
doi:10.1017/S0269964822000225

RESEARCH ARTICLE

Varentropy of doubly truncated random variable
Akash Sharma and Chanchal Kundu

Department of Mathematical Sciences, Rajiv Gandhi Institute of Petroleum Technology, Jais 229304, UP, India. E-mails:
chanchal_kundu@yahoo.com, ckundu@rgipt.ac.in.

Keywords: Doubly truncated random variable, Interval varentropy, Parametric form of GFR, Varentropy

AMS 2020 Classifications: Primary 94A17; Secondary 62B10, 62N05

Abstract
Recently, there is a growing interest to study the variability of uncertainty measure in information theory. For the sake
of analyzing such interest, varentropy has been introduced and examined for one-sided truncated random variables.
As the interval entropy measure is instrumental in summarizing various system and its components properties
when it fails between two time points, exploring variability of such measure pronounces the extracted information.
In this article, we introduce the concept of varentropy for doubly truncated random variable. A detailed study of
theoretical results taking into account transformations, monotonicity and other conditions is proposed. A simulation
study has been carried out to investigate the behavior of varentropy in shrinking interval for simulated and real-life
data sets. Furthermore, applications related to the choice of most acceptable system and the first-passage times of
an Ornstein–Uhlenbeck jump-diffusion process are illustrated.

1. Introduction

We lack assurance in almost everywhere around us. In other words, we are unsure about happenings.
Thus, nowadays uncertainty measures have earned great deal of attention. Both reliability and survival
analysis are the specialized fields of statistics which deal with time-to-event random variables, such as
death in biological organisms and failure in mechanical systems. There are several uncertainty measures
that play a central role in understanding and describing reliability. An important measure of uncertainty
is the notion of entropy. Though the concept originated from thermodynamics but Shannon [25] was
the first who introduced entropy into information theory. The term “information theory” includes
information quantification, information handling, information repossession, information storage and
useful decision. The classical measure of uncertainty is the Shannon entropy.

Let 𝑋 be a non-negative absolutely continuous random variable denoting the time to failure or the life
of a system. Now, if 𝑓 is its probability density function along with 𝐹 and 𝐹̄ as the failure distribution
and survival function, respectively, then the Shannon measure of uncertainty is given by

𝐻 (𝑋) = 𝐸 [− log 𝑓 (𝑋)] = −
∫ ∞

0
𝑓 (𝑥) log 𝑓 (𝑥) 𝑑𝑥, (1.1)

where log denotes natural logarithm. Intuitively, it gives the expected uncertainty contained in 𝑓 (𝑥)
about the predictability of an outcome of 𝑋 . As it is unrealistic to use (1.1) whenever the system has
some used life, Ebrahimi and Pellerey [10] defined the concept of measuring uncertainty in residual
lifetimes called residual entropy

𝐻 (𝑋𝑡 ) = −
∫ +∞

𝑡

𝑓 (𝑥)
𝐹̄ (𝑡) log

𝑓 (𝑥)
𝐹̄ (𝑡) 𝑑𝑥, (1.2)
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where 𝑋𝑡 represents the residual life of a unit with age 𝑡 > 0, i.e., 𝑋𝑡 = (𝑋 − 𝑡 | 𝑋 ≥ 𝑡). Equation (1.2)
measures the expected uncertainty contained in the remaining life of a system. It has been found to be
useful in measuring wear and tear characteristics of the system, longevity and to characterize, classify
and order distributions of lifetime. The better systems are known to have longevity and there is less
uncertainty about its residual lifetime. In many pragmatic cases such as in the field of forensic science,
right truncated lifetime distributions are the center of study and thus uncertainty relies on the past. In a
similar fashion, Di Crescenzo and Longobardi [7] introduced the notion of past entropy as

𝐻 (𝑋(𝑡) ) = −
∫ 𝑡

0

𝑓 (𝑥)
𝐹 (𝑡) log

𝑓 (𝑥)
𝐹 (𝑡) 𝑑𝑥 (1.3)

which measures the uncertainty in the inactivity time 𝑋(𝑡) = (𝑡 − 𝑋 | 𝑋 < 𝑡). Given a system found to be
out of order at time 𝑡 > 0, past entropy indicates the uncertainty about the failure instant of the system
in (0, 𝑡).

