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Scale-to-scale turbulence modification by small
settling particles
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Despite decades of investigations, there is still no consensus on whether inertial particles
augment or dampen turbulence. Here, we perform the first experimental study in which the
particle concentration is varied systematically across a broad range of volume fractions Φv ,
from nominally one-way coupled to heavily two-way coupled regimes, keeping all other
parameters constant. We utilize a zero-mean flow chamber where steady, homogeneous
and approximately isotropic air turbulence is realized, with a Taylor-microscale Reynolds
number Reλ = 150–300. We consider spherical solid particles of two sizes, both much
smaller than the Kolmogorov length, and yielding Stokes numbers Stη = 0.3 and 2.6 based
on the Kolmogorov time scale. By adjusting the turbulent intensity, the settling velocity
parameter is kept constant for both cases, Svη = Vt/uη ≈ 3 (where Vt is the still-air
terminal velocity, and uη is the Kolmogorov velocity scale). Unlike previous studies
focused on massively inertial particles, we find that the turbulent kinetic energy increases
with particle loading, being more than doubled at Φv = 5 × 10−5. This is attributed to
the energy input associated with gravitational settling: the particles release their potential
energy into the fluid and increase its dissipation rate, while the time scale associated with
the inter-scale energy transfer is not strongly changed. Two-point statistics indicate that the
energy-containing eddies become vertically elongated in the presence of falling particles,
and that the latter redistribute the energy more homogeneously across the scales compared
to unladen turbulence. This is rooted in an enhanced cascade, as shown by the nonlinear
inter-scale energy transfer rate.
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1. Introduction

Particle-turbulence interaction is a topic that has received continued attention from the
scientific community for several decades (Maxey & Riley 1983; Maxey 1987; Squires &
Eaton 1990, 1991; Elghobashi 1994; Crowe, Troutt & Chung 1996; Poelma & Ooms 2006;
Balachandar & Eaton 2010). The coupling between continuous and dispersed phase, the
number of governing parameters, and the wide range of scales, make for a formidable
challenge for experimentalists and modellers alike. Driven by the practical relevance of
the problem, particle-laden turbulence has attracted renewed attention in the last decade,
also thanks to the tremendous progress in our ability to carry out novel measurements and
simulations in previously inaccessible conditions (Monchaux, Bourgoin & Cartellier 2012;
Tenneti & Subramaniam 2014; Gustavsson & Mehlig 2016; Maxey 2017; Mathai, Lohse &
Sun 2020; Brandt & Coletti 2022).

One of the most elusive aspects of the problem is the back-reaction of inertial particles
on the fluid, referred to as two-way coupling. Turbulence modification by particles is
believed to be significant already at modest loadings, i.e. above volume fractions Φv =
O(10−6) for gas–solid systems (Elghobashi 1994). However, the evidence on whether the
turbulence is augmented or attenuated, and to which extent, is controversial. A dated but
still utilized criterion was proposed by Gore & Crowe (1991), who compiled previous
data and concluded that turbulence was augmented/attenuated by particles larger/smaller
than one-tenth of the integral scale. This implies that sub-Kolmogorov particles (whose
diameter dp is smaller than the Kolmogorov scale η) will always attenuate turbulence even
when it exhibits marginal scale separation, at odds with several experimental observations
(e.g. Yang & Shy 2005). Some early experiments focused on wall-bounded flows,
some reporting attenuation (e.g. Kulick, Fessler & Eaton 1994; Paris 2001) and others
augmentation (e.g. Sato & Hishida 1996). Tanaka & Eaton (2008) compiled experimental
results for turbulence modification in internal flows. They proposed a criterion based on a
non-dimensional parameter combining the particle response time, density and size relative
to the flow scales, as well as the flow Reynolds number, signalling the complexity of
the coupling. Numerical simulations have struggled to reproduce the measurements, even
when laboratory conditions were matched and the resolution was appropriate for direct
numerical simulation (DNS) of the single-phase turbulence; see e.g. Vreman (2015) and
Wang et al. (2019). This is partly attributable to the limitations of the classic point-particle
method, in which particles are treated as material points applying pointwise forcing on the
fluid computational grid; see Eaton (2009), Maxey (2017) and Brandt & Coletti (2022).

Studying turbulence modification in wall-bounded flows, while highly relevant to
several applications, requires disentangling the simultaneous effects on the hierarchy of
scales in the boundary layer (Wang & Richter 2019). Moreover, the particle–fluid slip
velocity, which plays a crucial role in the momentum coupling, varies significantly with
wall distance (Kiger & Pan 2002; Fong, Amili & Coletti 2019; Berk & Coletti 2020; Baker
& Coletti 2021), complicating the generalization of the results. For example, Righetti &
Romano (2004) found that turbulence fluctuations were enhanced in the viscous sub-layer
but damped further away from the wall. Additionally, at the centre-plane of a channel
flow, the turbulence is anisotropic at moderate Reynolds numbers (Andersson, Zhao &
Variano 2015). Thus homogeneous isotropic turbulence may be a more suitable terrain to
attack the fundamental aspects of the inter-phase coupling. This is the focus of the present
investigation.

Creating homogeneous isotropic turbulence in the laboratory is notoriously challenging
(Bellani & Variano 2014). The classic approach is grid-generated turbulence, which
was used by Schreck & Kleis (1993), Geiss et al. (2004) and Poelma, Westerweel &
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Ooms (2007) to investigate particle–turbulence interaction. The dispersed phase was found
to induce large-scale anisotropy, with larger axial velocity fluctuations. Highly inertial
particles caused mild turbulence attenuation over the entire spectrum, while particles with
a Stokes number Stη = τp/τη < 1 energized the small-scale fluctuations and modulated
the large-scale ones (where τp is the particle response time, and τη is the Kolmogorov
time scale). The experiments of Poelma et al. (2007) were the first to describe clearly
such ‘pivoting’ of the energy spectrum, which had been reported in several previous
simulations (as summarized by Poelma & Ooms 2006). A similar behaviour had been
observed previously in bubble-laden turbulence (Mazzitelli, Lohse & Toschi 2003a,b;
Rensen, Luther & Lohse 2005).

