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In this work we present experiments and simulations on the nucleation and successive
dynamics of laser-induced bubbles inside liquid droplets in free-fall motion, i.e. a case
where the bubbles are subjected to the influence of a free boundary in all directions.
Within this spherical millimetric droplet, we have investigated the nucleation of secondary
bubbles induced by the rarefaction wave that is produced when the shock wave emitted
by the laser-induced plasma reflects at the drop surface. Interestingly, three-dimensional
clusters of cavitation bubbles are observed. Their shape is compared with the negative
pressure distribution computed with a computational fluid dynamics model and allows
us to estimate a cavitation threshold value. In particular, we observed that the focusing
of the waves in the vicinity of the free surface can give rise to explosive cavitation
events that end up in fast liquid ejections. High-speed recordings of the drop/bubble
dynamics are complemented by the velocity and pressure fields simulated for the same
initial conditions. The effect of the proximity of a curved free surface on the jetting
dynamics of the bubbles was qualitatively assessed by classifying the cavitation events
using a non-dimensional stand-off parameter Υ− that depends on the drop size, the bubble
maximum radius and the relative position of the bubble inside the drop. Additionally, we
studied the role of the drop’s curvature by implementing a structural similarity algorithm
to compare cases with bubbles produced near a flat surface to the bubbles inside the drop.
Interestingly, this quantitative comparison method indicated the existence of equivalent
stand-off distances at which bubbles influenced by different boundaries behave in a
very similar way. The oscillation of the laser-induced bubbles promotes the onset of
Rayleigh–Taylor and Rayleigh–Plateau instabilities, observed on the drop’s surface. This
phenomenon was studied by varying the ratio of the maximum radii of the bubble and the
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drop. The specific mechanisms leading to the destabilisation of the droplet surface were
identified.

Key words: bubble dynamics

1. Introduction

Phase explosion in confined liquid volumes has recently gained interest because of its
connection with thriving research areas like x-ray liquid crystallography (Grünbein et al.
2021), x-ray holography (Hagemann et al. 2021; Vassholz et al. 2021), extreme UV light
and plasma generation (Favre et al. 2002). A better understanding of the interaction of
high-power lasers with small liquid particles is also relevant in laser-based atmospheric
monitoring techniques (Rohwetter et al. 2010; Mei & Brydegaard 2015) or in optical
atomisation techniques that can be applied to the production of airborne transported
microdrops used as drug carriers (Lee et al. 2022). At the heart of all of these research
fields is the injection of high-power photons into a small liquid sample, the initiation of
phase transition from liquid to vapour, the rapid pressure fluctuations and the successive
complex fluid mechanics driven by this impulsive energy input. In this study we want
to shed light on the fundamental flows that can be induced in liquid samples once this
phase transition has been initiated. In particular, we focus on the fluid dynamics within a
spherically confined liquid sample after the violent phase explosion of the vapour bubble
induced by a high-power laser pulse. We explore the non-spherical dynamics of vapour
bubbles within a liquid droplet, i.e. surrounded by free boundaries only. Bubble dynamics
in droplets have so far mostly been studied from the perspective of destabilisation of the
liquid–gas interface of the droplet (Singh & Knight 1980; Alexander & Armstrong 1987;
Eickmans, Hsieh & Chang 1987; Lindinger et al. 2004; Thoroddsen et al. 2009; Marston
& Thoroddsen 2015; Gonzalez-Avila & Ohl 2016; Zeng et al. 2018). Here, we explore the
bubble dynamics within the droplet (Obreschkow et al. 2006).

Pulsed lasers can be focused into optically transparent media to induce explosive bubble
nucleation by dielectric breakdown. This process is accompanied by the emission of an
acoustic shock wave with an amplitude of the order of gigapascals depending on the pulse
energy, duration and wavelength. For instance, the initial amplitude of the shock wave
(i.e. at the edge of the plasma rim) in water can be in the range from 2.4 GPa to 11.8 GPa
for a 6 ns laser pulse with an energy between 1 mJ to 10 mJ and a wavelength of 1064 nm
focused with a numerical aperture (NA) of 22◦ (Vogel, Busch & Parlitz 1996; Noack &
Vogel 1998). Recently, the initial shock wave amplitude produced by similar nanosecond
laser pulses of 24 mJ (NA = 10◦) was measured with a novel x-ray probing technique,
obtaining peak values of around 20 GPa (Vassholz et al. 2021).

When a laser-induced cavity is produced in a confined space with free boundaries, like
a droplet, most of the sound wave energy reflects back from the interface with an inverted
phase, meaning that the original shock wave is transformed into a rarefaction wave. If
the negative pressure amplitude of the reflected wave is below the cavitation threshold of
the liquid, a trail of bubbles is nucleated after the wave passage. This effect is commonly
observed upon wave reflection on the free boundary of a flat surface (Heijnen et al. 2009),
nearby bubbles (Quinto-Su & Ando 2013), a liquid column (Sembian et al. 2016) or, as
we already mentioned, a drop (Obreschkow et al. 2006; Gonzalez-Avila & Ohl 2016;
Kondo & Ando 2016; Kyriazis, Koukouvinis & Gavaises 2018; Wu, Xiang & Wang 2018b;
Wu, Liu & Wang 2021; Biasiori-Poulanges & Schmidmayer 2023). Laser cavitation in
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Bubble nucleation and jetting inside a millimetric droplet

some of these configurations was lately applied in studies involving x-ray holography or
x-ray diffraction to investigate the propagation of shock waves in liquids (Stan et al. 2016;
Ursescu et al. 2020; Hagemann et al. 2021). The use of very small amounts of liquid
prevents the x-rays from being fully absorbed by the sample, thus improving the contrast
of the x-ray images. This technique is suitable to study the properties of opaque liquids
without optical aberrations, it is less sensitive to distortions produced by wavy surfaces,
and also allows retrieving information about the liquid density changes produced by the
passage of the pressure waves (Vassholz et al. 2021, 2023), which represents an advantage
over traditional optical imaging.

Another interesting aspect of the nucleation of bubbles in the proximity of a boundary
resides in their jetting dynamics. Laser-induced bubbles produced under different
boundary conditions have been widely studied, both experimentally and numerically.
Perhaps the case that got the most attention is the one of a bubble collapsing in the
proximity of a boundary of large extent, e.g. a solid boundary (Plesset & Chapman 1971;
Lauterborn & Bolle 1975; Blake et al. 1999; Brujan et al. 2002; Lindau & Lauterborn
2003; Yang, Wang & Keat 2013; Lechner et al. 2017; Gonzalez-Avila, Denner & Ohl
2021), an elastic boundary (Brujan et al. 2001; Rosselló & Ohl 2022) or a free surface
(Koukouvinis et al. 2016; Li et al. 2019c; Bempedelis et al. 2021; Rosselló, Reese & Ohl
2022). In real-world conditions the boundary is of finite extent and the cavity may be
spuriously affected by more than a single boundary (for instance, the walls of a container
or the liquid free surface), exerting a considerable influence on the direction of the jetting
(Kiyama et al. 2021; Andrews & Peters 2022).

The jet dynamics is frequently characterised by a stand-off parameter (Lindau &
Lauterborn 2003; Supponen et al. 2016; Lauterborn et al. 2018) computed as the ratio
of the distance between the bubble nucleation position and the boundary (d) and the
maximum radius attained by the bubble after its creation (Rmax). If the cavity collapse
occurs next to boundaries other than a plane, for instance, irregular or curved surfaces
(Tomita et al. 2002; Blake, Leppinen & Wang 2015; Wu et al. 2018a; Li et al. 2019b;
Aganin, Kosolapova & Malakhov 2022) like pillars (Kadivar et al. 2021; Koch et al.
2021b), fibres (Mur et al. 2023), corners (Mahmud, Smith & Walmsley 2020; Zhang
et al. 2020), crevices (Andrews, Fernández Rivas & Peters 2020; Trummler et al. 2020),
perforated plates (Gonzalez-Avila, Song & Ohl 2015; Reese et al. 2022) or spheres (Zhang
et al. 2018; Li et al. 2019a; Zevnik & Dular 2020; Ren et al. 2022), the anisotropy does
not have one predominant direction and, thus, the use of a single stand-off parameter
(e.g. d/Rmax) is no longer sufficient to fully characterise the system. The same situation
arises in cases where the bubbles are produced in a constricted space, for example, in
narrow channels (Gonzalez-Avila et al. 2011; Wang et al. 2018; Brujan et al. 2022),
between two surfaces (Li et al. 2017; Liu et al. 2017), in a liquid column (Robert et al.
2007) or inside a drop (Obreschkow et al. 2006; Thoroddsen et al. 2009; Marston &
Thoroddsen 2015; Gonzalez-Avila & Ohl 2016; Zeng et al. 2018).

The dynamics of jetting bubbles inside drops or curved free surfaces have not been
extensively explored. Recently, we have reported experimental and numerical results on
the formation of a jetting bubble in the proximity of a curved free boundary, given by the
hemispherical top of a water column or a drop sitting on a solid plate (Rosselló et al. 2022).
As a natural extension of that work, we now present a study on the jet formation during
the collapse of laser-induced bubbles inside a falling drop. This is a particularly interesting
case as the bubble is surrounded entirely by a free boundary. From an experimental point,
the intrinsic curvature of the liquid surface offers a very clear view into the bubble’s
interior.
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The rapid acceleration induced by the bubble oscillations in the proximity of a free
boundary also gives rise to surface instabilities, in particular Rayleigh–Taylor instabilities
(RTIs) (Taylor 1950; Keller & Kolodner 1954; Zhou 2017a,b). This situation is more
pronounced when the oscillating bubble wall gets close to the free surface, as commonly
occurs in reduced volumes like a drop (Zeng et al. 2018; Klein et al. 2020). The RTI
produces corrugated patterns on the liquid surface that can grow and promote the onset of
other instabilities like the Rayleigh–Plateau instability. Furthermore, the multiple pits and
ripples produced by the RTI on the liquid surface can interact with the acoustic emissions
of the oscillating bubble to generate a fluid focusing that results in a thin outgoing liquid
jet (Tagawa et al. 2012; Peters et al. 2013).