Various scrutiny and investigations have been escalated in the past to evaluate the information content
of stochastic systems in the light of dynamic measures related to the residual lifetime, the past lifetime
and their suitable generalizations. However, scarce attention has been directed toward the analysis of
variance of information content. Nonetheless, the latter plays an imperative role in the assessment
of the statistical significance of entropy. The differential entropy is symbolic of the expectation of
the information content of an absolutely continuous random variable. The corresponding variance is
termed as varentropy and acts as a catalyst in various applications of information theory, such as for the
estimation of the performance of optimal black-coding schemes. Varentropy is the expectation of the
squared deviation of the information content − log 𝑓 (𝑥) from entropy. This is a measure that describes
how the information content is dispersed around the entropy. In other words, it measures how much the
entropy is meaningful to draw information. As studying the concentration of information content around
entropy is of great importance, varentropy of 𝑋 is defined as the variance of the information content of
𝑋 , that is,

𝑉 (𝑋) = Var(− log 𝑓 (𝑋)) = Var(log 𝑓 (𝑋)) = 𝐸 [(log 𝑓 (𝑋))2] − [𝐻 (𝑋)]2

=
∫ +∞

0
𝑓 (𝑥)(log 𝑓 (𝑥))2 𝑑𝑥 −

[∫ +∞

0
𝑓 (𝑥)(log 𝑓 (𝑥)) 𝑑𝑥

]2

. (1.4)

The varentropy thus measures how much variability we may expect in the information content of 𝑋 . It
is of paramount importance to judge and estimate the performance of optimal coding, to ascertain the
dispersion of sources and channel capacity in computer sciences. The recent contributions on varentropy
and the relevance of this measure has been pointed out in Bobkov and Madiman [2], Arikan [1], Fradelizi
et al. [11], Rioul [23], Di Crescenzo et al. [9] and Maadani et al. [16].

It will not be an understatement to point out that varentropy, despite its huge significance, has not
garnered much attention in literature as most of it has been engrossed in entropy. One recent step toward
this direction can be seen in Di Crescenzo and Paolillo [8] where the definition of varentropy is extended
to residual lifetimes and defining it as

𝑉 (𝑋𝑡 ) = Var(− log 𝑓𝑋𝑡 (𝑋𝑡 )) = 𝐸 [(log 𝑓𝑋𝑡 (𝑋𝑡 ))2] − [𝐻 (𝑋𝑡 )]2

=
∫ +∞

𝑡

𝑓 (𝑥)
𝐹̄ (𝑡)

[
log

𝑓 (𝑥)
𝐹̄ (𝑡)

]2

𝑑𝑥 −
[∫ +∞

𝑡

𝑓 (𝑥)
𝐹̄ (𝑡) log

𝑓 (𝑥)
𝐹̄ (𝑡) 𝑑𝑥

]2

=
1

𝐹̄ (𝑡)

∫ +∞

𝑡

𝑓 (𝑥)(log 𝑓 (𝑥))2 𝑑𝑥 − (Λ(𝑡) + 𝐻 (𝑋𝑡 ))2,
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where Λ(𝑡) = − log 𝐹̄ (𝑡). Recently, Buono and Longobardi [3] introduced and studied its notion for a
system found to be dead at time 𝑡. The varentropy of past lifetime being defined as

𝑉 (𝑋(𝑡) ) = Var(− log 𝑓𝑋(𝑡 ) (𝑋(𝑡) )) = 𝐸 [(log 𝑓𝑋(𝑡 ) (𝑋(𝑡) ))2] − [𝐻 (𝑋(𝑡) )]2

=
∫ 𝑡

0

𝑓 (𝑥)
𝐹 (𝑡)

[
log

𝑓 (𝑥)
𝐹 (𝑡)