Grid turbulence, however, presents shortcomings associated with its spatial decay,
particularly the weak level of turbulent agitation; in Poelma et al. (2007), the Reynolds
numbers based on the Taylor microscale was Reλ < 30. Zero-mean flow turbulence
chambers (usually stirred by jets) overcome this limitation and can approximate
homogeneous isotropic turbulence at Reynolds numbers with substantial scale separation
(Bellani & Variano 2014; Carter et al. 2016). They were used by Hwang & Eaton (2006a,b)
and Tanaka & Eaton (2010) to show that inertial particles with Stη = O(102) attenuate
turbulence. On the other hand, Yang & Shy (2005) reported turbulence augmentation for
Stη = O(1). In this regime, inertial particles are known to cluster over multi-scale sets
(Squires & Eaton 1991; Monchaux et al. 2012; Gustavsson & Mehlig 2016; Baker et al.
2017), which may affect the two-way coupling. A zero-mean flow turbulence chamber was
also used by Bellani et al. (2012) to investigate large, nearly neutrally buoyant particles.
They observed moderate turbulence attenuation and pivoting of the energy spectrum.
Those experimental findings were enabled by advances in particle image velocimetry
(PIV) and particle tracking velocimetry (PTV), in particular their simultaneous application
to capture the fluid flow and particle motion, respectively (Kiger & Pan 2000; Khalitov &
Longmire 2002; Poelma, Westerweel & Ooms 2006).

Under the action of gravity, particles of different sizes and densities will fall at different
speeds. This has far-reaching consequences for the fluid dynamics, as soon as the still-fluid
terminal velocity Vt = τpg is comparable to some velocity scale of the turbulence (i.e.
when the settling velocity parameter Svη = Vt/uη is not vanishingly small, where uη is the
Kolmogorov velocity scale); see Good et al. (2014) and Petersen, Baker & Coletti (2019).
Particle inertia (i.e. the finite response time to fluid fluctuations, quantified by Stη) and
gravity (i.e. the drift through the flow with crossing of fluid trajectories, quantified by Svη)
are known to have competing effects on dispersion (Wang & Stock 1993; Berk & Coletti
2021); but the way their balance affects the turbulence is poorly understood. In a unique
microgravity experiment, Hwang & Eaton (2006b) found that turbulence attenuation was
stronger than in terrestrial gravity, pointing to the role of the particle potential energy in
the fluid energy balance (Hwang & Eaton 2006a).

Compared to the few experimental works, many more numerical studies have considered
DNS of homogeneous isotropic turbulence two-way coupled with inertial particles
(Squires & Eaton 1990; Elghobashi & Truesdell 1993; Boivin, Simonin & Squires 1998;
Sundaram & Collins 1999; Ferrante & Elghobashi 2003; Frankel et al. 2016; Saito,
Watanabe & Gotoh 2019; among others), often reporting the pivoting effect mentioned
above. The cross-over scale at which fluid energy was enhanced/damped by the particles
often appeared to depend on Stη, and so did the answer to the augmentation/attenuation
question Poelma & Ooms (2006). Still, several authors indicated multiple reasons why
these results should be interpreted with caution. First, in many cases, steady-state
turbulence was forced. Lucci, Ferrante & Elghobashi (2010) argued that this is not
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a correct approach to study two-way coupling, independently on the type of forcing:
spectral-space forcing at low wavenumbers causes wide amplitude oscillations of the
turbulent kinetic energy, which cannot be distinguished from the particle back-reaction,
while physical-space forcing continually modifies the spectrum to maintain a constant
turbulent kinetic energy, opposing the pivoting action of the particles. Simulations of
decaying turbulence are free from this problem, but suffer limitations similar to grid
turbulence experiments, and can be compared only qualitatively against steady-state
measurements. Second, the common point-particle forcing on the fluid computational grid
presents well-known technical challenges (Eaton 2009; Brandt & Coletti 2022). Recent
efforts to address the issue show promising results (Capecelatro & Desjardins 2013;
Subramaniam et al. 2014; Gualtieri et al. 2015; Horwitz & Mani 2016, 2018; Ireland &
Desjardins 2017; Balachandar, Liu & Lakhote 2019), but one-to-one comparisons with
experiments are lacking. Third, most of those studies neglected the effect of gravity. The
few DNS studies considering settling particles have reported contrasting outcomes. For
the same range of parameters (density ratios of O(103)) and volume fractions of O(10−5),
Bosse, Kleiser & Meiburg (2006) found the turbulent kinetic energy to be attenuated;
Frankel et al. (2016) and Rosa, Pozorski & Wang (2020) found that it was augmented; and
Monchaux & Dejoan (2017) found that it was almost unaffected.

Arguably, particle-resolved simulations (Tenneti & Subramaniam 2014) are needed to
fully capture the particle-turbulence interaction. Driven by progress in numerical strategies
and ever-increasing computational power, applications of this approach flourished in recent
years and have allowed new insight in the inter-phase dynamics at the particle scale (e.g.
Burton & Eaton 2005; Lucci et al. 2010; Naso & Prosperetti 2010; Cisse, Homann & Bec
2013; Uhlmann & Doychev 2014; Fornari, Picano & Brandt 2016; Schneiders, Meinke
& Schröder 2017; Wang, Abbas & Climent 2017; Mehrabadi et al. 2018). The level of
detail gained by such computations can hardly be achieved by experiments, especially
because the simultaneous measurements of particle and fluid motion in three dimensions is
generally beyond reach (Guala et al. (2008) and Ni et al. (2015) being notable exceptions).
Still, the range of accessible parameters for fully resolved simulations has been relatively
narrow, with particles typically much larger than the Kolmogorov scales, and/or immersed
in weak/decaying turbulence.

Considering the above, while the progress in the last decade is undeniable, the
conclusion of the review by Balachandar & Eaton (2010) remains topical: the ‘mechanisms
of turbulence modulation and their parametric dependence are poorly understood and are
wide open for fundamental investigation’. In a previous review, Poelma & Ooms (2006)
recognized the multiplicity of important factors and called for systematic experimental
studies in which one parameter at a time is varied; but no such effort has been carried
out yet. We recently presented extensive measurements of particle–turbulence interaction
in a homogeneous turbulence chamber, spanning a wide range of Stη, Svη, Reλ and Φv

(Petersen et al. 2019; Berk & Coletti 2021). Due to the interdependence of the parameters
and the focus on the dispersed phase, the turbulence modification was barely addressed.