This paper is organised into different sections focusing on one of the above-discussed
aspects, i.e. the shock wave dynamics and the nucleation of secondary cavitation bubbles,
the jetting dynamics of the collapsing laser-induced bubbles and the formation of
instabilities on the drop surface as a consequence of the bubble oscillation.

2. Experimental method

The experimental method used to achieve controlled laser bubble inception inside a
millimetric drop is depicted in figure 1(a). Individual drops were released from the tip of
a blunt metallic needle with an internal diameter of 330 µm (and an external diameter of
600 µm) by the action of an electronic syringe pump (KD Scientific – Legato SPLG110).
This device pushed a fixed volume of ∼12 µl of deionised water through the needle,
producing single drops with a radius of (1.42 ± 0.01) mm. After a drop was released it
travelled a distance of h = 30 cm in free-fall motion. Just before it impacted a glass plate
a pulsed laser was focused into the droplet to nucleate the cavitation bubble.

The pulse energy of the laser (Nd:YAG Q2-1064 series, pulse duration 4 ns, wavelength
1064 nm) could be varied between 1.9 mJ and 20.3 mJ and was focused with a microscope
objective (Zeiss LD Achroplan 20×, NA = 0.4); see the bottom of figure 1(a). In the
experiments a standard microscope slide was placed on top of the laser focusing objective
in order to prevent wetting of its outer lens, which would provoke a significant distortion
of the laser beam. Accordingly, the protective glass was meticulously cleaned after each
drop impact.

The fall distance h was sufficient for the surface tension to stabilise the liquid into
an approximately spherical shape, reaching a velocity of (1.7 ± 0.1) m s−1 upon laser
arrival. At the same time, the variation of the lateral position of the drop centre relative
to the laser focus was typically below 200 µm, which aids experimental repeatability. The
vertical position where the bubble is created within the droplet is controlled with some
precision by synchronising the laser pulse with the passage of the drop through a light
gate. This consists of a red laser diode paired with a photo-diode that triggers a digital
delay generator, the Quantum 9520, that then fires the laser after a specified time.

The dynamics of the cavitation bubble within the droplet and the resulting surface
instabilities were captured in high-speed videos using a Shimadzu XPV-X2 camera
equipped with a photography macro lens (Canon MP-E 65 mm f/2.8 1-5×). A diffused
back illumination from a continuous white LED lamp (SMETec, 9000 lm) in combination
with the curved nature of the drops allowed us to obtain clear images of the droplet interior.
Furthermore, the curvature of the liquid refracted the light in a way that reveals the internal
structures of the jetting bubbles, knowing that it distorts the apparent position and shape
(Koch et al. 2021a). For direct comparison of the experimental and the numerical results,
an in-house script was applied to the simulated results to compensate for such image
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Figure 1. Description of the experimental set-up. (a) A water drop with a volume of ∼12 µl is detached
from a cylindrical blunt needle (stainless steel, 600 µm of external diameter) by gravitational forces. When
the drop reaches a velocity of (1.7 ± 0.1) m s−1, a cavitation bubble is produced inside it by a laser pulse
with a duration of 4 ns and a typical energy of (2.4 ± 0.1) mJ. (b) Once reflected from the drop surface, the
shock waves emitted from the laser-induced bubble nucleate tiny bubbles inside the liquid drop. (c) The bubble
undergoes an asymmetric collapse with jetting, whose shape depends on the position of the bubble inside
the drop.

distortions (Martins et al. 2018). This correction (based on Snell’s law) was also used
to obtain the ‘real’ nucleation position of the laser bubble.

Due to the limited number of recorded frames, the framing rate of the high-speed videos
had to be adjusted to capture the important features of the phenomena under study. For
instance, to visualise the shock wave propagation and the resulting nucleation of bubbles
from the reflected rarefaction wave, see figure 1(b), a frame rate of 5 Mfps (i.e. the
maximum achievable by the camera) was required, while the temporal evolution of the
jets (depicted in figure 1c) and the instabilities of the drop surface are captured already at
200 kfps or 500 kfps, respectively.

2.1. Definition of a stand-off parameter for a curved boundary Υ−
In order to consider the curvature of the drop’s surface in the characterisation of
the jet dynamics, we defined a non-dimensional coefficient Υ− that combines two
non-dimensional numbers, each one representing a relevant dimension of the problem.
First, we use the stand-off distance D∗ (Lauterborn et al. 2018) as the ratio of the bubble
‘seeding’ position (d) and the maximum radius achieved by the bubble when produced at
the centre of the spherical drop (R∗

max). The second non-dimensional distance χ is given
by the ratio of the drop radius (Rd) and the distance of the bubble from the drop centre (r).
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Rd

R∗
max

r

d

θ

Figure 2. Schematic of the drop interior with relevant dimensional parameters.

To summarise,

D∗ = d
R∗

max
, (2.1)

χ = Rd

r
= Rd

Rd − d
, (2.2)

Υ− = χD∗ = Rd

(Rd − d)

d
R∗

max
. (2.3)

A schematic representation of the aforementioned parameters is presented in figure 2.
Here, R∗

max is tightly related to the energy of the laser pulse (Lauterborn et al. 2018) and,
as we explain later in § 4.3, it also varies slightly with the drop size as Rd −→ ∞. For the
purpose of having reproducible results, the use of Υ− should be limited to values of R∗

max
for which the bubble is contained inside the drop volume (i.e. 0 ≤ R∗

max < Rd) and the drop
shape is not significantly distorted by surface instabilities (Zeng et al. 2018). Additionally,
the symmetry of the drop/bubble configuration implies that d ≤ Rd.

In principle, the parameter Υ− behaves similarly as the traditional stand-off distance
(e.g. d/Rmax), however, the addition of χ as a weighting factor represents a measure of the
influence of the boundaries all around the bubble, and not only its closest point. This means
that the regions of the free surface in directions other than θ = 0◦ could also be relevant to
the bubble dynamics as the separation from the bubble and the boundary in those angular
directions gets smaller, i.e. when the radius Rd is decreased and the bubble is located at
a reduced d. Alternatively, Υ− could be understood as a measure of the anisotropy, with
high anisotropy at the liquid boundary (d −→ 0) and perfect isotropy at the bubble centre,
d = Rd.

The tight relation between the traditional stand-off distance and Υ− is also evidenced by
the following considerations and limiting cases.

(i) The coefficient Υ− rises monotonically with d for a fixed laser pulse energy (or R∗
max).

(ii) In the limit Rd −→ ∞ the traditional stand-off distance is recovered.
(iii) If the bubble is near the drop wall, d −→ 0, then Υ− −→ 0.
(iv) If the bubble is near the drop centre, d −→ Rd, then r = 0, Υ− −→ ∞, and we recover

the traditional unbounded case, in which the bubble collapses spherically due to
symmetry.

It is important to note that Υ− can take the same value for different combinations of d,
R∗

max and Rd. Therefore, two identical values of Υ− computed from two different values of
D∗ and χ do not necessarily result in identical bubble dynamics. A comparison between
cases could be made by fixing the value of one or two of the parameters. For example, the
effect of the surface curvature Rd on the bubble dynamics can be evaluated by maintaining
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Bubble nucleation and jetting inside a millimetric droplet

D∗, or the influence of the ‘seeding’ depth d can be studied by fixing the drop size Rd and
the energy of the laser pulse. In this way, the parameter preserves the same functionality as
the traditional stand-off parameter (Lauterborn et al. 2018), but now includes the surface
curvature dimension.

3. Numerical method

Volume-of-fluid (VoF) simulations were carried out in OpenFOAM-v2006 (OpenFOAM-
v2006 2020) using a modification of the solver compressibleMultiphaseInterFoam. This
modified version is called MultiphaseCavBubbleFoam and was already implemented in
previous works to study the formation of the ‘bullet jet’ (Rosselló et al. 2022) and
micro-emulsification (Raman et al. 2022). In those works, similar simulations of a single
expanding and collapsing bubble in the vicinity of a liquid–gas and a liquid–liquid
interface were performed, respectively. Since the solver is explained in detail there, we
will only give the information that is specific to the present case of a bubble created in a
free-falling liquid drop.

Considering the approximate rotational symmetry of the experimental configuration,
we carried out the simulations as quasi-two-dimensional. The computational domain
represents a slice of a cylindrical domain with a height of 3 mm and a radius of 3 mm,
which is filled with a gas representing the surrounding air at ambient pressure. The domain
is divided into a square mesh of cells with a width of 40 µm, which is then further refined
to a cell width of 10 µm in the region occupied by the liquid drop. The boundaries of the
domain in the radial and axial directions are open, wave transmissive boundaries.

