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1 Introduction

The problem of the Dutch national flag was formulated by Dijkstra (1976) as

follows:

There is a row of buckets numbered from 1 to n. It is given that:

P1 : each bucket contains one pebble

P2 : each pebble is either red, white, or blue.

A minicomputer is placed in front of this row of buckets and has to be programmed

in such a way that it will rearrange (if necessary) the pebbles in the order of the

Dutch national flag.

The minicomputer in question should perform this rearrangement using two

commands:

• swap i j for 1 � i � n and 1 � j � n exchanges the pebbles stored in the

buckets numbered i and j ;

• read (i ) for 1 � i � n returns the colour of the pebble currently lying in

bucket number i . Dijkstra originally named this operation buck .

Finally, a solution should also satisfy the following two non-functional require-

ments:

• the minicomputer may only allocate a constant amount of memory;

• every pebble may be inspected at most once.

This pearl describes how to solve and verify the problem of the Dutch national flag

in type theory. For the sake of presentation, most of this paper considers the problem

of the Polish national flag, where the pebbles are either red or white. Initially, we

will only be concerned with finding a solution to the problem that is guaranteed to

terminate (Sections 3–5). Although this pearl does not cover the proof of functional

correctness in detail, we will step through the key lemmas and definitions that are

necessary (Section 6) and discuss how this solution may be extended to handle the

case for three colours and also verify the non-functional requirements (Section 7).

This paper uses the dependently typed programming language Agda (Norell,

2007). Readers without any prior exposure to programming with dependent types,
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may want to consult one of the many tutorials that are currently available (McBride,

2004; Norell, 2008; Oury & Swierstra, 2008; Bove & Dybjer, 2009).

2 A functional specification of the minicomputer

Before we can tackle the problem of the Dutch national flag, we need to give a type

theoretic account of the minicomputer and its commands.

The primitive commands with which we can program the minicomputer take

numbers between 1 and n as their arguments. One way to represent these numbers

is as follows:

data Index : Nat → Set where

One : Index (Succ n)

Next : Index n → Index (Succ n)

The type Index n has n canonical inhabitants. Several examples of such finite types

should be familiar: Index 0 is isomorphic to the empty type; Index 1 is isomorphic

to the unit type; Index 2 is isomorphic to the Boolean type.

Note that in the typeset code, any unbound variables in type signatures are implic-

itly universally quantified, just as in Haskell (Peyton Jones, 2003), Epigram (McBride

& McKinna, 2004) and Idris (Brady, 2011). For example, the variable n used in

both constructors of the Index type is implicitly quantified at the start of both type

declarations.

The Buckets n data type below describes the pebbles that are currently in each of

the n buckets:

data Pebble : Set where

Red : Pebble

White : Pebble

data Buckets : Nat → Set where

Nil : Buckets Zero

Cons : Pebble → Buckets n → Buckets (Succ n)

The solution we present here will be structured using a state monad:

State : Nat → Set → Set

State n a = Buckets n → Pair a (Buckets n)

exec : State n a → Buckets n → Buckets n

exec f bs = snd (f bs)

The code presented in the remainder of this paper will use Haskell’s notation for

the unit (return) and bind (>>=) operations.

We can now define the read function, which returns the pebble stored at the

bucket with its argument index. We do so using an auxiliary dereferencing operator

that looks up the pebble stored at a particular index:
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! : Buckets n → Index n → Pebble
Nil ! ()

(Cons p ps) ! One = p

(Cons p ps) ! (Next i ) = ps ! i

read : Index n → State n Pebble

read i bs = (bs ! i , bs)

Note that the dereferencing operator is total. In the Nil branch, we know that there

is no possible inhabitant of Index Zero and we supply the ‘impossible’ pattern ()

and omit the right-hand side of the definition accordingly.

Before defining the swap operation, it is convenient to define the following

functions:

update : Index n → Pebble → Buckets n → Buckets n
update One x (Cons p ps) = Cons x ps

update (Next i ) x (Cons p ps) = Cons p (update i x ps)

write : Index n → Pebble → State n Unit

write i p bs = (unit , update i p bs)

Calling write i p replaces the pebble stored in bucket number i with the pebble p.

