 invocations for the

presented benchmarks) to direct the search. This also means that any intermediate results

2 We use an Intel Xeon Gold 6130 with 192GB RAM, GCC 10.3.1, and Python 3.8.10
3 We say “over” because we bound timeouts to 7200 s.
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Table 1. Repair size and runtime of our technique compared to delta debugging

Rollback Repair Delta Debugging
Program No. Size Overall (s) Local(s) Repair(s) Size Runtime (s) Speedup

antlr 1 2 73.6 0.51 73.1 3 3057.8 41.5
2 1 79.4 0.00 79.4 1 596.5 7.5
3 1 0.95 0.95 – 1 530.8 558.7
4 2 77.8 1.89 75.9 3 3017.6 38.8

bloat 1 2 3309.5 0.02 3294.1 2 2858.6 0.9
2 1 356.3 0.00 355.4 1 513.6 1.4
3 1 0.33 0.33 – 1 557.7 1690.0
4 3 3870.6 0.10 3854.7 2 2808.3 0.7

chart 1 1 192.6 0.00 192.6 1 685.0 3.6
2 1 3.01 3.01 – 1 675.3 224.4
3 1 78.8 0.00 78.8 1 667.6 8.5
4 2 79.9 3.24 76.7 3 3001.1 37.6

eclipse 1 2 177.3 0.04 177.2 3 2591.2 14.6
2 1 79.2 0.00 79.1 1 416.1 5.3
3 1 0.12 0.12 – 1 506.3 4219.2
4 3 91.9 0.09 91.8 3 2424.4 26.4

fop 1 2 83.8 0.05 83.8 2 3446.6 41.1
2 1 76.9 0.00 76.9 1 670.7 8.7
3 1 0.66 0.66 – 1 721.8 1093.6
4 6 74.8 0.50 74.3 Timeout (7200) 96.3+

hsqldb 1 2 83.3 0.04 83.3 2 2979.2 35.8
2 1 79.4 0.00 79.4 1 433.8 5.5
3 1 74.0 0.00 74.0 1 663.1 9.0
4 3 75.5 0.04 75.5 5 6134.8 81.3

jython 1 1 83.3 0.00 83.3 1 609.4 7.3
2 1 78.2 0.00 78.2 1 590.4 7.5
3 1 76.6 0.00 76.6 1 596.2 7.8
4 1 75.8 0.00 75.8 1 587.6 7.8

luindex 1 2 81.3 0.07 81.2 3 2392.1 29.4
2 1 79.8 0.00 79.8 1 511.0 6.4
3 1 0.10 0.10 – 1 464.8 4648.0
4 4 77.9 0.12 77.8 5 4570.4 58.7

lusearch 1 2 110.2 0.06 110.0 3 2558.8 23.2
2 1 1062.1 0.00 1057.4 1 370.4 0.3
3 1 0.12 0.12 – 1 369.6 3080.0
4 2 294.2 0.06 293.2 3 2420.9 8.2

pmd 1 2 78.1 0.02 78.1 3 3069.8 39.3
2 1 77.0 0.00 77.0 1 600.2 7.8
3 1 0.08 0.08 – 1 717.8 8972.5
4 3 74.3 0.08 74.2 3 2828.3 38.1

xalan 1 1 84.9 0.00 84.9 1 745.3 8.8
2 1 82.2 0.00 82.2 1 728.9 8.9
3 1 100.1 0.00 100.1 1 1243.7 12.4
4 1 521.6 0.00 518.3 1 712.5 1.4
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generated in a previous Soufflé run are discarded since no state is kept to allow the reuse

of results. Each invocation of Soufflé takes between 30–50 s, depending on the benchmark

and EDB. Thus, the overall runtime for delta debugging is in the hundreds of seconds at

a minimum. Indeed, we observe that delta debugging takes between 370 and 6135 s on

our benchmarks, with one instance timing out after two hours (7200 s).

On the other hand, our rollback repair technique calls for provenance information

from an already initialized instance of incremental Soufflé. This incrementality allows our

technique to reuse the already computed IDB for each provenance query. For eight of the

benchmarks, the faults only contained missing tuples. Therefore, only the Localize-Faults

method was called, which only computes one proof tree for each fault tuple and does not

require any ILP solving. The remainder of the benchmarks called the Rollback-Repair

method, where the main bottleneck is for constructing and solving the ILP instance. For

three of the benchmarks, bloat-1, bloat-4, and lusearch-2, the runtime was slower

than delta debugging. This result is due to the fault tuples in these benchmarks having

many different proof trees, which took longer to compute. In addition, this multitude of

proof trees causes a larger ILP instance to be constructed, which took longer to solve.