A slightly prolate ellipsoidal liquid drop representing a falling water drop is initiated in
the centre of the cylinder with an axial radius of 1440 µm and a radial radius of 1400 µm.
We neglect the relative motion of the drop through the air, and thus, take the drop and the
air to be initially at rest. This is because the speed of the falling drop and the effects of
drag are negligible when compared with the speeds developed by the bubble wall and the
jets. We also neglect any subsequent gravitational acceleration, since its effect is negligible
on the time scales considered. Inside the drop, a bubble is seeded on the symmetry axis
with an initial over pressure of 1.69 GPa and an initial radius of 25.7 µm. The initial
pressure was chosen such that the initial bubble gas density equals the density of the
surrounding liquid, in accordance with (3.1). This is based on the assumption that the
laser energy deposition occurs on a much smaller time scale than the expansion of the
bubble. The initial bubble radius R0 is chosen to match the maximum expansion R∗

max in
the experiment.

The bubble contents are modelled with the same properties as the gas surrounding the
liquid droplet but are calculated as a separate component. This allows us to apply a mass
correction to the gas in the bubble only that accounts for the mass loss due to condensation
during the bubble’s first oscillation cycle. This is done as a one-time correction at the
time of maximum bubble expansion, at which the bubble gas density is reduced by 70 %.
More details can be found in our previous work (Rosselló et al. 2022). The surface tension
between the liquid and the gases is 70 mN m−1, and that between the gases is 0. The Tait
equation of state is used for all components,

p = ( p0 + B)

(
ρ

ρ0

)γ

− B, (3.1)

with the parameters given in table 1. Here, γ is the adiabatic exponent.
The output of the numerical data was done in intervals of 10 ns to capture shock wave

propagation dynamics, and every 1 µs for the bubble and jetting dynamics.
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B in MPa ρ0 in kg m−3 p0 in Pa γ μ in mPa s

Liquid 303.6 998.2061 101 325 7.15 1
Gases 0 0.12 10 320 1.33 0.013

Table 1. Tait equation of state parameters and dynamic viscosities μ of the simulated fluid components. Both
gaseous components are treated as the same type of gas.

Acoustic cavitation
Jetting at

drop surface0

36 44 52 60 68 76 84

1081061041021009896

134118 150 166 182 198 214

2 4 6 8

RTI

Asymmetric

collapse

Bubble

jetting

Jetting bubble

rebound
Second cavity

collapse

10 12

(b)

(a)

(d )

(c)

Figure 3. Stages of the events developing inside the drop. The numbers indicate the time in µs after the laser
shot. In the first stage, spanning from t = 0 µs to t = 52 µs (framed in red), a rarefaction wave (i.e. the
reflection of the shock wave) produces a trail of cavitation bubbles. For low values of Υ− , a liquid jet is
ejected from the extreme of the drop opposite to the bubble inception. In the second stage, defined between
t = 60 µs and t = 106 µs (framed in blue), the bubble collapses after reaching its maximum size and a
jet forms. In some cases, a RTI is observed near the bubble. The third stage (framed in green) runs from
t = 108 µs until the end of the video at t = 214 µs. Here, the bubble re-expands after jetting and adopts a
characteristic shape during its second collapse that depends mostly on Υ− . The width of each frame is 2.70 mm.

4. Results and discussion

The inception of a laser-induced bubble inside a liquid drop gives rise to a rich and
complex chain of events. We start with an overview of the fluid dynamics that are observed
following the creation of the cavitation bubble by the dielectric rupture of the liquid, as
shown in figure 3. Here, the bubble is nucleated off-centre and close to the upper interface
of the droplet. The fluid dynamics can be divided into three stages, which are discussed in
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detail in the later sections. For now, we provide a brief description of these three stages.
(1) The bubble is nucleated into a rapidly expanding vapour cavity that launches during
its deceleration a shock wave into the droplet, not visible in figure 3. Upon reflection at
the acoustic soft liquid–gas interface, the rarefaction wave propagates through the drop
leaving behind a trail of cavitation bubbles in certain regions where the wave convergence
produces sufficient tension to induce local acoustic cavitation, 2 µs ≤ t ≤ 6 µs in figure 3.
Depending on the location of the laser bubble the rarefaction wave may focus in a reduced
volume close to the interface, creating secondary cavitation and provoking the ejection
of a single jet at the opposite side of the laser bubble nucleation site (e.g. t > 6 µs in
figure 3). (2) In the second stage, the laser-induced bubble undergoes an asymmetrical
collapse from its maximum size. Here, the anisotropy of the boundary conditions results
in the formation of a jet, which starts as an indentation on one side of the cavity and grows
to pierce the bubble at the opposite extreme. In cases where the laser cavity is created near
the drop surface, we also observe the destabilisation of the liquid surface by a RTI. (3) In
the third and last stage, the bubble re-expands after jetting, adopting a liquid–gas structure
that depends mostly on the stand-off distance (i.e. Υ− ). On its second collapse, the cavity
fragments and later disperses due to the complex flow created by its first collapse.

In the following the reported values of Υ− are computed for a surface curvature of
1.42 mm, which corresponds to the mean radius of the drops produced in this work.

4.1. Acoustic cavitation nucleation
The specific shape of the cavitation bubble clusters produced by the passage of the
rarefaction wave is highly dependent on Υ− . This is because the negative pressure focuses
differently when the original shock wave is emitted from a different location. As the
acoustic nucleation only occurs below a certain pressure threshold, the resulting bubble
clouds can assume complex three-dimensional structures. Figure 4 presents experimental
results showing the temporal evolution of bubble clouds generated for different values of
Υ− . In this study the bubble ‘seeding’ position was varied by changing the delay between
the drop release and the laser shot, thus shifting the laser focus position along the vertical
symmetry axis of the drop.

As aforementioned, the shock waves emitted from the laser focal spot will reflect from
the free boundary of the drop as a rarefaction wave. Due to the nearly spherical shape of the
drop, the reflected acoustic waves will focus in a region located at a similar distance from
its centre r (where the laser bubble was created) but on the opposite side of the drop. In the
case where the shock wave originates near the surface (i.e. Υ− � 1), the resulting pressure
distribution is characterised by a negative pressure zone moving close to the liquid surface
that produces a spherical shell of tiny cavitation bubbles, as displayed in the panels (a–c)
(and also i– j) of figure 4. This phenomenon occurs when the sound reflects multiple times
on the drop walls and travels circumferentially near the liquid surface without a significant
loss of intensity, which is usually referred to as the ‘whispering gallery effect’ (Raman &
Sutherland 1922). As the rarefaction waves focus at a similar depth where the shock wave
was emitted, it produces explosive cavitation events close to the free boundary and on the
drop’s vertical axis. The rapid expansion of those larger cavitation bubbles gives rise to the
liquid jets shown in the first row of figure 3. A more detailed explanation of the formation
and dynamics of this particular type of jet will be published elsewhere.

As the laser focusing depth d is increased, the negative pressure is distributed in larger
regions, but still, the nucleation of bubbles predominantly occurs on the side opposite to
the laser focus. Additionally, the bubble clusters turn from having the structure of a shell
(see panels (g,h,i) of figure 4) into a volumetric cavitation cloud when the laser bubble is
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(e)

( f )

(h)

(i)

( j)

(g)

(b)

(a)

(d )

(c)

Figure 4. Acoustic cavitation inside a water droplet. The distribution of bubbles in the liquid changes
significantly with the position of the laser-induced bubble. The frame width is 3.15 mm. The time between
consecutive frames is 600 ns. Results are shown for (a) Υ− = 0.65, (b) Υ− = 1.1, (c) Υ− = 1.7, (d) Υ− = 2.5,
(e) Υ− = 7.5, ( f ) Υ− = 68, (g) Υ− = 13, (h) Υ− = 5.4, (i) Υ− = 1.8, ( j) Υ− = 0.9. Full videos of (b,d, f ) are
available in the online supplementary movies 1–3 at https://doi.org/10.1017/jfm.2023.542.
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Bubble nucleation and jetting inside a millimetric droplet
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Figure 5. Acoustic cavitation bubble clouds for laser-induced bubbles at different relative positions in the drop.
The frames compare the advance of the shock/tension waves within the drop with the observed nucleation sites.
The average drop diameter is (2.84 ± 0.05) mm in all cases. The last frame of each series presents an overlay
of the frames and the cumulative minimum pressure after the first reflection of the shock wave at the free
boundary. The red line indicates the isobar of −4.5 MPa, i.e. the approximate nucleation threshold pressure.
(a) Here, the bubble is slightly off-centre (i.e. d � Rd). (b) Results for Υ− = 5.4. (c) Change in the cluster
dimensions with increasing laser pulse energy (indicated in mJ). (d,e) Present evidence of the formation of
complex hollow three-dimensional bubble structures. Here, Υ− is 3.5 and 1.45, respectively.

