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1. Introduction
In the paper [1], the technical Lemmas 4.5 and 4.6 are incorrect. This cascaded into the
proofs of Proposition 5.2 and Theorems 2.2, 2.3 and 2.4. Although some of the main
theorems of the original paper were impacted, the ideas in [1] are robust enough to correct
the original proof. In this corrigendum, we provide the necessary modifications to the
statements and proofs.

Furthermore, Lemma 3.1(i) has a typo, which propagated to Proposition 4.2(i) and
Theorem 2.2(ii). We give the corrected statements below and note that the proof of these
results remains correct.

Finally, Theorem 2.4 lacks a condition, which we provide below. Its proof remains
essentially the same.

2. Lemma 3.1(i) and Proposition 4.2(i)
Lemma 3.1(i) was incorrectly quoted from [2, Theorem 3.3.5] and [3, Corollary V.8.1].
The correct statement is as follows.
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LEMMA 3.1.
(i) For every f ∈ L1(M , ρ),

lim
n→∞

1
n

n−1∑
i=0

T if = η
Eρ[f | I(T , ρ)]
Eρ[η | I(T , ρ)]

ρ-almost surely (a.s.).

This affected the statements of Proposition 4.2(i), which are corrected as follows.

PROPOSITION 4.2.
(i) For every f ∈ L1(M , μ),

1
n

n−1∑
i=0

1
λi
P if

n→∞−−−→ η

∫
M

f (y)μ(dy) in L1(M , μ) and μ-a.s.

3. Lemmas 4.5 and 4.6
By labelling {gi}m−1

i=0 and {Ci}m−1
i=0 in Lemma 4.4, we assume that the permutation σ

satisfies σ(i) = i − 1 (mod m). We write gj = gj (mod m) and Cj = Cj (mod m) for every
j ∈ N.

With this convention, Lemmas 4.5 and 4.6, should be combined in a single lemma and
corrected as follows.

LEMMA 4.5. Suppose the absorbing Markov chain Xn satisfies Hypothesis H1. Then for
every bounded and measurable function h : M → R and � ∈ {0, 1, . . . , m − 1},

1
λmn+�

Pmn+�h
n→∞−−−−−→

L1(M ,μ)

m−1∑
s=0

gs

∫
Cs+�

h dμ, (3.1)

and

1
nm + �

mn+�−1∑
i=0

1
λi
P i

(
h

1
λn−i

Pn−i1M

)
n→∞−−−−−→

L1(M ,μ)

m−1∑
s=0

μ(C�+s)gs

∫
M

hη dμ. (3.2)

Proof. Due to Proposition 4.2, there exists α0, . . . , αm−1 ∈ C and v ∈ Eaws such that
h = ∑m−1

s=0 αsgs + v.
Step 1. We show that v ∈ Eaws if and only if

∫
Ci

v dμ = 0 for every i ∈ {0, 1, . . . ,
m − 1}. Suppose first that v ∈ Eaws. We claim that 1Ci

v ∈ Eaws for all i ∈ {0, 1, . . . ,
m − 1}. Indeed, if 1Ci

v �∈ Eaws, then v = αigi + w + ∑
j �=i 1Cj

v with αi �= 0 and
w ∈ Eaws. Since μ(Ci ∩ Cj ) = 0 for all j �= i, we obtain that v �∈ Eaws. It follows that
|∫

Ci
v dμ| = |∫

M
1Ci

v dμ| = |∫
M

(1/λn)Pn(1Ci
v) dμ| n→∞−−−→ 0.

Reciprocally, assume that
∫
Ci

v dμ = 0 for every i ∈ {0, 1, . . . , k − 1}. Write v =∑k−1
i=0 αigi + w, with w ∈ Eaws. Since

∫
gi dμ = 1, we have that αi = ∫

Ci
αigi dμ =∫

Ci
(
∑k−1

j=0 αjgj + w) dμ = ∫
Ci

v dμ = 0. We obtain that αi = 0 for every i ∈
{0, 1, . . . , k − 1}, which implies v ∈ Eaws.