Here, we present novel measurements in the same laboratory facility, where we
systematically increase the loading of heavy sub-Kolmogorov particles, keeping the other
input parameters (forcing of the turbulence and particles’ properties) constant. We repeat
that for two values of Stη, smaller and larger than unity, keeping the same settling
velocity parameter Svη. We leverage multi-scale, time-resolved imaging of both phases
by PIV/PTV to simultaneously resolve all relevant scales of motion, and establish how
the increasingly concentrated particles transform the fluid turbulence in which they settle.
We report several novel findings. First, in the present range of physical parameters, the
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turbulent kinetic energy is increased substantially by the presence of falling particles,
roughly in proportion to the energy input rate associated with their potential energy being
released into the flow. Moreover, the energy-containing eddies become elongated in the
direction of gravity, although the horizontal velocity fluctuations are more strongly excited
than the vertical ones. Finally, the pivoting of the energy spectrum is due to the particles
inducing an enhancement of the turbulence cascade. The paper is organized as follows.
Section 2 describes the experimental methodology and qualifies the flow conditions.
Section 3 presents the results, detailing how the turbulence is impacted at the different
scales. Section 4 summarizes the findings and draws conclusions.

2. Methods

2.1. Experimental apparatus and parameters
The turbulence chamber was introduced in Carter et al. (2016) and qualified further
in Carter & Coletti (2017, 2018). Here, we only summarize the main features. It
consists of a 5 m3 enclosure where two facing walls accommodate jet arrays activated in
randomized sequence, following the original concept of Variano and co-workers (Variano,
Bodenschatz & Cowen 2004; Variano & Cowen 2008; Bellani & Variano 2014). While
several other random-jet-array facilities have since been build (Mydlarski 2017), the
present chamber is the only one using air as working fluid and was specifically designed
to study the interaction of inertial particles with homogeneous turbulence. It is especially
suitable for this goal because in the central portion of the chamber: (i) the mean flow is
much smaller than the root-mean-square (r.m.s.) velocity fluctuations; (ii) the turbulence
is statistically homogeneous over a region much larger than the energetic scales; (iii) the
spatial gradients of the mean velocity are negligible; and (iv) the attainable Reynolds
numbers are sufficient to reach power-law (Kolmogorov 1941) scaling of the velocity
structure functions. The intensity and isotropy of the turbulence can be adjusted by varying
the average jet firing time and the distance between the jet arrays, and by adding grids in
front of the jets (Carter et al. 2016).

Petersen et al. (2019) and Berk & Coletti (2021) used this facility to investigate clustering
and settling of inertial particles, and we adopt a similar set-up. The inertial particles
(size-selected spherical glass micro-beads of density ρp = 2500 kg m−3) are dropped
through a 3 m vertical chute and enter the chamber through a 152 mm circular opening
in the ceiling. With respect to those previous studies, we release the particles with an
hourglass system instead of a screw-feeder, ensuring continuous feeding and precise
control of the mass flow rate. Therefore, we are able to adjust and systematically vary
the mass loading. Visual inspection and PIV/PTV imaging confirm that the air turbulence
spreads the falling particles over a large fraction of the chamber volume, with no significant
variation of spatial concentration over the homogeneous turbulence region or in the field
of view (FOV) of the imaging (Petersen et al. 2019). The mean vertical velocity of the
air remains much smaller (�10 %) than its r.m.s. fluctuations for all considered particle
volume fractions.

We consider two combinations of particle and turbulence properties (in single-phase
realization), summarized in table 1. In both cases, the particles have sub-Kolmogorov size
and lie in the Stη = O(1) range for which clustering is expected. The response time τp
is calculated with the Schiller–Naumann correction (Clift, Grace & Weber 2005). The
Reynolds number based on the still-air terminal velocity Rep,t = dpVt/ν (where ν is the
air kinematic viscosity) is smaller than unity, thus negligible particle wakes are expected.
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The ratio u′
1/u′

3 indicates approximate large-scale isotropy. The integral scale and the
turbulence dissipation are obtained from two-point velocity correlations and second-order
velocity structure functions, as discussed in § 3. To isolate the effect of particle inertia
and gravity, the settings are chosen to yield two different Stη and similar Svη. Under
fixed gravity, this necessarily requires varying Reλ between the cases. While we expect
the results to be more sensitive to Stη than Reλ over the considered range, we will refrain
from inferring quantitative Stokes number trends from our data. In fact, the numerical
simulations by Tom & Bragg (2019) indicate that for the present range of Stη, the settling
dynamics can be very sensitive to Reλ. Overall, both cases show similar behaviours,
and comparisons will rather serve as an indication that the conclusions hold over the
present range of parameters. For simplicity, throughout the paper we will refer to both
configurations as the Stη = 0.3 case and Stη = 2.6 case, respectively. The volume fraction
Φv and mass fraction Φm = Φvρp/ρf (where ρf is the air density) span ranges in which
the back-reaction on the turbulence is expected to vary from marginal to substantial
(Elghobashi 1994; Balachandar & Eaton 2010). As the particles alter the flow, several
observables will change, including the fluid velocity fluctuations and the fall speed of the
particles themselves. In order to characterize the system, the parameters reported in table 1
are defined for the baseline configuration unaffected by two-way coupling.

2.2. Measurement techniques
In the following, x1 indicates the horizontal direction parallel to the jet axes, x2 is
horizontal and perpendicular to x1, and x3 is vertical; the respective fluid velocity
components are U1, U2 and U3. Fluctuating fluid velocities are denoted by ui = Ui − Ui,
where the subscript i indicates the ith component, and the overbar indicates temporal
averaging. Angle brackets indicate space–time averaging, and a prime indicates r.m.s
fluctuations. The subscript p denotes quantities related to the particles.