]2

𝑑𝑥 −
[∫ 𝑡

0

𝑓 (𝑥)
𝐹 (𝑡) log

𝑓 (𝑥)
𝐹 (𝑡) 𝑑𝑥

]2

=
1

𝐹 (𝑡)
∫ 𝑡

0
𝑓 (𝑥)(log 𝑓 (𝑥))2 𝑑𝑥 − (Λ∗(𝑡) + 𝐻 (𝑋(𝑡) ))2,

where Λ∗ (𝑡) = − log 𝐹 (𝑡). For some more results on past varentropy, one may refer to Raqab et al. [22].
In the realm of survival studies, reliability theory, astronomy, forensic science, economy and other

fields, studying doubly truncated data using mathematical tools and statistical concepts is gaining
attention. Thus, to examine different uncertainty measures for doubly truncated random variable is of
interest in recent years. Doubly truncated data occurs when the event time of an individual is observed
in a particular time interval. In a life insurance scheme, an insured person has his life covered in the
benefit period, that is, time between date of filing of policy and maturity date. In forensic sciences, there
are varied instances of doubly truncated data. For example, if a body which was alive at 8 AM is found
to be dead at 4 PM, the interest of the investigation team is to ascertain the approximate actual time of
death. Thus, often availability of information about the lifetime is restricted between two time points.
By way of explanation, the event time of individuals lying between a particular time interval are only
observed. And, the information about the subjects beyond this interval is inaccessible to the analyzer.
Considering the above facts, Sunoj et al. [27] proposed Shannon’s entropy for doubly truncated random
variable. Let the random variable 𝑋𝑡1 ,𝑡2 = (𝑋 | 𝑡1 < 𝑋 < 𝑡2) represents the lifetime of a unit which fails
somewhere between 𝑡1 and 𝑡2 where

(𝑡1, 𝑡2) ∈ 𝐷 = {(𝑢, 𝑣) ∈ R2
+ : 𝐹 (𝑢) < 𝐹 (𝑣)}. (1.5)

The Shannon interval entropy is given by

𝐼𝐻 (𝑋𝑡1 ,𝑡2 ) = −
∫ 𝑡2

𝑡1

𝑓 (𝑥)
𝐹 (𝑡2) − 𝐹 (𝑡1)

log
𝑓 (𝑥)

𝐹 (𝑡2) − 𝐹 (𝑡1)
𝑑𝑥. (1.6)

Given a unit found to be dead at time 𝑡2 but survived upto time 𝑡1, it measures the uncertainty about
its failure time between 𝑡1 and 𝑡2 as complete lifetime of the unit is unknown. Precisely, (1.6) takes the
form of residual entropy (1.2) when 𝑡2 → ∞ and of past entropy (1.3) when 𝑡1 → 0. After Sunoj et al.
[27] various properties of (1.6) have been studied by Misagh and Yari [17,18], Khorashadizadeh [12]
and Moharana and Kayal [19]. Some generalizations of (1.6) may be seen in Nourbakhsh and Yari [21],
Kundu and Nanda [13], Singh and Kundu [26] and Kundu and Singh [14].

Since interval entropy plays an active role in analyzing specific characteristics of reliability compo-
nents which fall in some time interval, in order to examine its variance namely, varentropy is instrumental.
Furthermore, two doubly truncated random variables may have the same interval entropy under certain
conditions but the variation in information content might be quite different. Thus, entropy is not suffi-
cient measure to reveal the shape of spread of information. Also, when the data are doubly truncated,
we expect to achieve better estimation about the lifetime of the unit because of fixed values of 𝑡1 and 𝑡2.
This motivates to study varentropy for doubly truncated random variable which finds useful applications
in reliability and life testing.

The objective of the next section, with the notion of residual/past varentropy studied earlier, is
to initiate a new varentropy with regard to the interval defined as interval varentropy. It is the best
homogenized case of both residual and past varentropy. The results to be proven further will enhance
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the existing results developed for one-sided truncated random variable. The concept is applied to some
known distributions. The change in interval varentropy with respect to both the truncating variables
is obtained in connection with the generalized failure rate and interval entropy. We also study the
behavior of interval varentropy in terms of varied transformations. Hence, we conclude the section after
obtaining its bounds. In Section 3, Monte-Carlo simulation is executed to corroborate our intuition of
decreasing interval varentropy for shrinking interval. The same is implemented on two real data sets
with varying truncation limits which substantiates the observation of the simulation study. We present
some applications of interval varentropy in Section 4. Finally, in Section 5, we conclude the present
study.