generated near the drop centre, as shown in the panels (e, f ) of figure 4. This transition
can be explained by analysing the pressure distribution dynamics with the numerical
simulations (Ando, Liu & Ohl 2012; Quinto-Su & Ando 2013; Gonzalez-Avila & Ohl
2016). Figure 5 demonstrates the clear correlation between the evolution of the acoustic
pressure profile and the nucleation of secondary cavitation bubbles. Furthermore, this
correlation can be used to determine the cavitation pressure threshold of the liquid by
comparing the shape and the location of the negative pressure front with the shape of
the bubble cloud within the drop. Such a comparison was only possible after applying
a numerical algorithm to the simulated results to compensate for the image distortions
induced by the drop curvature. The last frames in panels (a,b) of figure 5 display an
overlap of both the experimental video frames and the simulated pressure profiles. From
the measurements, we found a consistent cavitation threshold of approximately 4.5 MPa.
Considering that we did not filter the water sample we assume that the cavitation is most
likely heterogeneous.
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The acoustic cavitation thresholds reported for water in the literature vary strongly,
depending on the measurement method, water purity, gas saturation and water temperature.
Atchley et al. (1988) used distilled, deionised and filtered (0.2 µm) tap water irradiated by
pulsed ultrasound and found thresholds between 0.5 and 2.0 MPa, depending on the pulse
duration and frequency. Sembian et al. (2016) subjected a water column to a single shock
wave and found a cavitation threshold between 0.42 and 2.33 MPa. Biasiori-Poulanges
& Schmidmayer (2023) compared numerical simulations and experiments of a liquid
drop subjected to a planar shock wave and found a threshold between 0.37 and 2.4 MPa.
A similar shock front can be found when a droplet impacts on a solid surface at a
high speed (e.g. higher than 100 m s−1) as studied by Kondo & Ando (2016) and
Wu et al. (2018b, 2021). Assuming homogeneous nucleation, Ando et al. (2012) and
later Quinto-Su & Ando (2013) found a cavitation threshold of 60 MPa and 20 MPa,
respectively, comparing experiments and simulations of a reflected shock wave at a free
boundary. Therefore, the threshold value obtained in this work falls around the middle
of the spectrum of values measured by other authors. Figure 5(c) evidences a growth
in the secondary bubble cluster with increasing energy of the laser pulse, demonstrating
the resulting shift in the location of the cavitation threshold isobar for higher amplitudes
of the initial shock wave. It is relevant to point out that VoF simulations are notorious
for numerical diffusion that causes the shock wave to smear out over time. Because
of this, the simulations may underestimate the pressures reached in the experiments.
Please note that the VoF model does not account for phase transitions and the subsequent
interaction of nucleated cavitation bubbles with the finite amplitude waves. A model for of
high-frequency waves interacting with small cavitation clouds that may be applicable was
recently developed by Maeda & Colonius (2019). Finally, panels (d,e) of figure 5 exemplify
some of the hollow three-dimensional bubble structures observed in the experiments.

4.2. Bubble jetting
In the second stage presented in figure 3 the laser-induced bubble reaches its maximum
radius and then collapses. At this point, it becomes clear that a non-uniform distance
between the bubble and the free surface produces an asymmetric collapse, which
culminates in a liquid jet. In this section we explore the effect of varying the parameter Υ−
(as performed in § 4.1), but this time we lay focus on the development of the jets, as shown
in figure 6.

The experiments reveal that as the position of the laser focus is varied between the
centre and the surface of the drop, the characteristics of the jetting change smoothly: for
large values of Υ− , a spherical rebound of the bubble without any jetting is observed. The
values of Υ− � 3.5 are accompanied by the formation of a very thin liquid jet crossing
through the centre of a weakly deformed bubble. In this ‘weak jet’ case the tip of the
jet separates from the main cavity when it starts to collapse during its second oscillation
cycle (see figure 6b). For 1.2 � Υ− � 3.5, as in panel (c) of figure 6, the ‘whispering
gallery’ effect becomes relevant, causing the inception of larger acoustic bubbles on the
side opposite to the laser cavity and the ejection of liquid driven by their expansion. The
deformation of the bubble in its rebound phase is significantly stronger than in panel (b)
of figure 6. As the laser is focused closer to the drop’s surface, i.e. 0.3 � Υ− � 1.2, the
expansion of the bubble provokes the onset of a RTI. This can be seen in figure 6(d) by
the formation of several ‘spikes’ growing from the thin liquid film trapped between the
cavity and the surrounding air. At the same time, the bubble collapse (from t = 66 µs)
results in an elongated cavity, similarly as in the ‘bullet jet’ case (Rosselló et al. 2022).
This behaviour is more pronounced for even smaller stand-off distances, as presented in
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Bubble nucleation and jetting inside a millimetric droplet
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(e)

(b)
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(c)

Figure 6. Bubble jetting is produced by a laser-induced bubble generated at different relative positions inside
the drop. The numbers indicate the time in µs. The length of the scale bars is 1 mm. (a) Spherical oscillation
case, Υ− = 203. (b) Weak jet case, Υ− = 3.9. (c) Standard jet case, Υ− = 1.5. (d) Case Υ− = 0.44. (e) Bullet jet
case, Υ− = 0.22. Full videos are available in the online supplementary movies 4–8.

figure 6(e). The dynamics of this particular jet are described in detail in Rosselló et al.
(2022) and correspond to the case where the laser cavity is generated almost directly on
the surface of the drop (i.e. 0.01 � Υ− � 0.3). Here, atmospheric gas is trapped after the
closure of a conical ventilated splash and later dragged into the liquid by the liquid jet that
grows from a stagnation point located on the top of a ‘water bell’ (at the bottom of the
frame at t = 36 µs). As a result, an elongated gas cavity is shaped and driven across the
drop.

The combined effects of the curved shape of the drop in addition to the diffuse
illumination lead to images of the interior of the gas cavity with remarkable clarity.
A few examples of this are presented in figure 7.

Panels (a,b) of figure 7 reveal the temporal evolution of the liquid indentation into the
bubble, as well as the toroidal shape acquired by the gas upon its collapse. Moreover,
figure 7(b) demonstrates the accuracy of the numerical simulations to reproduce the jetting
process. In panel (c) we see how a perforation of the thin liquid sheet between the cavity
and the atmosphere resulted in a spray of aerosol droplets ejected into the cavity during
jetting. This event can be explained by the lower pressure inside the bubble compared with
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(b)

(a)

(c)

Figure 7. Detailed view of the interior of a jetting bubble. The time between frames is 2 µs. (a) Jet formation
for Υ− = 1.6. The frame width is 1.46 mm. (b) Comparison between experimental data and a simulation
performed for Υ− = 2.9. The frame width is 1.38 mm. (c) Spray produced by air entering the gas cavity (in
which the pressure is lower than the atmospheric pressure) while the jet is formed. The frame width is 2.11 mm.

the atmospheric pressure and the disruption of the liquid on the upper side of the drop
caused by the RTI. The spray front spreads into the cavity and collides with the lower wall
of the bubble, disrupting the smoothness of the interface.

The bullet jet case of figure 6(e) distinguishes itself from the other cases by its unique
features, i.e. its enhanced shape stability during its formation from an open splash,
but also by the near robustness against the surrounding fluid and geometry. Bullet jets
have been observed in shallow waters (Rosselló & Ohl 2022) and near flexible or rigid
materials, without these conditions affecting their dynamics. Furthermore, in a previous
work (Rosselló et al. 2022), we demonstrated that the bullet jet is scalable and independent
of the orientation of the surface with respect to gravity. In figure 8 we expand the list of
remarkable robustness by showing it to exist of various sizes even within a highly curved
and finite volume. Here, the bullet jet size was characterised by the ratio between the radius
of the water bell at its base (Rwb) measured right after its formation and the initial drop
radius Rd (i.e. Rwb/Rd).

The images depict that the penetration depth of both the gas and the liquid conforming
to the bullet jet is proportional to the initial splash size. For instance, in figure 8(a) the jet
loses its momentum and stops around the middle of the drop, but it crosses the drop for the
larger splashes shown in panels (c–e). Remarkably, in the latter case the bullet jet occupies
almost the entire drop while still preserving its characteristic features.

The physics behind the evolution of the bubble jetting cases classified in figure 6 can be
further explained with the aid of numerical simulations, as presented in figure 9.

Figure 9(a) depicts a purely radial oscillation of both the gas and liquid, found when the
bubble is placed in the centre of the drop (i.e. Υ− → ∞). The simulations shown in panels
(b,c) of figure 9 were computed using the same Υ− measured from the experimental cases
displayed in the corresponding panels of figure 6. In general, the agreement between the
simulations and the experiments is excellent, even though small variations in the size of
the experimental and simulated bubbles show some differences in the specific timing of
their oscillation cycle. The resemblance can be seen in some of the morphological features
that characterise the dynamics of each type of jet at different stages, like the width of the
indentation formed during bubble piercing, the shape of the cavity after the first rebound,
and the way in which the second collapse evolves in each case. More details on noteworthy
features are provided below in figure 10.
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Bubble nucleation and jetting inside a millimetric droplet
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Figure 8. Scalability of the bullet jet in a millimetric droplet. The measurements, organised in columns, show
bullet jets formed from different splash sizes. In each column, the upper frame shows the time at which the
water bell closes. In the lower frame, composed of two vertical stripes, the time at which the bullet jet is fully
developed is shown on the left, and a frame illustrating the position of the jet tip at an advanced time indicated
in µs is shown on the right. Results are shown for (a) Rwb/Rd = 0.16, (b) Rwb/Rd = 0.27, (c) Rwb/Rd = 0.37,
(d) Rwb/Rd = 0.56, (e) Rwb/Rd = 0.74.
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Figure 9. Numerical simulations of the temporal evolution of jets produced inside the drop for different Υ− .
The simulated drop has a height of 2.88 mm and a width of 2.8 mm as measured in the experiments. The plot
shows the gas and liquid phases along with the velocity field. The time between frames is 26 µs for (a–c) and
30 µs for (d) starting at t = 1 µs in the first frame. (a) Spherical oscillation case, Υ− → ∞. (b) Weak jet case,
Υ− = 3.896. (c) Standard jet case, Υ− = 1.518. (d) Bullet jet case, Υ− = 0.028.
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Ring formation

Bubble necking

(b)

(a)

(d )

(c)

Figure 10. Detailed collapse dynamics of the gas cavity immediately after the jetting of the laser bubble.
Experimental (a) and simulated (b) view of the ‘weak’ jet obtained when Υ− = 3.9. The images were taken
at 200 kfps. (c) Ring formation after the necking of the cavity typically observed in cases with Υ− ≈ 1.9. The
images were taken at 500 kfps. (d) Direct comparison between experiment and simulation, revealing the precise
flow pattern leading to the ring detachment (indicated by the white arrows). The time between frames is 2.5 µs.
The colour scale in the simulations corresponds to that in figure 9.