We perform simultaneous PIV on the fluid phase and PTV on the particle phase. The
method is similar to that described in Petersen et al. (2019) and Berk & Coletti (2021);
only salient differences are addressed here. Time-resolved imaging is carried out using an
Nd:YLF single-pulse laser (Photonics, 30 mJ pulse−1) operated at 4 kHz to illuminate a
vertical (x1, x3)-plane at the centre of the chamber. Two synchronized CMOS cameras
(Phantom VEO, active sensor of 1280 by 1280 pixels) image the in-plane air motion
through DEHS tracers seeding the chamber, and track the inertial particles about 90 cm
below the ceiling opening. The images are separated into ‘tracers only’ and ‘particles
only’, with a routine that we described in detail in Petersen et al. (2019) and applied
recently to various particle-laden turbulent flows (Fong et al. 2019; Berk & Coletti 2020;
Baker & Coletti 2021).

Figure 1 illustrates a sample instantaneous realization of the two-phase flow. The fluid
velocity is measured by PIV via iterative cross-correlation of successive image pairs, with
a final interrogation window size of 24 × 24 pixels and 50 % overlap. The imaging and
PIV specifications are reported in table 2. To qualify the spatio-temporal scales resolved
by the measurements, we refer to the single-phase flow properties in table 1. Both cameras
are operated simultaneously and capture two nested fields of view, enhancing the dynamic
range of the measurements. One camera mounts a 105 mm Nikon lens (f# 5.6), yielding
a FOV large enough to capture the integral length scales. The other mounts a 200 mm
Nikon lens (ff# 4) and approximately resolves the Kolmogorov length scales: the vector
spacing is about η and 4η at the lower and higher Reλ, respectively. The acquisition
frequency resolves 19 to 96 times the Kolmogorov time scales, again depending on Reλ.
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Figure 1. (a) Example of nested raw images of the particle-laden flow, captured in the large (left) and small
(right) field of view (FOV) for Stη = 2.6. (b) The corresponding in-plane fluid velocity in m s−1 (colour
contours) and particle positions (white dots, not in scale size).

Lens focal Field of view Resolution PIV vector
length (mm) (mm × mm) (pixel mm−1) spacing (mm)

Small FOV 200 39 × 29 33 0.36
Large FOV 105 128 × 96 10 1.2

Table 2. Imaging parameters for the small and large field of view (FOV).

Besides considerations about the scales of the flow, the camera resolutions and inter-frame
separations are optimized so that the tracer displacements are suitable for velocimetry
in both cameras: these are approximately 4 and 9 pixels for the large and small FOV,
respectively. For each volume fraction, 10 runs of 43 000 successive images are obtained,
for a total measurement time of 100 s or approximately 500 integral time scales (defined
below).

The detected particle count in the illuminated volume is used to calculate the volume
fraction Φv; see Petersen et al. (2019) and Fong et al. (2019), where the approach could
be validated in a vertical channel flow with known particle mass loading. Over the present
range of Φv , the fluid turbulence can be characterized with sufficient image quality for
successful processing. This is based on the extensive analysis of the phase separation
by Petersen et al. (2019), where similar regimes and volume fractions were reached. In
particular, the systematic variation of Φv in the present study allows us to verify that
the occurrence of non-valid PIV vectors is not correlated with the presence of inertial
particles in a given interrogation window. The PIV random error in the small FOV (where

949 A30-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.762


Turbulence modification by small settling particles

the spatial resolution is sufficient to capture the Kolmogorov scales of the single-phase
turbulence) is estimated by extrapolating the two-point correlation to vanishing separation
(Adrian & Westerweel 2011) and is found to be less than 1 % of the velocity variance.
The dominant source of uncertainty on the flow statistics is thus the finite sample size.
Convergence tests show that each run is well converged for all considered observables,
while run-to-run variation is larger. In the following, where appropriate, the standard
deviation of the various runs will be used to indicate error bars.

A specific feature of the present zero-mean flow facility is the spatial homogeneity over
scales much larger than the integral scale, for both fluid and particle statistics (Carter et al.
2016; Carter & Coletti 2017, 2018; Petersen et al. 2019). This allows drawing more general
conclusions compared to systems in which wall proximity and spatial gradients cause
dependence on the boundary conditions. Moreover, the considered particles have reached
terminal velocity well before entering the region of interest, as indicated by their negligible
mean vertical acceleration (see Berk & Coletti 2021). Finally, the lack of significant mean
flow (especially small in the vertical direction) further limits the possible influence from
portions of the volume outside the region of interest. In other words, in the considered
central region of the chamber, the integral scale of the turbulence sets the scale over which
spatial gradients of the flow properties have an influence. Therefore, the flow condition
outside the FOV are not expected to alter the statistics measured in the imaging window,
which is of the order of the integral scale and about one metre removed from the chamber
walls.

Figure 2 displays the time record of instantaneous Φv , u′
1 and u′

1,p during a sample run
for the case Stη = 2.6 at volume fraction 4 × 10−5. Beyond the large-scale excursions, the
plots confirm the steady-state behaviour of both phases. We will use the local particle
concentration, velocity and fluid velocity at the particle location (interpolated as in
Petersen et al. 2019; Berk & Coletti 2021), extracted from the small-FOV measurements,
to estimate the extra dissipation caused by the particles; see § 3.2. The local concentration
is obtained by Voronoi tessellation of the particle field (Monchaux, Bourgoin & Cartellier
2010).