2. Interval varentropy

Now consider the case where a system is found to be working at time 𝑡1 and on observing it again at
time 𝑡2 it is found to be dead. The doubly truncated uncertainty is evaluated by (1.6), and thus, there is a
need to study the concentration of information around it. This motivates us to define interval varentropy
for an absolutely continuous random variable 𝑋 , that is, varentropy concerning an interval (𝑡1, 𝑡2), as

𝑉 (𝑋𝑡1 ,𝑡2 ) = Var(− log 𝑓𝑋𝑡1 ,𝑡2 (𝑋𝑡1 ,𝑡2 ))
= 𝐸 [(log 𝑓𝑋𝑡1 ,𝑡2 (𝑋𝑡1 ,𝑡2))2] − [𝐼𝐻 (𝑋𝑡1 ,𝑡2 )]2

=
∫ 𝑡2

𝑡1

𝑓 (𝑥)
𝐹 (𝑡2) − 𝐹 (𝑡1)

[
log

𝑓 (𝑥)
𝐹 (𝑡2) − 𝐹 (𝑡1)

]2

𝑑𝑥

−
[∫ 𝑡2

𝑡1

𝑓 (𝑥)
𝐹 (𝑡2) − 𝐹 (𝑡1)

log
𝑓 (𝑥)

𝐹 (𝑡2) − 𝐹 (𝑡1)
𝑑𝑥

]2

.

On further expanding,

𝑉 (𝑋𝑡1 ,𝑡2 ) =
1

𝐹 (𝑡2) − 𝐹 (𝑡1)
∫ 𝑡2

𝑡1

𝑓 (𝑥)(log 𝑓 (𝑥))2 𝑑𝑥 − (− log (𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))2. (2.1)

Here, we assess our definition in the form of evaluating interval entropy and the interval varentropy for
significant distributions used in reliability and survival analysis.

Example 2.1. • Let 𝑋 be a random variable having uniform distribution over (0, 𝑏), that is,
𝑋 ∼ 𝑈 (0, 𝑏), 𝑏 > 0. Hence, for 0 < 𝑡1 < 𝑡2 < 𝑏, we have

𝐼𝐻 (𝑋𝑡1 ,𝑡2) = log (𝑡2 − 𝑡1),
𝑉 (𝑋𝑡1 ,𝑡2) = 0.

• Let 𝑋 be a random variable following exponential distribution, that is, 𝑋 ∼ Exp(𝜆), 𝜆 > 0. We have,
for 0 < 𝑡1 < 𝑡2,

𝐼𝐻 (𝑋𝑡1 ,𝑡2) = 1 + log (𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2) + 𝑛1(𝑡2) − 𝑛1 (𝑡1)
𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2

,

𝑉 (𝑋𝑡1 ,𝑡2) = 1 + 𝑛2(𝑡1) − 𝑛2(𝑡2)
𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2

−
[
𝑛1(𝑡1) − 𝑛1(𝑡2)
𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2

]2

,

where

𝑛𝑟 (𝑡) = 𝑒−𝜆𝑡 [log (𝜆𝑒−𝜆𝑡 )]𝑟 , 𝑟 = 1, 2.
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• Suppose a random variable 𝑋 follows finite range distribution having 𝐹̄ (𝑥) = (1 − 𝑎𝑥)𝑏 ,
0 < 𝑥 < 1/𝑎; 𝑎, 𝑏 > 0. We have, for 0 < 𝑡1 < 𝑡2 < 1/𝑎,

𝐼𝐻 (𝑋𝑡1 ,𝑡2) =
(
1 − 1

𝑏

)
+ log ((1 − 𝑎𝑡1)𝑏 − (1 − 𝑎𝑡2)𝑏) + 𝑔1(𝑡2) − 𝑔1(𝑡1)