Step 2. We show that equation (3.1) holds. Integrating h = ∑m−1
s=0 αsgs + v with respect

to μ on Ci , from Step 1, we obtain that h = ∑m−1
s=0 gs

∫
Cs

h dμ + v.
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Therefore,

1
λnm+�

Pnm+�h =
m−1∑
s=0

gs−�

∫
Cs

h dμ + 1
λnm+�

Pnm+�v
n→∞−−−−−→

L1(M ,μ)

m−1∑
s=0

gs

∫
Cs+�

h dμ.

Step 3. We show that equation (3.2) holds and conclude the proof of the lemma.
From Step 1, we have that 1M = ∑m−1

s=0 μ(Cs)gs + w for some w ∈ Eaws. Given
� ∈ {0, 1, . . . , m − 1}, define n� := mn + �. A direct computation implies that

1
n�

n�−1∑
i=0

P i

λi

(
h
Pn�−i

λn�−i
1M

)
= 1

n�

m−1∑
s=0

μ(Cs)

n�−1∑
i=0

P i

λi
(hgs−�+i )

︸ ︷︷ ︸
=:I

n�
h

+ 1
n�

n�−1∑
i=0

P i

λi

(
h
Pn�−i

λn�−i
w

)
︸ ︷︷ ︸

=:J
n�
h

.

On the one hand, we have that

‖J n�

h ‖L1(M ,μ) ≤ 1
n�

n�∑
i=0

∥∥∥∥P
i

λi

(∣∣∣∣h Pn�

λn�−i
w

∣∣∣∣
)∥∥∥∥

L1(M ,μ)

≤ ‖h‖∞
n�

n�−1∑
i=0

∥∥∥∥P
n�−i

λn�−i
w

∥∥∥∥
L1(M ,μ)

.

From Step 2, we obtain that J n�
n→∞−−−→ 0 in L1(M , μ).

On the other hand, Step 2 yields that

I
n�

h =
m−1∑
s=0

μ(Cs)

n�

n−1∑
j=0

Pmj

λmj

( m−1∑
i=0

P i

λi
(hgs−�+i )

)
+

m−1∑
s=0

μ(Cs)

n�

Pmn−1

λmn−1

( �∑
i=0

P i

λi
(hgs−�+i

))

n→∞−−−−−→
L1(M ,μ)

m−1∑
s=0

μ(Cs)

m

m−1∑
k=0

gk

∫
Ck

m−1∑
i=0

P i

λi
(hgs−�+i ) dμ =

m−1∑
k=0

μ(C�+k)gk

∫
M

hη dμ.

Hence, I
n�

h + J
n�

h

n→∞−−−→ ∑m−1
k=0 μ(C�+k)gk

∫
M

hη dμ in L1(M , μ), which concludes
the proof of Step 3.

4. Proposition 5.2
As a consequence of the corrected Lemma 4.5, Proposition 5.2 reads as follows.

PROPOSITION 5.2. Let Xn be an absorbing Markov chain satisfying Hypothesis H1.
Suppose that one of the following items holds:
(a) there exists K > 0 such that μ({K < η}) = 1 almost surely;
(b) there exists g ∈ L1(M , μ) such that (1/λn)Pn(x, M) ≤ g for every n ∈ N;
(c) the absorbing Markov chain Xn fulfils Hypothesis H1.

Then for every h ∈ L∞(M , μ) and � ∈ {0, 1, . . . , m − 1},

lim
n→∞

1
n

mn+�−1∑
i=0

P i

λi

(
h
Pmn+�−i (·, M)

λmn+�−i

)
n→∞−−−→

m−1∑
s=0

μ(Cs+�)gs

∫
M

h(y)η(y)μ(dy) μ-a.s.

(4.1)
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In addition,

1
λmn+�

Pnm+�h
n→∞−−−→

m−1∑
s=0

μ(Cs+�)gs

∫
M

h(x)μ(dx) μ-a.s. (4.2)

Proof. The proof of the theorem assuming that either item (a) or item (b) holds remains
mostly the same. The only correction to be made is on page 16 line 5, where the term
(1/λ)nP(x, M) should be replaced by (1/λ)nPn(x, M).