3. Results

3.1. Large-scale turbulence properties
The results in this section are obtained from the large-FOV measurements. We begin by
considering the effect of the particles on the r.m.s. velocity fluctuations of the turbulence.
Figure 3(a) shows the laden-to-unladen ratio for the horizontal component, u′

1/u′
1,Φ=0,

for the different volume fractions. A monotonically increasing trend is apparent for both
Stokes numbers, with the larger Stη case displaying a stronger increase. The vertical
component also increases with volume fraction, but less than the horizontal one. Indeed,
the anisotropy ratio u′

1/u′
3 grows significantly over the considered range of volume

fractions (figure 3b), the growth being again stronger for Stη = 2.6 than for Stη = 0.3.
The enhancement of the r.m.s. fluid velocity fluctuations in both directions indicates

that the turbulent kinetic energy (TKE) is augmented significantly by the presence of the
particles, as we will discuss later. Moreover, the fact that the particle-laden turbulence
fluctuations are more intense in the horizontal than in the vertical direction is at odds
with previous numerical studies: simulations of decaying (Ferrante & Elghobashi 2003)
and forced (Bosse et al. 2006) homogeneous turbulence found that the addition of settling
particles resulted in anisotropy ratios u′

1/u′
3 < 1. Also, the grid turbulence measurements

of Geiss et al. (2004) and Poelma et al. (2007) showed stronger fluid fluctuations in the
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Figure 2. Temporal evolution of spatially averaged quantities during one experimental run for the case Stη =
2.6 with mean volume fraction 4 × 10−5. The instantaneous volume fraction Φv , the r.m.s. of the horizontal
flow velocity fluctuations, u′

1, and the r.m.s. of the horizontal particle velocity fluctuations, u′
1p, are displayed.

The data are from the large FOV.
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Figure 3. (a) The r.m.s. of the horizontal velocity fluctuation as a function of the particle volume fraction,
normalized by the one measured in the unladen flow. (b) Ratio between the horizontal and the vertical r.m.s.
fluctuations, as a function of the particle volume fraction. Squares indicate the Stη = 2.6 case, and circles
indicate the Stη = 0.3 case. The data are from the large FOV.

direction of gravity than in the transverse direction. However, direct comparison with
these experiments is hampered by the differences in parameters compared to the present
case: the particles in Geiss et al. (2004) were quasi-ballistic, while those in Poelma et al.
(2007) were not small compared to the Kolmogorov scales, and produced wakes with large
momentum deficit, which heavily impacted their weak decaying turbulence.

The influence of the settling particles on the large-scale turbulence properties is further
illustrated by the integral scales, obtained from the spatial autocorrelation of the velocity
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Figure 4. (a) Autocorrelation coefficient of the horizontal velocity fluctuations at the different volume
fractions for Stη = 2.6. (b) Corresponding longitudinal integral scale, normalized by the unladen case, as a
function of the particle volume fraction. The data are from the large FOV.

fluctuations:

ρii(r) = 〈ui(r) ui(x + r)〉
〈ui(x)2〉 , (3.1)

where x and r are the position and separation vectors, respectively, and no index summation
is implied. In general, the integral length scales associated with fluctuations ui over
separations rj are defined as

Li,j =
∫ r0

0
ρii(rj) dr, (3.2)

where r0 is the first zero crossing of ρii. In practice, the extent of the integration is limited
by the size of the imaging window, and therefore we take as conventional estimate the
separation at which the correlation function drops below 0.5. Other common methods
such as extrapolating an exponential fit yield similar results. As in Carter & Coletti (2017),
we define the integral and transverse scales as LL,1 = L1,1 and LT,1 = L1,2, respectively.
The subscript 1 indicates that we use the horizontal component of the velocity, the vertical
one returning similar trends.

In figure 4(a), we show the autocorrelation of the horizontal velocity fluctuations along
the horizontal separation, ρ11, for the Stη = 2.6 case. The correlation decays faster with
increasing volume fraction, which results in a drop of the longitudinal integral scale LL,1
as shown in figure 4(b). As we already remarked, u′

1 increases with volume fraction, so
the shrinking of the integral scale suggests that the falling particles subtract energy from
the large scales and inject it at the small scales, with a positive global balance (i.e. a net
increase of TKE). This view will be confirmed in the following sections.

To better appreciate the particle influence on the large-scale spatial structure of the
turbulence, we plot in figure 5(a) the 0.5 contours of ρ11 in the (r1, r2)-plane. With
increasing volume fraction, the horizontal extent of the correlation area shrinks, decreasing
LL,1 as mentioned; instead, its vertical extent grows, increasing the transverse length
scale LT,1. This is quantified in figure 5(b), showing the LL,1/LT,1 ratio as a function
of volume fraction. For the single-phase case, the ratio departs from the canonical
value 2 due to incomplete homogeneity and isotropy across the FOV. The ratio shows
a clear decreasing trend with increasing particle loading. The 0.5 contours of the
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Figure 5. (a) Contours of the autocorrelation coefficient ρ11 in the two-dimensional scale space (r1, r2) for the
case Stη = 2.6 at different volume fractions. (b) Corresponding ratio between the longitudinal and transverse
integral scales, as a function of the particle volume fraction. The data are from the large FOV.

vertical velocity autocorrelation ρ22 (not shown for brevity) display a similar vertical
stretch, with an increase of the longitudinal length scale (LL,2 = L2,2) and decrease of
the transverse length scale (LT,2 = L2,1). Taken together, these results indicate that the
energy-containing eddies become elongated vertically in the presence of falling particles
at increasing concentrations. This contrasts with the above observation that the horizontal
fluid fluctuations are excited more than the vertical ones: in single-phase turbulence, the
integral scales are stretched in the direction along which fluctuations are more intense
(Carter & Coletti 2017). The presence of the particles clearly alters the way energy is
redistributed between different directions and across scales.

3.2. Turbulent kinetic energy and dissipation rate
As anticipated in the previous subsection, the presence of particles in the present regime
augments the turbulent kinetic energy of the carrier fluid. This is evident in figure 6, where
we plot TKE calculated as

TKE = 1
2(2u

′2
1 + u

′2
3 ) (3.3)

from the large- and small-FOV data at different volume fractions. In (3.1), we assume
that the out-of-plane velocity variance is equal to the measured horizontal component.
This is expected when the baseline single-phase turbulence is approximately isotropic,
which is justified by the value of u′

1/u′
3 in absence of particles (table 1). The change

in TKE compared to the single-phase flow is marginal for Φv ≈ 10−6, in agreement
with the order-of-magnitude estimate of Elghobashi (1994). The turbulence is augmented
monotonically with increasing volume faction, leading to TKE increases of 70 % at
Φv = 4 × 10−5 for Stη = 0.3, and more than 150 % at Φv = 5 × 10−5 for Stη = 2.6. Such
a dramatic augmentation of turbulence is in stark contrast with the criterion of Gore
& Crowe (1991) and with several previous experimental studies: Paris (2001), Hwang
& Eaton (2006a,b) and Tanaka & Eaton (2008) found that solid particles attenuated
air turbulence. Those authors, however, considered significantly more inertial particles
(Stη ≈ 50–100), and in the following we reason that this is the likely cause of the different
behaviour.