Although the interface of the minicomputer does not support this operation, we can

use it to define swap as follows:

swap : Index n → Index n → State n Unit
swap i j = read i >>= λpi →

read j >>= λpj →
write i pj >>

write j pi

Providing definitions for swap and read completes the functional specification of

the minicomputer. This specification is in fact a degenerate case of the functional

specification of mutable state (Swierstra, 2008). As the minicomputer cannot allocate

new buckets, it is considerably simpler.

3 A first attempt

It is now time to sketch a solution to the simplified version of the problem with

only two colours. In the coming sections, we will refine this solution to a valid Agda

program.

Dijkstra’s key insight is that during the execution of any solution, the row of

buckets must be divided into separate zones of consecutively numbered buckets. In

the simple case with only two colours, we will need three disjoint zones: the zone

of buckets storing pebbles known to be red; the zone of buckets storing pebbles

known to be white and the zone of buckets storing pebbles of undetermined colour.

To delineate these zones, we need to keep track of two numbers r and w .

Throughout the execution of our solution, we will maintain the following invariant

on r and w :
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sort : Index n → Index n → State n Unit
sort r w = if r ≡ w then return unit

else read r>>= c →
case c of

Red → sort (r +1) w
White → swap r w>> sort r (w−1)

Fig. 1. A pseudocode definition of the sort function.

• for all k , where 1 � k < r , the pebble in bucket number k is known to be red;

• and for all k , where w < k � n , the pebble in bucket number k is known to

be white.

Note that this invariant does not say anything about the pebbles stored in buckets

numbered k for r � k � w . In particular, if we initialise r and w to 1 and n ,

respectively, the invariant is trivially true.

With this invariant in mind, we might arrive at the (pseudocode) solution for the

problem of the Polish national flag in Figure 1. If r ≡ w , there is no further sorting

necessary as a consequence of our invariant. Otherwise, we inspect the pebble stored

in bucket number r . If this pebble is red, we have established the invariant holds

for r + 1 and w . We can therefore increment r and make a recursive call without

having to reorder any pebbles.

If we encounter a white pebble in bucket number r , there is more work to do.

The call swap r w ensures that all the pebbles in buckets with a number k , for

w � k � n , are white. Put differently, after this swap, we can establish that our

invariant holds for r and w − 1. In contrast to the previous case, the recursive call

decrements w instead of incrementing r .

There are several problems with this definition. Firstly, it is not structurally

recursive, and therefore, it is rejected by Agda’s termination checker. This should

come as no surprise: the function call sort r w only terminates provided r � w , as

the difference between w and r decreases in every recursive step. The Agda solution

must make this informal argument precise.

Furthermore, we have not defined how to increment or decrement inhabitants of

Index n . Before we try to implement the sort function in Agda, we will have a closer

look at the structure of such finite types.

4 Finite types

How shall we define the increment and decrement operations on inhabitants of

Index n?

An obvious, but incorrect, choice of increment operation is the Next constructor.

Recall that Next has type Index n → Index (Succ n), whereas we would like to have

a function of type Index n → Index n . Similarly, ‘peeling off’ a Next constructor

does not yield a decrement operation of the desired type.
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Fig. 2. The graph of the inj function (a) and the Next constructor (b) on Index 3.

The Next constructor, however, is not the only way to embed an inhabitant of

Index n into Index (Succ n). Another choice of embedding is the inj function, given

by:

inj : Index n → Index (Succ n)

inj One = One

inj (Next i ) = Next (inj i )

Morally, the inj function is the identity, even if it maps One : Index n to One :

Index (Succ n), thereby changing its type. We can visualise the difference between

inj and Next , mapping Index 3 to Index 4, in Figure 2.