6.1.2 Quality

While the delta debugging technique produces 1-minimal results, we observe that despite

no overall optimality guarantees, the results show that our approach was able to produce

more minimal repairs in 27% of the benchmarks. Moreover, our rollback repair technique

produced a larger repair in only one of the benchmarks. This difference in quality is due

to the choices made during delta debugging. Since delta debugging has no view of the

internals of Datalog execution, it can only partition the EDB tuples randomly. Then,

the choices made by delta debugging may lead to a locally minimal result that is not

globally optimal. For our fault localization technique, most of the benchmarks computed

one iteration of rollback repair and did not encounter any negations. Therefore, due to

the ILP formulation, the results were optimal in these situations. In one case, the rollback

repair encountered a negation and flipped to the dual fault localization problem, resulting

in the suboptimality. Despite our technique overall not being theoretically optimal, it still

produces high-quality results in practice.

7 Related Work

7.1 Logic programming input repair

A plethora of logic programming paradigms exist that can express diagnosis and repair by

EDB regeneration Kakas et al. (1993); Fan et al. (2008a); Gelfond and Lifschitz (1988);

El-Hassany et al. (2017); Liu et al. (2023). Unlike these logic programming paradigms,

our technique is designed to be embedded in high-performance modern Datalog engines.

Moreover, our approach can previous computations (proof trees and incremental updates)

to localize and repair only needed tuples. This bounds the set of repair candidates and

results in apparent speedups. Other approaches, such as the ABC Repair System Li

et al. (2018), use a combination of provenance-like structures and user-guided search

to localize and repair faults. However, that approach is targeted at the level of the
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Datalog specification and does not always produce effective repairs. Techniques such as

delta debugging have recently been used to perform state-of-the-art synthesis of Datalog

programs efficiently Raghothaman et al. (2019). Our delta debugging implementation

adapts this method, given it produces very competitive synthesis performance and can

be easily re-targeted to diagnose and repair inputs.

7.2 Database repair

Repairing inconsistent databases with respect to integrity constraints has been exten-

sively investigated in the database community Fan (2009); Bravo and Bertossi (2004);

Arenas et al. (2003); Fan et al. (2008). Unlike our approach, integrity constraints are

much less expressive than Datalog; in particular, they do not allow fixpoints in their

logic. The technique in Fan et al. (2008) shares another similarity in that it also presents

repair for incremental SQL evaluation. However, this is limited to relational algebra, that

is SQL and Constrained Functional Dependencies (CFDs) that are less expressive than

Datalog. A more related variant of database repair is consistent query answering (CQA)

Bravo and Bertossi (2004); Arenas et al. (2003). These techniques repair query answers

given a database, integrity constraints and an SQL query. Similarly, these approaches do

not support recursive queries, as can be expressed by Datalog rules.

7.3 Program slicing

Program slicing Weiser (1984); Binkley and Gallagher (1996); Ezekiel et al. (2021);

Harman and Hierons (2001) encompasses several techniques that aim to compute por-

tions (or slices) of a program that contribute to a particular output result. For fault

localization and debugging, program slicing can be used to localize slices of programs

that lead to a fault or error. The two main approaches are static program slicing, which

operates on a static control flow graph, and dynamic program slicing, which considers the

values of variables or execution flow of a particular execution. As highlighted by Cheney

(2007), data provenance is closely related to slicing. Therefore, our technique can be seen

as a form of static slicing of the Datalog EDB with an additional rollback repair stage.

7.4 Database rollback

Database transaction rollback and partial rollback are well established Mohan et al.

(1992); Coburn et al. (2013) and supported in many DBMS’s Oracle rollback (2023);

Accelerated database recovery (2023). These techniques often perform rollback for a

transaction in the context of data recovery, by logging the effects of each action in the

transaction. Techniques such as Antonopoulos et al. (2019) improve rollback time by

using versioning information. These techniques are limited to SQL transactions while

our technique targets recursive datalog queries in an incremental update setting. For the

static analysis use case, to the best of our knowledge, we are the first to provide an auto-

mated partial commit rollback mechanism based on the analysis output. Nevertheless,

it is interesting future work to investigate if our technique can assist in making more

efficient partial rollbacks in a DBMS setting.
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7.5 Automated commit rollback

There is not a lot of work in the literature on automatically detecting and partially rolling

back buggy commits, despite several studies Shimagaki et al. (2016); Yan et al. (2019)

highlighting the benefits of identifying such commits and rolling them back as soon as

possible. The closest works to ours are techniques Yan et al. (2019); Rosen et al. (2015);

Mockus and Weiss (2000); Kim et al. (2008) that seek to identify through statistical

models commits that are most likely to be reverted. In contrast, our technique works

with a static analyzer that detects bugs in code, and provides users with the option to

partially revert the commit so the bug is eliminated.