The increase in TKE is related to the energy balance in the particle-laden turbulence,
where gravitational settling plays a major role: as the particles fall, they transfer potential
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Figure 6. Turbulent kinetic energy normalized by the unladen case, as a function of the particle volume
fraction. Squares indicate the Stη = 2.6 case, and circles indicate the Stη = 0.3 case. The data are from the
small FOV.

energy into the flow. Following Hwang & Eaton (2006a), we consider the steady-state
energy budget

Ej + Eg = ε + εp, (3.4)

where the left-hand and right-hand sides represent the energy per unit time, and mass
injected and dissipated in the fluid control volume, respectively. Here, Ej is the forcing
from the jets, which is independent of the mass loading and equals the energy dissipation
rate in the single-phase cases. The energy per unit time released by the falling particles is
Eg = Φm〈U3,p〉g, analogous to estimates for rising bubbles (Riboux, Risso & Legendre
2010; Risso 2018). The viscous dissipation of turbulence energy due to the cascade
from larger to smaller eddies, ε, is estimated by evaluating directly the in-plane velocity
gradients resolved by PIV from the small FOV (see De Jong et al. 2009; Carter et al. 2016).
For single-phase turbulence in this facility imaged with similar parameters, such a direct
estimate was shown to agree closely with the one based on velocity structure functions
(Carter et al. 2016; Carter & Coletti 2017, 2018). The presence of the particles leads to
an extra dissipation εp associated with their interaction with the fluid, in particular the
boundary layer around the particles, which is far below the PIV resolution limits. This
can be estimated with the classic expression proposed by Elghobashi & Abou-Arab (1983)
and used in several later studies (Rogers & Eaton 1991; Kulick et al. 1994; Hwang & Eaton
2006a; Sahu, Hardalupas & Taylor 2016; among others):

εp = 〈C〉
ρf τp

(〈ui,fpui,fp〉 − 〈ui,fpui,p〉) + 1
ρf τp

(〈cui,fpui,fp〉 − 〈cui,fpui,p〉)

+ 1
ρf τp

(〈Ui,fp〉 − 〈Ui,p〉)〈cui,fp〉. (3.5)

Here, C and c correspond to the local particle concentration and the local particle
concentration fluctuation, and ufp is the fluid velocity fluctuation at the particle location.

Figure 7(a) shows εp as a function of volume fraction (normalized by the unladen
turbulence dissipation, εΦ=0) evaluated in two ways: indirectly from (3.4) as Ej + Eg − ε,
and directly from (3.5). The results are displayed for Stη = 2.6, the outcome for Stη = 0.3
being analogous. Both methods show a similar trend, although with discrepancies at
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Figure 7. (a) Particle-induced dissipation εp(a), and (b) gravitational energy input rate Eg(b), both normalized
by the turbulent dissipation of the unladen flow, for Stη = 2.6. In (a), upward-pointing triangles and
downward-pointing triangles represent estimates of εp from (3.5) and (3.4), respectively. The data point from
(3.5) at the highest concentration was discarded, due to the uncertainty in estimating the high-order terms. The
data are from the small FOV.

higher loadings. We remark that an accurate evaluation of εp, following either method, is
highly challenging for several reasons. First, the evaluation of ε in presence of suspended
particles is even more difficult than in unladen turbulence (where it is already notoriously
difficult). Second, (3.4) is based on the assumption that the forcing from the jets is
independent of the presence of the particles, while the latter could indirectly influence
the amount of kinetic energy injected at large scales in the investigated region. Third,
and perhaps most important, (3.5) is based on the same assumptions as two-way-coupled
point-particle models (Hwang & Eaton 2006a), which have well-known shortcomings
resulting in epistemic uncertainties that are hard to quantify. Indeed, the error bars
representing statistical variability are not displayed for εp based on (3.5), as this is not
the main source of error. Despite those limitations, both estimates of εp in figure 7(a)
lead to a clear observation: at the larger considered volume fractions, the extra dissipation
due to the particles becomes of the order of the baseline dissipation. Likewise, the energy
input Eg associated with gravitational settling, shown in figure 7(b) for the same case,
also increases with Φv and becomes comparable to εΦ=0. The increase is due not only
to the mass loading itself, but also to the mean settling velocity, which grows by 110 %
over the considered range of volume fractions. This may be due to collective drag effects
(as indicated by Bosse et al. 2006) or preferential sweeping (which was shown to remain
important in recent two-way-coupled simulations by Tom, Carbone & Bragg 2022). The
analysis of the settling enhancement is beyond the scope of the present work and will
be addressed in detail in a separate study. The important observation is that gravitational
settling contributes majorly to the amount of energy injected and dissipated in the fluid
per unit time. Whether TKE also increases is related to the time scale over which the
dissipation is expressed. Tanaka & Eaton (2010) pointed out how both the turbulence
integral time scale and the particle response time may be appropriate candidates. The
latter does not vary with the particle loading, while the former (taken as LL/u′, averaging
between horizontal and vertical components) increases by at most ≈30 % for the higher
Φv . Thus, as the time scale is not drastically changed by the presence of the particles, at
steady state we can expect the turbulent kinetic energy of the system to rise with particle
loading, as observed.

This type of reasoning was used by Hwang & Eaton (2006a) to argue that settling
contributed to augmenting turbulence also in their system; but that was not sufficient to
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offset the ability of their quasi-ballistic particles to act as sinks of fluid momentum. Their
microgravity experiments (Hwang & Eaton 2006b) confirmed such an argument, showing
larger turbulence attenuation compared to an equivalent particle-laden turbulence regime
under terrestrial gravity. Recently, Saito et al. (2019) used two-way coupled simulations to
show that massively inertial point-particles (akin to fixed obstacles in the flow) severely
attenuated turbulence, while the effect was much weaker for less inertial particles that
more closely follow the flow. According to such a view, the difference between the present
observations and those from Eaton and co-workers (Paris 2001; Hwang & Eaton 2006a,b;
where Stη ≈ 50–100) can be attributed to the smaller Stokes number in our system. Indeed,
the one previous experimental study with solid particles in air at Stη = O(1) also found
turbulence augmentation (Yang & Shy 2005).