Figure 2(a) illustrates the graph of the inj function. The elements of Index 3 and

Index 4 are enumerated in the left and in the right, respectively. The inj function

maps the One element of Index 3 to the One element of Index 4; similarly, Next i

is mapped to Next (inj i ). As Figure 2(b) illustrates, the Next constructor behaves

quite differently. It increments all the indices in Index 3, freeing space for a new

index, One : Index 4.

From this picture, we can make the central observation: Next i is the successor

of inj i , and correspondingly, inj i is the predecessor of Next i .

The question remains: how do we know when an index is in the image of inj or

Next? Surprisingly, we will acquire this information as a consequence of making the

algorithm structurally recursive.

5 A structurally recursive solution

To revise our definition of sorting, we need to make the structure of the recursion

explicit. Informally, we have previously established that the function call sort r w

will terminate provided r � w . The usual choice of order on inhabitants of Index n

is given by the following data type:

data � : (i j : Index n) → Set where

Base : One � i

Step : i � j → Next i � Next j
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sort : (r : Index n) → (w : Index n) → Difference r w → State n Unit
sort �i� �i� (Same i) = return unit
sort �inj i� �Next j� (Step i j p) =

read (inj i)>>= λc →
case c of

Red → sort (Next i) (Next j) (nextDiff i j p)
White → swap (inj i) (Next j)>>

sort (inj i) (inj j) (injDiff i j p)

Fig. 3. The definition of the sort function.

The base case states that One is the least inhabitant of any non-empty finite type.

Provided i � j , the Step constructor proves Next i � Next j .

This definition, however, does not reflect the structure of our algorithm. A better

choice is to define the following data type, representing the difference between two

inhabitants of Index n:

data Difference : (i j : Index n) → Set where

Same : (i : Index n) → Difference i i

Step : (i j : Index n) → Difference i j → Difference (inj i ) (Next j )

The base case, Same, captures the situation when the two indices are the same; the

Step constructor increases the difference between the two indices by incrementing

the greater of the two.

Using this definition of Difference, we define our sorting function by induction

on the difference between r and w in Figure 3. Note that Agda does not provide

local case statements – the accompanying code, available online as supplementary

material to this paper at journals.cambridge.org/jfp, defines sort using a fold over

the Pebble type. This fold has been typeset as a case statement for the sake of clarity.

The pattern matching in this definition deserves some attention. In the first branch,

we match on the Same constructor. As a result of this pattern match, we learn that r

and w can only be equal to the argument i of the Same constructor. This information

is reflected by the forced pattern �i� that we see in place of the arguments r and w .

By pattern matching on the Step constructor, we also learn something about r

and w : as they are not equal, r and w must be in the images of inj and Next ,

respectively. The definition of this branch closely follows the pseudocode solution

we have seen previously. It reads the pebble in bucket number inj i . If it is red, we

continue sorting with Next i and Next j , thereby incrementing inj i . If it is white,

we perform a swap and continue sorting with inj i and inj j , thereby decrementing

Next j . This is where we apply our observation on incrementing and decrementing

inhabitants of Index n from the previous section.

To perform the recursive calls, we need to define two lemmas with the following

types:
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sort : (r : Index n) → (w : Index n) → SortT r w → State n Unit
sort �i� �i� (Base i) = return unit
sort �inj i� �Next j� (Step i j pDiff pInj) =

read (inj i)>>= λc →
case c of

Red → sort (Next i) (Next j) pDiff
White → swap (inj i) (Next j)>>

sort (inj i) (inj j) pInj

Fig. 4. The final definition of the sort function.

nextDiff : (i j : Index n) → Difference i j → Difference (Next i ) (Next j )

injDiff : (i j : Index n) → Difference i j → Difference (inj i ) (inj j )

Both these lemmas are easy to prove by induction on the Difference between i

and j .

Unfortunately, this definition of sort is still not structurally recursive. The sort

function is defined by induction on the difference between r and w , but the recursive

calls are not to structurally smaller subterms, but rather require the application of an

additional lemma. Therefore, it is still not accepted by Agda’s termination checker.