(1 − 𝑎𝑡1)𝑏 − (1 − 𝑎𝑡2)𝑏
,

𝑉 (𝑋𝑡1 ,𝑡2) =
(
1 − 1

𝑏

)2

+ 𝑔2(𝑡1) − 𝑔2(𝑡2)
(1 − 𝑎𝑡1)𝑏 − (1 − 𝑎𝑡2)𝑏

−
[

𝑔1(𝑡1) − 𝑔1(𝑡2)
(1 − 𝑎𝑡1)𝑏 − (1 − 𝑎𝑡2)𝑏

]2

,

where

𝑔𝑟 (𝑡) = (1 − 𝑎𝑡)𝑏 [log (𝑎𝑏(1 − 𝑎𝑡)𝑏−1)]𝑟 , 𝑟 = 1, 2.

• Let 𝑋 be a random variable with generalized Pareto distribution (GPD). Then, the distribution
function of 𝑋 is 𝐹 (𝑥, 𝑘, 𝜎) = 1 − (1 − 𝑘𝑥/𝜎)1/𝑘 ; 𝑘 ≠ 0, 𝜎 > 0, where 𝑘 and 𝜎 are the shape and
scale parameters, respectively, with support of 𝑋 being 𝑥 > 0 if 𝑘 ≤ 0, and 0 ≤ 𝑥 ≤ 𝜎/𝑘 if 𝑘 > 0.
Then, for 𝑡1 < 𝑡2 in support set, we have

𝐼𝐻 (𝑋𝑡1 ,𝑡2 ) = (𝑘 − 1) + log

((
1 − 𝑘𝑡1

𝜎

)1/𝑘
−

(
1 − 𝑘𝑡2

𝜎

)1/𝑘 )
+ 𝑚1 (𝑡2) − 𝑚1(𝑡1)
(1 − 𝑘𝑡1/𝜎)1/𝑘 − (1 − 𝑘𝑡2/𝜎)1/𝑘 ,

𝑉 (𝑋𝑡1 ,𝑡2 ) = (𝑘 − 1)2 + 𝑚2(𝑡1) −𝑚2(𝑡2)
(1− 𝑘𝑡1/𝜎)1/𝑘 − (1− 𝑘𝑡2/𝜎)1/𝑘 + −

[
𝑚1(𝑡1) −𝑚1(𝑡2)

(1− 𝑘𝑡1/𝜎)1/𝑘 − (1− 𝑘𝑡2/𝜎)1/𝑘

]2

,

where

𝑚𝑟 (𝑡) =
(
1 − 𝑘𝑡

𝜎

)1/𝑘 [
log

(
1
𝜎

(
1 − 𝑘𝑡

𝜎

)1/𝑘−1
)]𝑟

, 𝑟 = 1, 2.

• For a Pareto-I distribution, 𝐹̄ (𝑥) = (𝑎/𝑥)𝑏; 0 < 𝑎 < 𝑥, 𝑏 > 0. We have, for 𝑎 < 𝑡1 < 𝑡2,

𝐼𝐻 (𝑋𝑡1 ,𝑡2) =
(
1 + 1

𝑏

)
+ log

((
𝑎

𝑡1

)𝑏
−

(
𝑎

𝑡2

)𝑏)
+ 𝑠1(𝑡2) − 𝑠1(𝑡1)
(𝑎/𝑡1)𝑏 − (𝑎/𝑡2)𝑏

,

𝑉 (𝑋𝑡1 ,𝑡2) =
(
1 + 1

𝑏

)2

+ 𝑠2(𝑡1) − 𝑠2(𝑡2)
(𝑎/𝑡1)𝑏 − (𝑎/𝑡2)𝑏

−
[

𝑠1(𝑡1) − 𝑠1(𝑡2)
(𝑎/𝑡1)𝑏 − (𝑎/𝑡2)𝑏

]2

,

where

𝑠𝑟 (𝑡) =
( 𝑎
𝑡

)𝑏 [
log

(
𝑏

𝑎

( 𝑎
𝑡

)𝑏+1
)]𝑟

, 𝑟 = 1, 2.