The natural question is why the settling of Stη = O(1) particles excites turbulence
more than the settling of quasi-ballistic ones. A possible explanation is suggested by a
comparison with bubble-laden turbulence. Mazzitelli et al. (2003a,b) found numerically
that small rising bubbles accumulate in the downward side of turbulent eddies due to the
lift force (as recently confirmed experimentally by Salibindla et al. 2020), transferring
momentum upwards, which enhances their ability to modify the turbulence. Likewise,
small heavy particles with Stη = O(1) form clusters that oversample downward regions of
the flow (Wang & Stock 1993; Baker et al. 2017; Petersen et al. 2019), and therefore they
may locally enhance turbulent fluctuations more effectively than ballistic particle that do
not cluster. This interpretation is consistent with the larger TKE increase for particles with
Stη > 1, which experience stronger clustering than those with Stη < 1 under the action of
gravity (Matsuda, Onishi & Takahashi 2017; Petersen et al. 2019).

As mentioned in the Introduction, although numerous authors investigated two-way
coupling of point-particles, only a few of them included gravity in forced homogeneous
turbulence. Bosse et al. (2006) found turbulence attenuation by particles with
Stη ≈ Svη ≈ 1, while Frankel et al. (2016) considered faster falling particles (Stη = 1.6
and Svη = 6.8) and reported an increase of TKE consistent with our observations. Besides
the limitations of the point-particle approach, these comparisons with simulations also
support the view that gravitational settling enhances the turbulence activity in the carrier
flow.

3.3. Turbulence modification across scales
The change in TKE is the result of turbulence modification over the entire spectrum.
Figure 8 shows the longitudinal second-order velocity structure function, which, compared
to the Fourier spectrum, is less sensitive to finite-sample biases (Rensen et al. 2005; De
Jong et al. 2009) and to missing data that may result from the presence of particles (Poelma
& Ooms 2006). We consider the second-order structure function

Dii(r) = 〈[ui(x + r) − ui(x)]2〉, (3.6)

where x is the position vector, and r is the separation vector. We focus on the longitudinal
structure functions, where the velocity component is parallel to the separation vector,
particularly on D11(r1), D22(r2) and the transverse structure functions showing the same
behaviour. According to Kolmogorov theory (Kolmogorov 1941), (3.6) scales as (εr)2/3

for separations in the inertial range. Although the considered range of Reλ possesses
limited scale separation, Carter et al. (2016) and Carter & Coletti (2017) showed, and
the present data confirm, that the single-phase turbulence in this facility approximately
follows Kolmogorov scaling in the range r ≈ 20η–50η. The addition of particles alters
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Figure 8. Longitudinal second-order structure functions of the u1 component for the different volume fractions
for (a) Stη = 0.3 and (b) Stη = 2.6. The dashed line indicates the r2/3 scaling predicted by Kolmogorov (1941)
in the inertial range. The data are from the small FOV.

this picture profoundly. In keeping with the pivoting effect, the energy becomes more
evenly distributed across the scales as the particle loading increases: the dispersed phase
intercepts part of the fluid momentum at the large scales, and injects it back into the fluid
at small scales. The effect is already visible for Stη = 0.3 and is apparent for Stη = 2.6.

The cross-over separation rc, i.e. the separation corresponding to the pivoting point,
does not vary significantly with Φv , and lies in the ranges 30η–40η and 40η–50η for
the lower and higher Stη, respectively. This difference could be a Stη effect or a Reλ
effect. The latter would be consistent with the proposal of Sundaram & Collins (1999)
that rc scales with λ, while the former is at odds with the notion that rc decreases
with Stη (Poelma & Ooms 2006). This conclusion, however, was based on simulations
neglecting gravity, which here is crucial to the two-way coupling. Determining a specific
trend for rc would require further measurements with different Svη and a broader range of
Stη. We do note that the range of scales where the fluctuating fluid energy is increased
roughly corresponds to the size of the particle clusters in this regime (Petersen et al.
2019).

Finally, the redistribution of the turbulent energy with increasing particle loading
can be appreciated by considering the nonlinear inter-scale energy transfer rate,
Π . Starting from the Kármán–Howarth–Monin equation (Monin, Yaglom & Lumley
1975), we recently performed such an analysis for the single-phase turbulence in
this same facility (Carter & Coletti 2018; see also Lamriben, Cortet & Moisy
2011; Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015; Portela, Papadakis &
Vassilicos 2017; among others). Briefly, given two points x and x′′ associated with
velocity fluctuations ui and u′′

i and separated by r, one considers the difference δui =
ui − u′′

i and the associated energy δqi = δuiδui. (Assuming small-scale axisymmetry,
as in Carter & Coletti (2018), or isotropy leads to similar values and analogous
conclusions.) The radial component of the nonlinear inter-scale energy transfer
rate, Πr = 1

4 [(∂/∂r)(〈δui δq2
i 〉ri/r) + 1/r2〈δui δq2

i 〉ri], is the only one making a net
contribution in spherical coordinates. Thus, over the inertial range in single-phase
turbulence, the average of Πr across all orientations in scale space is expected to balance
the two-point kinetic energy dissipation εr (which in the present homogeneous flow
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Figure 9. Nonlinear inter-scale energy transfer rate, normalized by the turbulent dissipation and plotted as a
function of the scale separation r, at the different particle volume fractions and for the Stη = 2.6 case. The
dissipation from the unladen case is used to normalize all line plots; using ε from the individual particle-laden
cases corroborates the observed trend of inter-scale transfer increasing with volume fraction. The data are from
the small FOV.

