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LETTER TO THE EDITOR

Dear Editor,
An intuitive insight into a result of Cowan

Motivated by a problem in DNA replication, Cowan (2001) considered a sequence of water
springs distributed along a straight road out of town according to a Poisson process of rate λ.
An infinite team of workers leaves the town at constant speed r; on reaching any spring, one
worker peels off and builds a pipe back towards town at rate c. The first worker stops when he
reaches town, later ones stop when they reach the previous spring.

Given t > 0, let Nt be the number of workers building at time t , and let gj (t) = P(Nt = j),
gj = limt→∞ gj (t), andφ(s) = ∑

j≥0 gj s
j , the corresponding probability generating function

of the asymptotic number actually building. Cowan showed that φ(s) = ∏
n≥1(1+ (s −1)bn),

where b = r/(c + r), and noted that, if {In} are independent Bernoulli(bn) variables, then φ is
the probability generating function of

∑
n≥1 In. We give here an intuitive explanation of this

elegant representation.
Suppose that {Xi : i = 1, 2, . . .} are independent Exp(λ) variables, i.e. exponential with

mean 1/λ, representing the distance between successive springs, and let Sn = ∑n
i=1 Xi , so

that S1 < S2 < · · · denote the positions of the springs. Let At = max{n : Sn < rt} be the
label of the last spring found before time t . When At ≥ 1, define Y0(t) = rt − SAt and write
Yn(t) = XAt+1−n for each n = 1, 2, . . . , At . Then Nt = ∑

n≥1 In(t), where

In(t) =



1 if Yn(t) >
c(Y0(t) + Y1(t) + · · · + Yn−1(t))

r
,

0 otherwise.

We seek the asymptotic distribution of Nt . Note that the variates {Yi(t) : i ≥ 0} are not
independent and have a complicated joint distribution. As t → ∞, however, it is intuitively clear
that these variates are asymptotically independent and Exp(λ) distributed. Formal passage to
the limit of In(t) is difficult but, by using the intuitively clear asymptotics for the Y variates, we
can describe the limiting properties of {In(t)}: let Y0, Y1, . . . be independent Exp(λ) variables,
and write N = ∑

n≥1 In, where

In =



1 if Yn >
c(Y0 + Y1 + · · · + Yn−1)

r
,

0 otherwise.

It is straightforward to show that P(In = 1) = bn, asYn is independent ofY0+Y1+· · ·+Yn−1,
which has a gamma density. For independence, it is sufficient to show that P(I1 = 1, I2 = 1,
. . . , In = 1) = P(I1 = 1)P(I2 = 1) · · ·P(In = 1) for all n ≥ 1. We do this explicitly for the
case n = 3: the general case follows by the same method. Plainly, we may take λ = 1. Now,
P(I1 = 1, I2 = 1, I3 = 1) is the same as

P

(
Y1 >

cY0

r
, Y2 >

c(Y0 + Y1)

r
, Y3 >

c(Y0 + Y1 + Y2)

r

)
,
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which can be written as an integral and then evaluated as
∫ ∞

0
e−y0

∫ ∞

cy0/r

e−y1

∫ ∞

c(y0+y1)/r

e−y2

∫ ∞

c(y0+y1+y2)/r

e−y3 dy3 dy2 dy1 dy0

=
∫ ∞

0
e−y0/b

∫ ∞

cy0/r

e−y1/b

∫ ∞

c(y0+y1)/r

e−y2/b dy2 dy1 dy0

= b

∫ ∞

0
e−y0/b

2
∫ ∞

cy0/r

e−y1/b
2
dy1 dy0

= b · b2
∫ ∞

0
e−y0/b

3
dy0

= b · b2 · b3

= P(I1 = 1)P(I2 = 1)P(I3 = 1).
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