The solution is to revise our Difference data type as follows:

data SortT : (i j : Index n) → Set where

Base : (i : Index n) → SortT i i

Step : (i j : Index n) →
SortT (Next i ) (Next j ) → SortT (inj i ) (inj j ) → SortT (inj i ) (Next j )

Instead of requiring the application of the above two lemmas, we bake the

proofs required for the two recursive calls into the data type over which we

recurse. More generally, this is an instance of the Bove–Capretta method (Bove

& Capretta, 2005), which calculates such a type from any non-structurally recursive

definition.

Of course, we can show this definition to be equivalent to the original Difference

type using the nextDiff and injDiff lemmas. The name SortT for this data type

should suggest that it encodes the conditions under which the sort function will

terminate.

The final definition of the sort function, using the SortT predicate, is given in

Figure 4.

All that remains to be done to solve the problem of the Polish national flag is to

call sort with suitable initial arguments. We initialise r to One and w to maxIndex k ,

the largest inhabitant of Index (Succ k ). To kick off the sorting function, we must

still provide a proof that SortT One (maxIndex k ) is inhabited, calculated by the

terminates function.
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polish : (n : Nat) → State n Unit

polish Zero = return unit

polish (Succ k ) = sort One (maxIndex k ) terminates

where

maxIndex : (n : Nat) → Index (Succ n)

maxIndex Zero = One

maxIndex (Succ k ) = Next (maxIndex k )

terminates : SortT One (maxIndex k )

terminates = toSortT One (maxIndex k ) Base

The easiest way to prove termination is by exploiting the equivalence between i � j

and SortT i j , witnessed by the function toSortT , whose definition is uninteresting

enough to omit. Clearly, One � maxIndex k , by the Base constructor. Passing this

proof as an argument to toSortT then gives the required proof of termination. The

definition of toSortT proceeds by recursion over the two Index arguments.

This completes our solution to the problem of the Polish national flag. Now, we

need to prove it correct.

6 Verification

With this relatively simple definition, the verification turns out to be straightforward.

Stepping through large proof terms written in type theory can be rather tedious,

and hence, we will not do so. Instead this section outlines the key definitions and

lemmas, and sketches their proofs.

Many of the proofs rely on the following two lemmas:

lookupUpdated : (p : Pebble) (i : Index n) (bs : Buckets n) → (update i p bs ! i ) ≡ p

swapPreservation : (i : Index n) (x y : Index n) (bs : Buckets n) → i �≡ x → i �≡ y →
exec (swap x y) bs ! i ≡ bs ! i

These two properties state that the operation update i p bs modifies bucket num-

ber i , overwriting the previous pebble to p, but leaves all other buckets unchanged.

Recall that the (!) operator looks up the pebble stored at a particular index.

We continue by formalising the invariant stated at the beginning of Section 3. We

define the following property on two indices and an array of buckets:

Invariant : (r w : Index n) → Buckets n → Set

Invariant r w bs = (∀ i → i < r → (bs ! i ) ≡ Red ) ∧ (∀ i → w < i → (bs ! i ) ≡ White)

This property states that all buckets to the left of the index r contain red pebbles

and all buckets to the right of the index w contain white pebbles. The key statement

we prove is the following:

sortInv : Invariant r w bs → ∃m : (Index n), Invariant m m (exec (sort r w d ) bs)

In words, it says that if the above invariant holds initially for some array of

buckets bs , the invariant still holds after executing our sort function. Furthermore,

there is a single bucket m that separates the red pebbles from the white pebbles.
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To prove this statement, we need to identify three separate cases.

Base case. In the base case, r and w are equal. The sort function does not perform

any further computation and we can trivially re-establish that the invariant holds.

No swap. If the pebble in bucket r is red, the algorithm increments r and recurses.

To re-establish the invariant, we need to prove that for every index i such that

i < r + 1 the pebble in bucket number i is red. After defining a suitable view on

the Index data type (McBride & McKinna, 2004), we can distinguish two cases:

• if i ≡ r , we have just established that the pebble in this bucket is red;

• otherwise, i < r and we can apply our assumption.