coincides with the standard dissipation ε). This is confirmed in figure 9, where the ratio
Πr/εΦ=0 is plotted as a function of r for Stη = 2.6. The negative sign of Πr indicates the
expected direction of the energy cascade from larger to smaller scales, and the values
of the ratio close to −1 for r/η ≈ 20–100 reflect the Π–ε equilibrium in the inertial
range of the unladen turbulence. With increasing particle loading, the magnitude of
Πr in the same range grows significantly. This indicates that with increasing loading,
the energy injected at the large scales is being transferred more effectively down the
spectral pipeline towards the smaller scales. On the one hand, this is consistent with the
observation that particles cause the energy to pivot towards a more even distribution across
all scales, as illustrated in figure 8. On the other hand, it points to a specific mechanism
by which such redistribution is realized, i.e. the enhancement of the energy cascade. The
precise dynamics by which this is realized (e.g. by clusters accelerating the breakdown
of large eddies, rather than high-concentration sheets causing instabilities; Kasbaoui,
Koch & Desjardins 2019) remains to be clarified, but it is likely specific to the present
regime. In fact, particle-resolved DNS (PR-DNS) from Schneiders et al. (2017) found
that Kolmogorov-scale particles dampened the inter-scale energy flux in the absence of
gravity.

In this multi-scale and two-way coupled system, the question of the inter-scale energy
transfer is complex, and other interpretations of the results are possible. For example, the
enhancement of Πr might be seen as a mere consequence of the energy added to the fluid
by the falling particles, rather than by an intensification of the cascade. In such a scenario,
however, one would expect a scale-independent shift of the energy spectrum, as opposed
to the observed pivoting. Likewise, the increase of fluctuating energy at small scales could
be due solely to the local action of the particles. If this were the case, however, such
energy augmentation would be limited to scales much smaller than the range that appears
affected. In conclusion, the present interpretation appears consistent with the ensemble of
the experimental observations, but further data and analysis are required to make it more
conclusive.
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4. Conclusions

We have performed a systematic experimental study of turbulence modification by
sub-Kolmogorov heavy particles. These are in the range Stη = O(1), ρp/ρf = O(103) that
has attracted attention for decades, due to its relevance to countless applications and the
rich interaction with the flow. With Reλ ≈ 150–300, the scale separation of the turbulence
is enough to display the hallmarks of Kolmogorov’s phenomenology, also possessing
a high degree of homogeneity over scales much larger than the energetic eddies. The
settling velocity parameter Svη = O(1) is the natural consequence of terrestrial gravity,
and separates the present regime from the zero-gravity cases that have formed the bulk
of the numerical studies in the literature. By varying incrementally the particle volume
fraction, Φv ≈ 10−6–5 × 10−5, while keeping all other parameters constant, we have
isolated the profound flow modifications caused by the two-way coupling between both
phases. We considered both cases Stη < 1 and Stη > 1, which behave similarly, the latter
producing more marked changes in the carrier phase.

We find that the presence of settling inertial particles leads to the horizontal contraction
and vertical elongation of the correlation length of the turbulent fluctuations, in agreement
with the observation of Ferrante & Elghobashi (2003) that falling particles stretch vortical
structures. The r.m.s. velocity fluctuations, however, are more strongly excited in the
horizontal than in the vertical direction. Both components are significantly augmented,
and overall the TKE is dramatically increased (roughly doubled) at the higher loadings.
This is attributed to the role of gravity: falling particles release their potential energy to
the fluid, proportionally to their mass fraction and settling velocity. At the largest volume
fractions considered, such energy input rate is comparable to the hydrodynamic forcing of
the turbulence (in the present case, from actuated jets).

The velocity structure functions confirm that the presence of particles leads to a
redistribution of energy across the spectrum: the turbulence activity is intensified at
the small scales and dampened at the large scales, with a cross-over scale around 40η.
The two-point analysis shows further that the inter-scale energy flux is enhanced with
increasing particle loading. Thus the pivoting of the energy spectrum is rooted in an
intensification of the direct energy cascade. The identification and quantification of this
process will be important to devise successful (subgrid-scale and/or point-particle) models
able to capture the turbulence modification.

In most previous experimental studies, which focused on massively inertial particles
(Stη = O(102)), turbulence was found to attenuate TKE. Unlike those cases, the present
class of particles exhibits distinct phenomena such as clustering and enhanced settling (as
measured in the present facility by Petersen et al. (2019) and Berk & Coletti (2021)). The
difference in the net variation of TKE depending on the particle inertia may then be due
to the time scale associated to the energy input, which in turn is related to the particle
dynamics.

While we mainly attribute to Stη the different TKE modification with respect to previous
studies, the particle size may also play a role: in most past experiments that found a
reduction of TKE, dp/η ≈ 1 or larger (Hwang & Eaton 2006a; Tanaka & Eaton 2008;
Bellani et al. 2012), while here dp/η = O(10−1). To discern and quantify geometric effects
on the flow, particle-resolving simulations are needed, although the present regime is
especially challenging to PR-DNS.

It is important to point out that the present findings are applicable to the considered
type of particles, i.e. sub-Kolmogorov spheres much denser than the carrier fluid. While
this class has been the centre of attention in early particle-laden turbulence studies, more
recently numerical and experimental works have often considered much larger and less

949 A30-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.762


Turbulence modification by small settling particles

dense particles (Qureshi et al. 2007; Bellani et al. 2012; Uhlmann & Doychev 2014;
Fornari et al. 2016; Baker & Coletti 2019). Bridging the gap between the two extrema
of the parameter space will be important to reach a comprehensive view of the two-way
coupling problem (Brandt & Coletti 2022). Experimentally, an obvious obstacle on such
a path will be the difficult optical access in highly concentrated particle suspensions,
especially at density ratios for which refractive index matching is not an option. Recently,
Fong & Coletti (2022) demonstrated that back-lighting can provide quantitative insight in
cluster-induced turbulence at Φv approaching 10−2, but did so in a relatively confined
configuration and could not access the local fluid velocity. Depending on the media,
non-optical techniques such as ultrasound imaging velocimetry (Poelma 2017) and X-ray
(Aliseda & Heindel 2021) may provide attractive alternatives.
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