In panels (a,c) of figure 9 the bubble is initiated with a much larger pressure than
the atmospheric gas outside the drop. This pressure difference, which is constant in
all directions, accelerates the liquid between the two gas domains. Since this force is
proportional to the pressure gradient, the liquid gets accelerated more strongly between the
bubble and the nearest part of the drop surface (where the liquid is thinner), causing the
drop to bulge out in that location. Within the first few microseconds of the explosive bubble
expansion, the pressure within the bubble decreases rapidly and reaches values much
smaller than the atmospheric pressure. Thus, the pressure gradient changes its direction
and now accelerates the liquid towards the bubble, which first slows down the cavity’s
expansion and afterward causes its collapse. In the same way as in the expansion phase,
the thinnest part of the liquid experiences the strongest acceleration, which ultimately leads
to a liquid jet indenting the bubble from the nearest part of the drop surface.

The case presented in figure 9(d) differs greatly from the previous cases by the fact that
now the bubble is close enough to the drop surface to generate an open cavity, allowing
the ejection of the initially pressurised gas inside it into the atmosphere, and later the flow
of gas into the expanded cavity before the splash closes again. Once the cavity is closed,
it remains with an approximate atmospheric pressure, which prevents it from undergoing
a strong collapse as it occurs in the previously discussed cases (a–c). The radial sealing
of the splash forms an axial jet directed toward the centre of the drop, which pierces the
bubble and drags its content through the drop. More details on the mechanisms behind the
bullet jet formation can be found in Rosselló et al. (2022).
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Bubble nucleation and jetting inside a millimetric droplet

As a consequence of the conservation of momentum, the collapse of the gas cavity gives
origin to a stagnation point, from which the liquid flows both inside the pierced bubble and
away from it in opposite directions. In particular, the stagnation point is not stationary but
moves along the axis of symmetry, following a different trajectory in each case. In the
case of figure 9(b) the stagnation point shifts towards the surface as the bubble moves
deeper into the drop. For the case in figure 9(c), the stagnation point does not reach the
surface and its movement is less pronounced. In the bullet jet case, shown in figure 9(d),
the stagnation point forms on the apex of the water bell (i.e. the splash after its closure). It
then trails the bell’s collapse and remains very close to the drop surface afterward, moving
slightly towards the drop centre while the bullet jet moves across the drop.

4.2.1. Cavity dynamics on its second collapse
After the jetting, the subsequent re-expansions and collapses of the cavities are
characterised by the bubble’s and the drop’s distorted shapes and even more complicated
flow fields. A good example of this can be found in the second collapse of the bubbles
analysed in figure 10, which shows a significant dependence on Υ− .

Figure 10 compares the shape taken by the bubble for two cases with Υ− = 3.9 (panels
a,b) and Υ− = 1.9 (panels c,d). Interestingly, the flattened side of the ‘teardrop’ shape
acquired by the cavity after the re-expansion develops a curved indentation during its
second collapse. The numerical simulations make clear that such an indentation is created
by the flow produced by an uneven pressure gradient on the cavity surface. The shape of
this ring-shaped indentation visibly changes with Υ− . For example, the case presented in
figure 10(c) displays an annular bubble necking with the detachment of two gaseous rings
as the cavity shrinks. These concentric rings have two different diameters and are arranged
in two distinct planes, as highlighted in figure 10(d).

4.2.2. Influence of Rd on the jet dynamics: behavioural similarity vs structural similarity
The bubble dynamics observed in the falling drop case have many similarities with what is
typically seen in bubbles collapsing near a planar rigid surface (Lauterborn et al. 2018) or
a planar free surface (Supponen et al. 2016; Rosselló et al. 2022). Moreover, the analysis
of the values of the stand-off parameter D∗ reveals that each type of jet (qualitatively
classified according to figure 7 in Rosselló et al. (2022)) occurs in a comparable range of
values of D∗. One example of the latter can be found in figure 11.

The parallel found between cases with dissimilar curvature of the liquid surface suggests
that, contrarily to the reported observations for bubbles collapsing near concave solid
surfaces (Aganin et al. 2022), Rd does not have a dominant role in the particular jetting
regime adopted by the cavities when the bubbles are located near the free boundary. This
statement was confirmed by the numerical simulations depicted in figure 12. There, the
dynamics of identical bubbles expanding and collapsing near the surface of the drop, or the
flat free surface of an ideally infinite pool, are compared for three stand-off distances D∗.

The simulations show that the correspondence between the flat and curved surface
cases is gradually lost when the bubble is placed further away from the drop surface.
The deviation between the two cases is already visible in figures 11(c) and 11(d). There,
the jet dynamics is matched only when D∗ takes a higher value for the flat free surface
measurement. The simulations indicate that this discrepancy starts at around D∗ = 1.2
(shown in figure 12c) and keeps growing for higher values. We can portray these changes
as being enclosed between two extreme scenarios: (1) the bubble is produced right on
the liquid surface, generating a bullet jet, which is not affected by the characteristics of
the boundaries and, thus, is independent of Rd. As the cavity is placed closer to the drop
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(a)
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Figure 11. Comparison of cases with similar bubble dynamics and a different curvature of the free surface
Rd . Panels (a,c) show cases where the cavity is produced near a flat free surface. The cases in (b,d) show
similar bubbles generated inside a drop with a mean radius of 1.42 mm. Here, the numbers represent the time
normalised with the time of collapse of the cavities from each case. Results are shown for (a) D∗ = 0.85,
(b) D∗ = 0.88, (c) D∗ = 1.6, (d) D∗ = 1.37.

Flat free surface

1 mm

0.46

0.50 0.94 1.04 1.28 1.50 1.67 1.89
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(b)
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Figure 12. Jetting dynamics of identical bubbles produced near a flat surface or the curved surface of a droplet
(Rd = 1.42 µm). The non-dimensional time, indicated by the numbers, was normalised with the collapse time
of each bubble. Results are shown for (a) D∗ = 0.61, (b) D∗ = 1.02, (c) D∗ = 1.23.
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centre, the surface curvature becomes increasingly relevant to the jet dynamics. This is
consistent with our definition of Υ− , since D∗ and Υ− take similar values for lower values
of d, and grow apart as the cavity is placed deeper in the drop. (2) When the bubble is
almost at the drop centre (i.e. Υ− −→ ∞), there is no jetting for the curved case. However,
in the flat surface case the jetting still occurs for comparable values of D∗ (e.g. D∗ ∼ 2),
demonstrating how the curvature weighting factor χ becomes increasingly relevant.

It is important to stress that if the bubble is placed near the drop boundary, for
instance, at D∗ � 1.4, the discrepancies found in the jetting dynamics of a bubble
in the ‘semi-infinite’ liquid pool when compared with the droplet case are mainly
provoked by the surface curvature, and not by the dissimilar extension of the liquid
below the gas cavity. This particular point is corroborated in the Appendix by means
of complementary measurements and numerical simulations of jetting bubbles in the
proximity of a hemispherical tip of a cylindrical water column.

So far, we have classified and compared the characteristics of the jetting regimes
produced at different D∗ qualitatively, i.e. based on their general morphological features as
presented in previous works (Supponen et al. 2016; Rosselló et al. 2022). In the following,
we will refer to this as behavioural similarity. An alternative and more precise way of
analysing the spatial correlation between the dynamics of two different jets can be achieved
by contrasting the pixel distribution on the video frames to find common features between
images. This quantitative comparison method is usually referred as structural similarity
analysis and can be implemented using different image scanning algorithms (Sampat et al.
2009). Here, we use the complex wavelet structural similarity index (CW-SSIM) (Zhou
& Simoncelli 2005) to evaluate the correlation between the temporal evolution of two
different jetting cavities. The CW-SSIM approach has some advantages over direct pixel
to pixel comparison methods (e.g. intensity based) or the simpler versions of the structural
similarity index (e.g. SSIM). For instance, it accounts (up to some point) for both intensity
variations and non-structural geometric distortions like object translation, scaling and
rotation (Sampat et al. 2009). The CW-SSIM index can take values ranging from zero
(if there is no correlation at all) to one (when the images are identical).

In figure 13 we contrast the dynamics of two bubbles initially located at a distance
D∗ from a flat or a curved surface as already done in figure 12, but this time using
the CW-SSIM index to evaluate their similarity. The non-dimensional time (t∗) was
computed using the collapse time of the bubbles for each case. Figure 13 presents plots
of the temporal evolution of the similarity index next to a series of selected frames at
t∗ = 0.3, 0.6, 0.9, 1.05, 1.2, 1.35, 1.5, 1.7 and 1.9, which illustrate and compare the shape
of the cavities in the flat boundary case (grey background on the left side) and the drop
case.