8 Conclusion

We have presented a new debugging technique that localizes faults and provides rollback

suggestions for Datalog program inputs. Unlike previous approaches, our technique does

not entirely rely on a black-box solver to perform the underlying repair. Instead, we

utilize incremental provenance information. As a result, our technique exhibits speedups

of 26.9× compared to delta debugging and finds more minimal repairs 27% of the time.

There are also several potential future directions for this research. One direction is

to adopt these techniques for different domain areas outside the use cases of program

analyses.

Acknowledgments

M.R. was funded by U.S. NSF grants CCF-2146518, CCF-2124431, and CCF-2107261.

References

Accelerated database recovery. 2023. https://docs.microsoft.com/en-us/azure/sql-data

base/sql-database-accelerated-database-recovery

Allen, N., Scholz, B. and Krishnan, P. 2015. Staged Points-to Analysis for Large Code Bases.
Springer, Berlin Heidelberg. 131–150.

Antonopoulos, P., Byrne, P., Chen, W., Diaconu, C.,Kodandaramaih, R. T.,Kodavalla,
H., Purnananda, P., Radu, A., Ravella, C. S. and Venkataramanappa, G. M. 2019.
Constant time recovery in azure SQL database. Proceedings of the VLDB Endowment 12, 12,
2143–2154.

Arenas, M., Bertossi, L. E. and Chomicki, J. 2003. Answer sets for consistent query answering
in inconsistent databases. Theory and Practice of Logic Programming 3, 4+5, 393–424.

Backes, J., Bayless, S., Cook, B., Dodge, C., Gacek, A., Hu, A. J., Kahsai, T.,
Kocik, B., Kotelnikov, E., Kukovec, J., Mclaughlin, S., Reed, J., Rungta, N.,
Sizemore, J., Stalzer, M. A., Srinivasan, P., Subotic, P., Varming, C. and Whaley,
B. 2019. Reachability analysis for aws-based networks. In Computer Aided Verification - 31st
International Conference, CAV. 2019, New York City, NY, USA, 231–241, July 15-18, 2019,
Proceedings, Part II

Binkley, D. W. and Gallagher, K. B. 1996. Program slicing. Advances in computers
43, 1–50.

https://doi.org/10.1017/S147106842500002X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842500002X


Theory and Practice of Logic Programming 23

Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., Mckinley, K. S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanović, D., Vandrunen, T.,
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International Conference on Computer Aided Verification, Springer, 422–430.

Kakas, A. C., Kowalski, R. A. and Toni, F. (1993). Abductive logic programming. Journal
of logic and computation, 2(6), pp. 719–770.

Karvounarakis, G., Ives, Z. G. and Tannen, V. (2010). Querying data provenance. In
SIGMOD ’10, Association for Computing Machinery, New York, NY, USA, 951–962.

Kim, S., Whitehead, E. J. and Zhang, Y. 2008. Classifying software changes: Clean or buggy?
IEEE Transactions on Software Engineering 34, 2, 181–196.

Li, X., Bundy, A. and Smaill, A. 2018. Abc repair system for datalog-like theories.
In 10th International Conference on Knowledge Engineering and Ontology Development,
SCITEPRESS, 335–342.

Liu, Y., Mechtaev, S., Subotic, P. and Roychoudhury, A. 2023. Program repair guided by
datalog-defined static analysis. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE. 2023, S. Chandra, K. Blincoe and P. Tonella, ACM, San Francisco, CA,
USA, 1216–1228, December 3-9, 2023

Mcsherry, F., Murray, D. G., Isaacs, R. and Isard, M. 2013. Differential dataflow. In 6th
Biennial Conference on Innovative Data Systems Research.

Mockus, A. and Weiss, D. M. 2000. Predicting risk of software changes. Bell Labs Technical
Journal 5, 2, 169–180.

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H. and Schwarz, P. 1992. Aries: A
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems 17, 1, 94–162.

Motik, B., Nenov, Y., Piro, R. and Horrocks, I. 2019. Maintenance of datalog materialisa-
tions revisited. Artificial Intelligence 269, 76–136.

Oracle rollback. 2023. https://docs.oracle.com/cd/B10500_01/server.920/a96533/

instreco.htm#429546

Raghothaman, M., Mendelson, J., Zhao, D., Naik, M. and Scholz, B. 2019. Provenance-
guided synthesis of datalog programs. In Proceedings of the ACM on Programming Languages,
Vol. 4, 1–27.

Rosen, C., Grawi, B. and Shihab, E. 2015. Commit guru: Analytics and risk prediction of
software commits. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2015, Association for Computing Machinery, New York, NY, USA,
966–969.

Ryzhyk, L. and Budiu, M. 2019. Differential datalog. Datalog 2, 4–5.
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