• Let 𝑋 follow power distribution having 𝐹 (𝑥) = (𝑥/𝑎)𝑏; 0 < 𝑥 < 𝑎, 𝑏 > 0. Then, for 0 < 𝑡1 < 𝑡2 < 𝑎,

𝐼𝐻 (𝑋𝑡1 ,𝑡2) =
(
1 − 1

𝑏

)
+ log

(( 𝑡2
𝑎

)𝑏
−

( 𝑡1
𝑎

)𝑏)
+ 𝑗1(𝑡1) − 𝑗1(𝑡2)
(𝑡2/𝑎)𝑏 − (𝑡1/𝑎)𝑏

,

𝑉 (𝑋𝑡1 ,𝑡2) =
(
1 − 1

𝑏

)2

+ 𝑗2(𝑡2) − 𝑗2(𝑡1)
(𝑡2/𝑎)𝑏 − (𝑡1/𝑎)𝑏

−
[

𝑗1(𝑡2) − 𝑗1(𝑡1)
(𝑡2/𝑎)𝑏 − (𝑡1/𝑎)𝑏

]2

,

where

𝑗𝑟 (𝑡) =
( 𝑡
𝑎

)𝑏 [
log

(
𝑏𝑡𝑏−1

𝑎𝑏

)]𝑟
, 𝑟 = 1, 2.
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Figure 1. Graphical representation of 𝑉 (𝑋𝑡1 ,𝑡2) (Example 2.2).

• Let 𝑋 be a random variable with 𝐹 (𝑥) = 𝑥2, 𝑥 ∈ (0, 1). Then, for 0 < 𝑡1 < 𝑡2 < 1,

𝐼𝐻 (𝑋𝑡1 ,𝑡2) =
1
2
+ log (𝑡22 − 𝑡21) −

(
𝑡22 log (2𝑡2) − 𝑡21 log (2𝑡1)

𝑡22 − 𝑡21

)
,

𝑉 (𝑋𝑡1 ,𝑡2) =
1
4
+ 𝑡22 (log (2𝑡2))2 − 𝑡21 (log (2𝑡1))2

𝑡22 − 𝑡21
−

(
𝑡22 log (2𝑡2) − 𝑡21 log (2𝑡1)

𝑡22 − 𝑡21

)2

.

2.1. Some properties

It is well-known that the interval Shannon entropy, under certain condition increases as the interval
grows larger. Is this intuitive monotonicity preserved for interval varentropy? To answer such questions
in precise mathematical terms is quite impossible. Interestingly, it has been observed that 𝑉 (𝑋𝑡1 ,𝑡2) is
decreasing in 𝑡1 and increasing in 𝑡2 keeping the other fixed for most of the significant distributions. We
give an example in support of the same.

Example 2.2. Let 𝑋 follow exponential distribution with mean 1
2 . Then, the varentropy of 𝑋 is decreas-

ing in 𝑡1 and increasing in 𝑡2 as shown in Figure 1. Note that the substitution 𝑡2 = − log 𝑣, where
𝑣 ∈ (0, 𝑒−0.1) has been used while plotting Figure 1(b).

The following counterexample shows that there exist distributions which are not monotone in terms
of doubly truncated varentropy.

Counterexample 2.1. Consider a non-negative random variable with distribution function

𝐹 (𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
−1

2
− 1
𝑥

)
, if 0 ≤ 𝑥 ≤ 1,

exp
(
−2 + 𝑥2

2

)
, if 1 ≤ 𝑥 ≤ 2.

(2.2)

Then, Figure 2 shows that the doubly truncated varentropy for this distribution is not monotone in 𝑡2 for
some fixed 𝑡1 and not monotone in 𝑡1 for some fixed 𝑡2.

Next, we look for an expression for the derivative of the interval varentropy. Recall that the gen-
eralized failure rate (GFR) functions of a doubly truncated random variable (𝑋 | 𝑡1 < 𝑋 < 𝑡2) are
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Figure 2. Graphical representation of 𝑉 (𝑋𝑡1 ,𝑡2) (Counterexample 2.1).

defined as (cf. [20])

ℎ1(𝑡1, 𝑡2) = 𝑓 (𝑡1)
𝐹 (𝑡2) − 𝐹 (𝑡1)

and ℎ2(𝑡1, 𝑡2) = 𝑓 (𝑡2)
𝐹 (𝑡2) − 𝐹 (𝑡1)

.