The results expose the differences between the behavioural similarity and the structural
similarity approaches, i.e. two bubbles can have the same jetting regime but still have
dissimilar structures. This is observed in bubbles at lower stand-off distances like the
case with D∗ = 0.47 in figure 13. The discrepancy can be explained by the higher
degree of fragmentation of the bubble after jetting, acquiring an elongated shape in
regimes with a ventilated cavity, or where the liquid layer between the gas in the bubble
and the atmosphere is affected by the RTI. In particular, the cases producing an open
cavity (i.e. D∗ � 0.35) were not suitable for the structural similarity analysis. Here, the
fluctuations of the splashing dynamics observed in the numerical simulations and the
impossibility to define a collapse time due to the non-collapsing nature of those cavities
(see figure 6d,e) prevented us performing a reliable assessment of the CW-SSIM index.
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Figure 13. Structural similarity of the dynamics of jetting bubbles produced near a flat surface or the drop
boundary at an identical stand-off distance. Here, the temporal evolution of the CW-SSIM index is presented
for three examples corresponding to cases with D∗ = 0.47, D∗ = 0.88 and D∗ = 1.85. The insets show a
comparison of the images of both simulated bubbles. The frames are centred at specific non-dimensional times
(blue vertical lines), displaying a half-frame corresponding to the flat surface case (grey background on the
left) and a half-frame taken from the drop case with the same D∗.

As the laser bubble is produced deeper into the liquid, both structural and behavioural
approaches lead to the same conclusions (previously discussed in figure 12). The similarity
found in the development of bubbles near surfaces with or without curvature is excellent
for some stand-off distances, e.g. around the middle point located between the liquid
surface and the drop centre. One example of this is shown in the central panel of figure 13
corresponding to D∗ = 0.88. As we already mentioned, near the centre of the drop
(i.e. D∗ � 2) the difference in the anisotropy in both cases produces dissimilar bubble
oscillations (see the lower panel of figure 13).

A more general overview of those three scenarios is presented in figure 14, where the
mean value of the CW-SSIM index is plotted along with D∗ and Υ− . Considering that all
the bubbles have a very similar initial expansion phase, only the times corresponding to the
first collapse and the complete second oscillation cycle were computed in the mean value
of CW-SSIM. After the second collapse, the bubble is heavily fragmented and there is no
longer a recognisable structure. Figure 14 confirms that the structural similarity is rather
poor for bubbles near the surface (i.e. 0 � D∗ � 0.7). Around D∗ = 0.9, the similarity
index reaches a peak where the match is excellent. A good agreement is sustained over
a range of D∗ values between approximately 0.7 and 1.7, meaning that even when the
features of the cavities are not identical they have a similar distribution of the gas phase
(and the same jetting regime). For D∗ � 1.7, the similarity index suffers an abrupt fall and
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Figure 14. Structural similarity between cases with bubbles seeded at different stand-off distances from a flat
free surface or inside the drop. The curve shows the mean value of the ‘total’ CW-SSIM index (green) computed
as the average of the mean indices observes in the first bubble collapse (red) and in its second oscillation cycle
(blue). The sudden increase in Υ− (black markers) as we seed the bubble close to the drop centre is linked to a
decay in the similarity between the cavities.

the value of Υ− diverges as the bubble seeding position gets closer to the drop centre. This
is consistent with the definition of Υ− , which relates its magnitude to the influence of the
drop curvature in the bubble dynamics.

The experimental results displayed in figure 11 suggest that there is a correspondence
between the dynamics of a bubble seeded with a given D∗

flat in the flat surface case and
the temporal evolution of a bubble with D∗

drop inside the droplet. We explore this apparent
‘equivalence’ between values of D∗

flat and D∗
drop in figures 15 and 16. Since the result of the

CW-SSIM analysis is affected by a significant translation of the objects being compared,
the initial positions of the bubbles were matched by performing a vertical shift on the
drop case simulations. Figure 15 shows evidence of the mentioned correspondence by
presenting two examples, one with D∗

flat = 1.02 and D∗
drop = 0.95, and a second one where

the bubble is closer to the drop centre, i.e. D∗
flat = 2.40 and D∗

drop = 1.68.
These two examples in figure 15 prove that there are pairs of D∗ values where the

similarity between the dynamics of bubbles produced near two surfaces with uneven
curvature is remarkable, at least during the whole period comprised in the first two
oscillation cycles. This correlation analysis was performed for an extended range of values
of D∗ to find that, for each value of D∗

drop, there is one value of D∗
flat with similar dynamics,

i.e. which maximise the CW-SSIM index when a simulation made with that particular
D∗

flat is compared against simulations with every possible value of D∗
drop. As shown in

figure 16, the dependence of the equivalent stand-off distance starts as a linear function in
the proximity of the surface and grows rapidly as the bubble is placed deeper in the liquid.
Interestingly, the linear fit performed on smaller values of D∗, which meet the conditions
for the CW-SSIM analysis, projects a ratio between equivalent D∗

drop and D∗
flat near 1

when the seeding position approaches the surface. Now, bearing in mind the definition
of Υ− = χD∗, the previous observation is consistent with the limiting case at the surface
where χ → 1, meaning that the curvature does not play a significant role for the bubble
jetting dynamics. At the other extreme, i.e. as d → Rd, Υ− diverges, indicating a strong
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Figure 15. Similarity study of the jetting dynamics of bubbles near a flat surface (grey background) or a
drop (white background) with a different D∗. The initial position of the bubbles was matched by performing
a vertical shift on the drop case simulations. For each value of D∗

flat, there is one value of D∗
drop with similar

dynamics, i.e. producing the maximum CW-SSIM index when a simulation of a given D∗
flat is compared against

simulations with every possible value of D∗
drop. The numbers indicate non-dimensional time t∗. (a) For D∗

flat =
1.02, the maximum average CW-SSIM index was achieved with D∗

drop = 0.95. (b) The best match for D∗
flat =

2.40 was D∗
drop = 1.68. (c) Temporal evolution of the CW-SSIM index for the cases in (a,b).

influence of the drop geometry on the bubble evolution. At this point, it is important
to stress that in this context ‘equivalence’ does not mean that the dynamics is identical,
but their structure is ‘as similar as it could be’ for the matching of D∗

flat and D∗
drop. The

same clarification applies to bubbles with the same Υ− , which is a multivalued function as
explained in § 2.1.

4.3. Radial bubble oscillations
In the previous section we studied features found in the dynamics of an axisymmetric
jetting bubble. Let us now have a closer look at the only case with spherical symmetry,
i.e. where the laser cavity is placed in the centre of the drop ( Υ− −→ ∞). In this scenario the
bubble undergoes several spherical oscillations with a decaying amplitude, as commonly
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Figure 16. Best match between the dynamics of bubbles in the flat boundary and the drop cases for different
stand-off distances, i.e. D∗

flat and D∗
drop. For each value of D∗

flat, the best match was obtained by finding the
corresponding value of D∗

drop that maximises the mean CW-SSIM index. As indicated by the parameters of
the linear fit, the best match is found at similar values of D∗ at the lower depths, but they become increasingly
different as d → Rd , where the bubble is seeded at the drop centre (indicated with a vertical dotted line). The
dashed grey line was added as a visual reference. The vertical error bars represent the deviation of CW-SSIM
from the perfect similarity case (i.e. CW-SSIM = 1).

observed in laser bubbles created in unbounded liquids (Liang et al. 2022). Figure 17(a)
presents a comparison between an experiment and simulated data computed using the VoF
solver, finding an excellent agreement. As for the previously simulated results, here we
applied the correction script that accounts for the distortion induced by the drop curvature.

Figure 17(b) depicts the temporal evolution of the bubble radius R(t) for the examples in
panel (a). In addition, it presents R(t) calculated for a case of a drop of an ideally infinite
size, which corresponds to the case of an unbounded liquid domain. The initial conditions
in the VoF model were chosen to match the experimental R∗

max, and then the other cases
were simulated maintaining the same parameters while changing the drop size. Notably,
the bubble computed with CFD reaches a slightly larger maximum radius as the liquid
layer thickness is increased to infinity (i.e. an unbounded bubble case) and, thus, also has
a larger collapse time. This might be due to the effect produced by the consecutive (and
alternating) tension and pressure waves interacting with the bubble during its expansion
(see figure 17a).

To shed some light on this matter, we use a spherical bubble model based on a modified
Rayleigh–Plesset model (RP) (Obreschkow et al. 2006; Zeng et al. 2018) that accounts for
the finite droplet size, viscosity of the liquid and interfacial tension. It is worth noting that
in these previous works the millimetre-sized droplet was sitting on the top of a blunt needle
or deformed into an ellipsoidal shape by a strong levitating acoustic field. This leads to
non-spherical boundary conditions that affect the bubble dynamics. In the present analysis
the droplet is nearly perfectly spherical, thus matching with the purely spherical RP model
within a droplet. The results, presented in figure 17(c), show that the bubble grows up to
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Figure 17. Direct comparison between the experiment and a numerical simulation for a case where the laser
bubble is placed at the centre of the drop. (a) The median diameter of the drop is 1.42 mm. The simulated
images showing the velocity field have been remapped to account for the distortion provoked by the curvature
of the drop. The numbers indicate time in µs and the colour scale is given in m s−1. (b) Radial dynamics
of the experimental and simulated bubbles. The experimental radius was obtained by fitting a circle on the
bubble. The radius in the simulations was estimated using the gas volume (i.e. the spherical equivalent radius).
The results were compared with the unbounded case to find that the bubbles inside the drop have a shorter
expansion/collapse cycle. (c) Bubble dynamics is obtained with a modified Rayleigh–Plesset model for different
drop sizes. The radii of the larger drops remain almost unaltered during the bubble oscillation.

almost the same size independently of the drop size. For the same initial conditions set
in the VoF model (pg(t = 0) = 1.69 GPa and Rb(t = 0) = 17.3 µm), the work is almost
completely done against the surrounding pressure (p∞ = 1 bar) while surface energy and
viscous dissipation is negligible. Yet, for smaller droplet volumes, the inertia is reduced
and, therefore, the expansion time to maximum bubble radius and the almost symmetrical
collapse reduce, too.