Now, we prove item (c). For every j ∈ N, define the set Kj := {x ∈ M; k(x, ·) ∈
L∞(M , μ)} and the bounded operator Gj : L1(M , μ) → L∞(Kj , μ), Gj f = 1Kj

(1/λ)Pf .
By composing Gj to equations (3.1) and (3.2) considering � − 1 instead of �, from
Lemma 4.5 and the fact that Gj is a bounded operator, we obtain that equations (4.1)
and (4.2) converge for μ-almost every x ∈ Kj . Finally, since Hypothesis H1 implies that
μ(

⋃
j≥1 Kj) = 1, we obtain the result.

5. Theorem 2.2
The corrections of Lemma 4.5 also affect Theorem 2.2.

THEOREM 2.2. Let Xn be an absorbing Markov chain fulfilling Hypothesis H1. Then the
following assertions hold:

(i) there exist a natural number m ∈ N and sets C0, C1, . . . , Cm−1 =: C−1 ∈ B(M)

such that {P1Ci
> 0} ⊂ Ci−1 for every i ∈ {0, 1, . . . , m − 1};

(ii) for every f ∈ L1(M , μ), (1/n)
∑n−1

i=0 (1/λi)P if
n→∞−−−→ η

∫
M

f (y)μ(dy) in
L1(M , μ) and μ-a.s.;

(iii) there exist non-negative functions g0, g1, . . . , gm−1 =: g−1 ∈ L1(M , μ), satisfying

Pgj = λgj−1 and ‖gj‖L1(M ,μ) = 1

for every j ∈ {0, 1, . . . , n − 1}, such that given � ∈ {0, 1, . . . , m − 1} and h ∈
L∞(M , μ), the following limit holds:

1
λnm+�

Pnm+�h
n→∞−−−−−→

L1(M ,μ)

m−1∑
s=0

gs

∫
M

h(x)μ(dx);

(iv) if in addition, we assume that M is a Polish space, then for every h ∈ L∞(M , μ),
(

x �→ Ex

[
1
n

n−1∑
i=0

h ◦ Xi | τ > n

])
n→∞−−−→

∫
M

h(y)η(y)μ(dy) (5.1)

in the L∞(M , μ)-weak∗ topology. In particular, we obtain that equation (5.1) also
converges weakly in L1(M , μ).

Proof. The proof of assertions (i), (ii) and (iii) remains unchanged. To prove assertion
(iv), fix � ∈ {0, 1, . . . , m − 1}, repeating the proof of [1, Lemma 2.2] but changing gn

by gmn+�, we obtain that gnm+� converges to the right-hand side of equation (5.1) in
L∞(M , μ)-weak∗. Since � ∈ {0, 1, . . . , m − 1} is arbitrary, we obtain that assertion (iv)
follows.
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6. Theorem 2.3
The same proof as before holds using the corrected Lemma 4.5 and Proposition 5.2.

7. Theorem 2.4
Theorem 2.4 requires an extra assumption.

THEOREM 2.4. Let Xn be an absorbing Markov chain fulfilling Hypothesis H2, and
suppose that Pf |Ki

∈ C0(Ki) for every f ∈ L1(M , μ) and i ∈ N, where {Ki}i∈N is the
nested sequence of compact sets given by the second part of Hypothesis H2. Then, given
h ∈ L∞(M , μ), equation (2.3) holds for every x ∈ (

⋃
i∈N Ki) ∩ {η > 0}.

In the case where m = 1 in Theorem 2.2(i), equation (2.4) holds for every x ∈
(
⋃

i∈N Ki) ∩ {η > 0}.
Proof. Observe that Gj : L1(M , μ) → C0(Kj ), Gj f := 1Kj

(1/λ)Pf is a bounded linear
operator since it is a positive operator between two Banach lattices [3, Theorem 5.3]. Then
the proof follows from the same arguments as given in the new proof of Proposition 5.2(c)
and equation (5.3).

Acknowledgment. The authors thank Bernat Bassols Cornudella for the valuable discus-
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