By differentiating (1.6) with respect to 𝑡1 and 𝑡2, we obtain

𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2)
𝜕𝑡1

= ℎ1 (𝑡1, 𝑡2)
[
𝐼𝐻 (𝑋𝑡1 ,𝑡2 ) − 1 + log ℎ1 (𝑡1, 𝑡2)

]
, (2.3)

𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2)
𝜕𝑡2

= −ℎ2 (𝑡1, 𝑡2)
[
𝐼𝐻 (𝑋𝑡1 ,𝑡2) − 1 + log ℎ2 (𝑡1, 𝑡2)

]
. (2.4)

Proposition 2.1. For all (𝑡1, 𝑡2) ∈ 𝐷, the derivatives of the interval varentropy are

𝜕𝑉 (𝑋𝑡1 ,𝑡2)
𝜕𝑡1

= ℎ1 (𝑡1, 𝑡2) [𝑉 (𝑋𝑡1 ,𝑡2) − (𝐼𝐻 (𝑋𝑡1 ,𝑡2) + log ℎ1 (𝑡1, 𝑡2))2;

𝜕𝑉 (𝑋𝑡1 ,𝑡2)
𝜕𝑡2

= −ℎ2 (𝑡1, 𝑡2) [𝑉 (𝑋𝑡1 ,𝑡2) − (𝐼𝐻 (𝑋𝑡1 ,𝑡2) + log ℎ2 (𝑡1, 𝑡2)2] .

Proof. Differentiating (2.1), we get

𝜕𝑉 (𝑋𝑡1 ,𝑡2 )
𝜕𝑡1

=
ℎ1(𝑡1, 𝑡2)

𝐹 (𝑡2) − 𝐹 (𝑡1)
∫ 𝑡2

𝑡1

𝑓 (𝑥)(log 𝑓 (𝑥))2 𝑑𝑥 − ℎ1 (𝑡1, 𝑡2)(log 𝑓 (𝑡1))2

− 2(− log(𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2))
(
ℎ1(𝑡1, 𝑡2) +

𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2 )
𝜕𝑡1

)
,

𝜕𝑉 (𝑋𝑡1 ,𝑡2 )
𝜕𝑡2

=
−ℎ2(𝑡1, 𝑡2)

𝐹 (𝑡2) − 𝐹 (𝑡1)
∫ 𝑡2

𝑡1

𝑓 (𝑥)(log 𝑓 (𝑥))2 𝑑𝑥 + ℎ2(𝑡1, 𝑡2)(log 𝑓 (𝑡2))2

− 2
(− log(𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 )

) (
−ℎ2 (𝑡1, 𝑡2) +

𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2)
𝜕𝑡2

)
.
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On substituting the values of 𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2)/𝜕𝑡1, 𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2 )/𝜕𝑡2 from (2.3) and (2.4), we have

𝜕𝑉 (𝑋𝑡1 ,𝑡2)
𝜕𝑡1

= ℎ1 (𝑡1, 𝑡2) [𝑉 (𝑋𝑡1 ,𝑡2 ) + (− log(𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))2 − (log 𝑓 (𝑡1))2

− 2(− log(𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))(log ℎ1 (𝑡1, 𝑡2) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))],
𝜕𝑉 (𝑋𝑡1 ,𝑡2)

𝜕𝑡2
= −ℎ2 (𝑡1, 𝑡2) [𝑉 (𝑋𝑡1 ,𝑡2 ) + (− log(𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))2 − (log 𝑓 (𝑡2))2

− 2(− log(𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))(log ℎ2 (𝑡1, 𝑡2) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))] .

After some calculations and arrangements, we get the required result. �

To look for some conditions under which interval varentropy can be constant, we have the following
theorem.

Theorem 2.1. (i) Let the varentropy 𝑉 (𝑋𝑡1 ,𝑡2) be constant, that is, 𝑉 (𝑋𝑡1 ,𝑡2) = 𝑣 ≥ 0 for all
(𝑡1, 𝑡2) ∈ 𝐷. Then,

|𝐼𝐻 (𝑋𝑡1 ,𝑡2) + log ℎ1(𝑡1, 𝑡2) | =
√
𝑣

and |𝐼𝐻 (𝑋𝑡1 ,𝑡2) + log ℎ2(𝑡1, 𝑡2) | =
√
𝑣, ∀ (𝑡1, 𝑡2) ∈ 𝐷.