For the particular initial conditions, both models agree on the elongation of the
oscillation cycle; however, they predict dissimilar results on the maximum radius reached
by the bubbles. The simple RP is used to give a comparison to the VoF simulations and to
evaluate the impact of the shock wave (and its reflections) on the bubble dynamics. From
figure 17(c) we can infer that the maximum expansion of the bubble is nearly independent
of the droplet size, while in the VoF simulations it is not. The VoF model accounts for the
reflected wave, thus, the discrepancy suggests that upon the acoustic soft reflection of the
shock wave momentum is imparted on the droplet interface. The importance of reflected
waves on cavitation nucleation in confined liquid samples was recently also found for an
acoustic hard reflection where the bubble expansion was lowered (Bao et al. 2023). A more
comprehensive formulation for the bubble dynamics than the RP model that incorporates
both the bubble–shock wave interaction and compressibility effects can be found in Zhang
et al. (2023).
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Figure 18. Drop surface destabilisation mechanisms. The mean drop radius is 1.42 mm and the numbers
represent time in µs. (a) As the main bubble expands, the secondary, acoustic cavitation bubbles produce small
dimples on the gas cavity surface (e.g. at 50 µs). These may promote the formation of a series of ripples during
the bubble collapse (at 130 µs). As the bubble re-expands, the RTI causes the growth of liquid ‘spikes’ that later
lead to the detachment of small drops due to the Rayleigh–Plateau instability, as indicated with a green arrow in
(b). There, the frame width is 570 µm. At the same time, the second collapse of the bubble enhances the surface
irregularities and pits that appear in the areas between the ripples. The shock wave emitted during the second
collapse gives origin to fast liquid jets ejected from the centre of the pits, as highlighted with a blue arrow
in (c). The frame width in this sequence is 490 µm. The full video is available in the online supplementary
movie 9.

4.4. Drop surface instabilities
In the previous sections the formation of radial liquid jets growing from the drop surface in
the shape of ‘spikes’ was mentioned. As explained above, this phenomenon stems from an
initial perturbation of the liquid interface and the posterior ejection of liquid produced
by the RTI. This kind of instability occurs when the rapid expansion or the collapse
of the bubble wall accelerates a thin liquid layer trapped between the cavity and the
atmospheric gas, producing a pattern of ripples on the drop surface that grow further in the
consecutive bubble oscillations. A clear example of the events leading to the onset of this
kind of instability in this particular experiment is shown in figure 18(a). There, the acoustic
emissions from the laser dielectric breakdown nucleate a cloud of bubbles within the drop.
As the cavity expands, all these smaller bubbles are incorporated (by coalescence) into the
main bubble, producing a series of dimples on the bubble surface, visible at t = 50 µs of
figure 18(a). These dimples may contribute to the later destabilisation of the drop surface,
which is highly dependent on the ratio R∗

max/Rd. Additionally, R∗
max/Rd determines the

liquid layer thickness and its acceleration by the bubble/drop dynamics. The ripples in
the drop surface become noticeable just after the first bubble collapse (i.e. t = 130 µs)
and grow significantly during the bubble re-expansion, as shown at t = 190 µs. However,
the most dramatic events take place after the second bubble collapse (i.e. at t = 230 µs).
There, the ripples grow into liquid ‘spikes’ that lead to the detachment of small droplets
due to the action of the Rayleigh–Plateau instability, as shown in figure 18(b). At the
same time, the second bubble collapse releases a strong shock wave in the radial direction.
This shock wave interacts with the array of meniscus-shaped pits on the liquid surface to
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produce fast radial jets (see the frame at t = 420 µs). The later sequence is clearly captured
in the frames of figure 18(c). It is important to note that this complex phenomenon not only
depends on the shock wave strength but also requires certain conditions to be met (Tagawa
et al. 2012; Peters et al. 2013), like a minimum depth and curvature of the pits, which may
explain the absence of ‘spikes’ during the first bubble collapse.

To further analyse the onset of these instabilities, we varied the energy of the laser
pulse, hence producing bubbles with various sizes and, thus, with distinct ratios R∗

max/Rd.
The results are presented in figure 19. Even when the extreme image distortion produced
near the drop interface prevent us obtaining an accurate value of the bubble radius, these
measurements make evident that the amplitude of the ripples increases with increasing
R∗

max and with each consecutive bubble oscillation.
In figure 19(a) the expansion of the bubble is not sufficient to visibly disturb the drop’s

spherical surface. In the case shown in figure 19(b) the bubble’s first collapse does not
break up the drop surface, however, a mild wave pattern is observed on the surface after
the bubble re-expansion (at t = 420 µs). In spite of the presence of these low amplitude
ripples, no radial jets are ejected from the drop upon the second bubble collapse. When
the ratio R∗

max/Rd is further increased, as shown in figure 19(c), we find very similar
dynamics of the bubble/drop system, but now the valleys between the ripples (and the
acoustic pressure wave) are deep enough to trigger the radial jetting. This confirms the
existence of threshold conditions for the ‘spikes’ to be formed. In the remaining cases
presented in panels (d– f ) of figure 19, the general dynamics of the bubble/drop system
are very similar to the previous cases, although as the laser pulse energy is increased the
instabilities become perceivable at an earlier time. For example, in figure 19( f ) liquid
‘spikes’ are already formed after the first bubble collapse (Zeng et al. 2018).

Figure 20 shows VoF simulations of the RTI found on the drop surface. From
figure 20(a) it is clear that the instability is grown by the volumetric oscillation of the
bubble, while the shock waves emitted from the bubble upon its creation (and later at its
collapse) accelerates the ripples on the drop surface and form the thin ‘spikes’. This kind
of simulation was previously performed by Zeng et al. (2018) for an ellipsoidal droplet
with the RTI manifesting only in a reduced region of the surface located on the drop poles.
In the present work we study a nearly spherically symmetric case where the spikes have
no preferred origin, i.e. they escape the droplet isotropically.

The instability was quantified by defining the spike height as half of the difference
between the maximum and minimum radial deviations from the initial drop shape, which
was then normalised with the average drop radius, Rd = 1420 µm. In figure 20(b) it is
evident that the instability is formed immediately after bubble creation, as it grows during
the bubble’s initial expansion. It starts shrinking at R0 ≤ 40 µm during its first collapse
and grows again upon its rebound.

For R0 = 25.7 µm, the normalised spike height stays below 0.2 %, meaning that the
instability does not further develop in the first bubble oscillation cycles. As the initial
radius R0 is increased in steps of 5 µm, the spike height approximately doubles. Thus, the
spike height is exponentially related to the bubble size, i.e. spike height/Rd ∼ eR0×const..
Considering that the instability increases continuously with increasing laser energy, a
threshold for the onset of the instability can only be chosen arbitrarily. Here, we choose
an ad hoc threshold value as the normalised spike height of 1 % of Rd, around which the
spike height does not shrink during most of the bubble’s first collapse.

Similarly to that observed in the experiments, the simulations of figure 20(b) show how
the spikes are ejected earlier in time as the maximum radius reached by the bubble is
increased. For R0 = 35 µm, the spikes nearly cross the threshold (indicated in the plot
with a dashed line) in the second oscillation cycle, while for R0 = 40 µm, the threshold is
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Figure 19. Onset of the drop surface instabilities for bubbles produced with different laser pulse energies.
The mean drop radius is 1.42 mm and the numbers represent time in µs. The energy of the laser pulse is
(a) L = 1.9 mJ, (b) L = 3.1 mJ and (c) L = 3.9 mJ. For this energy, the RTI affects the drop surface enough
to produce liquid ejection after the second bubble collapse. For the remaining panels, the energy of the laser
pulse is (d) L = 4.6 mJ, (e) L = 5.2 mJ and ( f ) L = 6.4 mJ. Note that (d– f ) are shown in wider frames than
(a–c) to show the larger ‘spikes’. A full video of ( f ) is available in the online supplementary movie 10.

crossed shortly after the first collapse, and for R0 ≥ 45 µm it is already exceeded during
the first oscillation cycle. Figure 20(a) compares the instability for a case below (R0 =
35 µm) and above (R0 = 45 µm) the established threshold, showing a strong increase in
the spike size as well as the ejection of droplets for a larger bubble. This droplet separation
from the spikes, highlighted in the bottom row of figure 20(c), was previously discussed
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Figure 20. Numerical simulations of the instabilities development at the surface of the drop. (a) Selected
frames for a case with R0 = 35 µm (left) and R0 = 45 µm (right). The non-dimensional time t∗ is shown on
the top left of each frame. (b) Temporal evolution of the RTI spike height for various R0. An ad hoc threshold
for the instability onset is indicated by a dashed line at 1 % of Rd . (c) Selected frames of a zoomed view of
the drop surface for R0 = 45 µm (frame window indicated by a red square in b), showing the RTI and the
Rayleigh–Plateau instability.

in figure 18(b) as an example of the effect of the Rayleigh–Plateau instability. An upper
limit of the spike height is reached at ≈ 1 Rd for R0 = 65 µm, where the outer spikes reach
about twice the drop size, while the inner spikes breach the liquid layer that separates the
bubble from the outside air. Because of this, the bubble interior is partially filled with
atmospheric gas and the cavity ceases to oscillate. At this point, the drop can no longer
be defined as such, as shown in the experiments of figure 19( f ) where the liquid mass
becomes an intricate collection of spikes and a significant portion of it is ejected away as
smaller droplets.