Swap. If the pebble in bucket r is white, the algorithm swaps two pebbles, decrements

w , and recurses. This is the only tricky case. To re-establish our invariant, we need

to show that:

• the pebbles in the buckets numbered from One to r are all red after the swap.

This follows from our assumption, together with the swapPreservation lemma.

• the pebbles in buckets numbered from w − 1 onwards are all white. This case

closely mimics the branch in which no swap occurred. Using our induction

hypothesis and the swapPreservation lemma, we know that all pebbles in

buckets from w onwards are white. After executing the swap, we also know

that the bucket numbered w − 1 has a white pebble, and hence, our invariant

still holds.

Finally, we use this lemma to establish our main result:

correctness : ∃m : Index n , Invariant m m (exec polish bs)

To complete this proof, we use the fact that the sort function respects our Invariant .

All that remains to be done is to show that the invariant is trivially true for the

initial call to the sort function.

7 Discussion

Non-functional requirements. Although this proves that the solution is functionally

correct, we have not verified the non-functional requirements. One way to do so is

to make a deeper embedding of the language used to program the minicomputer.

For instance, we could define the following data type that captures the instructions

that may be issued to a minicomputer responsible for sorting n buckets:

data Instr (n : Nat) (a : Set) : Set where

Return : a → Instr n a

Swap : Index n → Index n → Instr n a → Instr n a

Read : Index n → (Pebble → Instr n a) → Instr n a

It is easy to show that Instr n is a monad. Instead of writing programs in the

State monad that we have done up till now, we could redefine read and swap to

create instructions of this Instr type. This has one important advantage: it becomes

possible to inspect the instructions for the minicomputer that our polish function

generates. In particular, we can establish a bound on the maximum number of Read

operations of any set of instructions:
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reads : ∀ {a n } → Instrs n a → Nat

reads (Return x ) = 0

reads (Swap i j p) = reads p

reads (Read c p) = Succ (max (reads (p Red )) (reads (p White)))

Given these definitions, we can prove the following statement of our polish

function:

nonFunctional : (reads (polish n)) � n

The proof follows immediately from a more general lemma, stating that the sort

function performs at most w − r read operations. The proof of this statement is

done by straightforward induction over the SortT data type.

Of course, this does not show that our program uses only a constant amount of

memory. Perhaps a similar technique could make explicit that Agda values (and in

particular the two indices r and w ) need to be allocated by the minicomputer.

Two colours or three? There is still some work to be done to verify the problem of the

Dutch National Flag. The good news is that the structure of the algorithm is almost

identical. Specifically, we can use the same termination argument: in every step of

the algorithm, the difference between two indices decreases. With three colours, one

choice of type for the sort function is:

sort : (r w b : Index n) → r � w → SortT w b → State n Unit

With this choice, we divide the buckets into four distinct zones: those buckets

known to store red pebbles, those buckets known to store white pebbles, those

buckets storing a pebble of undetermined colour and those buckets storing blue

pebbles. In each iteration, we ensure that the number of buckets storing pebbles

of undetermend colour decreases by performing induction on SortT w b. We can

define the invariant our sort function maintains:

Invariant : (r w b : Index n) → Buckets n → Set
Invariant r w b bs =

(∀ i → i < r → (bs ! i ) ≡ Red )

∧ (∀ i → r � i → i < w → (bs ! i ) ≡ White)

∧ (∀ i → b < i → (bs ! i ) ≡ Blue)

The proof that the sort function for three colours maintains this invariant is much

longer than the proof for two colours. The only real change is that the number of

cases grows from two to three – but in every branch, we also need to establish three

conjuncts instead of two. As a result, the proof is considerably longer, even if it is

not much more complex.

Related work. The Problem of the Dutch National Flag is also covered as one of the

final examples in Programming in Martin-Löf ’s Type Theory (Nordstrom et al.,1990).

The program presented there is a bit different from Dijkstra’s original solution: it

does not use an in-place algorithm that swaps pebbles as necessary, but instead

solves the problem using bucket sort. While this does produce correctly sorted

results, the solution presented here is perhaps truer to Dijkstra’s original.
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