5. Conclusion

In this paper we presented some of the complex fluid dynamics occurring once a vapour
bubble expands within a water droplet. Specifically, we analysed the appearance of
acoustic secondary cavitation, and the formation of liquid jets in the proximity of highly
curved free surfaces and, finally, we provided detailed experimental and simulated images
of the onset and development of shape instabilities on the surface of the drop.

The first part of the research highlights that acoustic waves emitted from the
micro-explosion nucleate complex secondary cavitation clouds. Furthermore, the study
corroborates the existing relation between the evolution of the negative pressure profile
and the shape of the bubble clusters inside the drop. A cavitation threshold pressure
of around −4.5 MPa was estimated by performing a direct comparison between the
experiments and the simulations. The numerical model does not account for the bubble
nucleation induced by the rarefaction waves. The implementation of this experimental
technique to other liquids, particularly in cases where large samples are not available,
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might contribute to achieving a deeper understanding of the nucleation of bubbles by
sound waves. The present experimental set-up may be modified to create a bubble within a
superheated droplet to reveal in a well-defined system the coupling of fluid dynamics with
thermodynamics, and also study how the liquid temperature affects the later fragmentation
dynamics (Bar-Kohany & Levy 2016).

The secondary bubbles cluster and several types of jets, both caused by the generation
of laser bubbles at different positions inside the droplet, were classified using a stand-off
parameter Υ− . The use of a single quantity to characterise the system simplifies the direct
comparison between cases. The optical lens effect linked to the spherical shape of the
drops allowed us to obtain images of the bubble jet’s interior with a remarkable level of
detail.

The numerical simulations were crucial to explain the complex flow fields generating
these jets, as well as to explain the shape acquired by the gas cavities during their second
collapse phase, including many interesting features like the annular bubble necking and
the detachment of multiple vapour rings.

The effect of the liquid surface curvature on the bubble jetting has been analysed, by
comparing the evolution of a bubble inside a droplet and in a semi-infinite pool, using
two complementary points of view. First, a qualitative assessment (here called behavioural
similarity) indicates that the jetting regime differs rather little when the cavity is seeded
nearby the free boundary. In this part of the study we have shown that, for the droplet case,
the non-dimensional distance D∗ is the most determining quantity, while the curvature
of the liquid does not have a dominant role in the evolution of the jetting cavities. This
conclusion is based on the analysis of numerical simulations where only the parameter Rd
was modified, and also by comparing the current results with those previously reported for
a flat surface.

A second type of analysis, which uses the CW-SSIM index to evaluate the structural
similarity of the cavities, was applied on the same numerical data to perform this time
a quantitative comparison of the jetting near a flat and a curved surface. Here, we found
that, for bubbles in the vicinity of the liquid surface (i.e. 0 � D∗ � 0.7), the structural
similarity is rather poor, mostly due to the higher degree of fragmentation of the gas phase
developed in regimes with a ventilated cavity, or where the liquid surface is affected by
the RTI.

Both similarity criteria indicate the existence of a seeding depth around D∗ ∼ 1 where
the bubbles in the flat and curved cases resemble each other the most. In addition, as
the bubble seeding position is set further away from the surface, the jetting regimes are
progressively dissimilar, in particular when the laser cavity is generated nearby the drop
centre. The sudden drop in the CW-SSIM index found in this situation matches an equally
abrupt rise in the value of Υ− starting around Υ− = 10.

The CW-SSIM analysis confirmed that for each stand-off distance in the flat boundary
case (i.e. D∗

flat), there is another value of D∗ (i.e. D∗
drop) where the bubble dynamics of

both cases resemble each other the most. The relation between D∗
flat and D∗

drop supports
the definition and the functionality described for Υ− . This kind of similarity study could
be used to span a more comprehensive parameter space with D∗

flat and Υ− computed with
different curvature radii and, thus, achieve a more general picture of the group of parameter
values having ‘equivalent’ jetting dynamics. Moreover, the jet matching would greatly
benefit from the implementation of more complex comparison methods or the use of
machine learning techniques that consider both the behavioural and structural criteria.

The spherical bubble oscillations observed in the experiments where the laser was
focused on the geometrical centre of the droplet were analysed using two different
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numerical models. Both models were in excellent agreement with the measured temporal
bubble radius evolution. More importantly, both models predict a reduction in the
expansion/collapse time when the drop size is decreased. Of course, this study is valid
as long as the liquid layer around the bubble is not thin enough to promote the onset of the
RTI, as it happens in cases with a low Rd/R∗

max ratio.
The radial oscillations of a central bubble were also used to study the onset

of shape instabilities at the gas–liquid interfaces, given by the Rayleigh–Taylor and
Rayleigh–Plateau instabilities. The destabilisation mechanism of each instability and its
effect on the droplet surface were illustrated by detailed high-speed images. Here, we have
demonstrated how the radial acceleration imposed by the bubble oscillation triggers the
RTI, which in turn induces a pattern of superficial ripples on the drop. Those acquire
a concave shape during the bubble collapse and give rise to liquid filaments due to the
transfer of the momentum from the bubble shock wave emissions to the curved pits formed
on the gas–liquid interface. The ejected filaments later break up by the action of the RPI
causing the detachment of smaller droplets and, thus, the atomisation of the drop.

The phase change from liquid to vapour within droplets is observed in a wide variety
of applications, such as in flash boiling atomisation (Loureiro et al. 2021), in spray-flame
synthesis (Jüngst, Smallwood & Kaiser 2022), spray cooling (Tran et al. 2012), extreme
ultraviolet light generation (Versolato 2019) and laser-induced breakdown spectroscopy
of liquids (Lazic & Jovićević 2014) to name a few. They all have in common that
through a complex non-spherical symmetric process a liquid is fragmented through a
micro-explosion within. While RTIs determine the growth of ripples on the surface of
the droplet, the non-spherical bubble dynamics that leads to jetting out of the droplet
affects the resulting size distribution of liquid particles, too. The high degree of control
achieved in the current experiments opens up the possibility of studying RTIs of more
complex interfaces, e.g. the effect of particles covering the surface, surfactants or complex
fluids. These experiments could be supported by complementary numerical simulations to
optimise the work flow in the laboratory.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.542.
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Bubble nucleation and jetting inside a millimetric droplet

IR laser

pulse

DI water

4 mm

glass tube

1 mm

(a) (b)

(c)

(d )

Figure 21. Bubble jetting on a curved surface. (a) A cylindrical tube with an external diameter of 3.6 mm, an
internal diameter of 2.7 mm and a length of 4 cm was overfilled with deionised water to produce the curved
top. Infra-red laser pulses were focused from the top at different depths and slightly away from the cylinder
axis. Results are shown for (b) Υ− = 1.9 (D∗ = 1.3), (c) Υ− = 0.7 (D∗ = 0.6), (d) Υ− = 0.4 (D∗ = 0.3). The
time between frames is 10 µs for (b,c) and 20 µs in case (d).

Appendix. Bubble jetting in a liquid pool with a curved free surface

In § 4.2 the role of the curvature of the free surface was analysed by comparing the bubble
jetting observed near a flat surface to the jetting dynamics of bubbles within the falling
droplet. There, both the experimental and numerical results indicate that the effect of the
curvature on the bubble jetting regime is almost negligible for low values of D∗, but the
specific shape acquired by the cavity during and after the jetting are no longer similar as
D∗ takes values larger than 1.2, as shown by the structural similarity analysis. However,
the curvature of the surface is not the only difference between these two cases, since in one
case the liquid is confined (i.e. the droplet) and in the other the bubble is produced on top
of an ideally ‘semi-infinite’ liquid column (which has a length of 5 cm in the experiments
and was numerically infinite in the simulations). An intermediate step between these two
experimental scenarios is given by the configuration described in figure 21(a). Here, the
bubbles are also produced close to the free surface of a liquid pool, but in this case the
top of the liquid column presents a curved surface with the shape of a dome. Panels (b–d)
of figure 21 show three examples of jetting bubbles generated at different depths d. The
bubbles were located away from the symmetry axis to make evident that the jets always
point in the direction normal to the surface. As discussed in § 4.2, we observed a similar
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0.50 0.94 1.04 1.28 1.50 1.67 1.89

0.50 0.94 0.99 1.28 1.50 1.72 1.83

(a)

(b)

Figure 22. Comparison of the bubble jetting on the curved top of a long liquid column (left half) and in a
drop of equal radius (right half). The numbers represent the time normalised with the time of collapse of the
cavities from each case. Results are shown for (a) D∗ = 1.02 and (b) D∗ = 1.23. The dynamics of the bubbles
is almost identical.

behaviour of the jetting dynamics for both curved surfaces at comparable values of the
stand-off parameter. The example shown in panel (b) of figure 21 corresponds to case (c)
of figure 12, while the jet dynamics of case (c) of figure 21 matches that of figure 12(a).

Figure 22 compares the jetting of bubbles in the configuration shown in figure 21(a).
The results present almost identical bubble dynamics even in the case with D∗ = 1.23,
meaning that the differences observed between the case with the flat surface and the drop
case are indeed caused by the effect of the surface curvature and not by the difference in
the boundary conditions below the bubble or in the liquid volume. As previously discussed
for the flat surface case, the similarity found in the cases displayed in figure 22 will be
eventually lost as the laser bubble is produced closer to the drop centre.
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