(ii) Let 𝑐 ∈ R, if ∀(𝑡1, 𝑡2) ∈ 𝐷 any of the following conditions holds

𝐼𝐻 (𝑋𝑡1 ,𝑡2 ) + log ℎ1(𝑡1, 𝑡2) = 𝑐; (2.5)

𝐼𝐻 (𝑋𝑡1 ,𝑡2 ) + log ℎ2(𝑡1, 𝑡2) = 𝑐; (2.6)

then

|𝑉 (𝑋𝑡1 ,𝑡2 ) − 𝑐2 | = |𝑉 (𝑋) − 𝑐2 |
𝐹 (𝑡2) − 𝐹 (𝑡1)

. (2.7)

Proof. (i) The proof follows from Proposition 2.1, if interval varentropy is constant 𝑣.
(ii) Under the assumption (2.5), we have from Proposition 2.1

𝜕𝑉 (𝑋𝑡1 ,𝑡2 )
𝜕𝑡1

= ℎ1(𝑡1, 𝑡2) [𝑉 (𝑋𝑡1 ,𝑡2) − 𝑐2] .

On solving the above PDE, we obtain

log |𝑉 (𝑋𝑡1 ,𝑡2) − 𝑐2 | = log
𝑐1

𝐹 (𝑡2) − 𝐹 (𝑡1)
.

With the boundary condition
lim

𝑡1→inf
𝐷
𝑢,𝑡2→sup

𝐷
𝑣
𝑉 (𝑋𝑡1 ,𝑡2 ) = 𝑉 (𝑋),

where inf
𝐷
𝑢 = 𝑎 and sup

𝐷
𝑣 = 𝑏, say such that 𝐹 (𝑎) = 0 and 𝐹 (𝑏) = 1, the integration constant 𝑐1 is

obtained as
log |𝑉 (𝑋) − 𝑐2 | = log 𝑐1

or equivalently,
𝑐1 = |𝑉 (𝑋) − 𝑐2 |
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which on substitution in the solution yields (2.7). On proceeding as above with the assumption (2.6),
one may obtain the same result. �

In line with the generalized reversed hazard rate (cf. [4]), we propose a parametric form of GFR
functions as follows:

ℎ1,𝑐 (𝑡1, 𝑡2) = 𝑓 (𝑡1)
[𝐹 (𝑡2) − 𝐹 (𝑡1)]1−𝑐 and ℎ2,𝑐 (𝑡1, 𝑡2) = 𝑓 (𝑡2)

[𝐹 (𝑡2) − 𝐹 (𝑡1)]1−𝑐 ,

where 𝑐 ∈ R and (𝑡1, 𝑡2) ∈ 𝐷. Note that for 𝑐 = 0, we get the GFR functions.

Theorem 2.2. Let (𝑋 |𝑡1 < 𝑋 < 𝑡2) be doubly truncated random variable with (𝑡1, 𝑡2) as given in (1.5)
and let 𝑐 ∈ R. Then, the parametric GFR functions of 𝑋 with parameter 1 − 𝑐 are constant, that is,

ℎ1,1−𝑐 (𝑡1, 𝑡2) = 𝑒𝑐−𝐻 (𝑋 ) and ℎ2,1−𝑐 (𝑡1, 𝑡2) = 𝑒𝑐−𝐻 (𝑋 ) , ∀ (𝑡1, 𝑡2) ∈ 𝐷

if (2.5) and (2.6) hold, respectively. Also, the relation between interval varentropy and parametric
generalized failure rate functions can be expressed as

|𝑉 (𝑋𝑡1 ,𝑡2) − (𝐻 (𝑋) + log ℎ1,1−𝑐 (𝑡1, 𝑡2))2 | = |𝑉 (𝑋) − (𝐻 (𝑋) + log ℎ1,1−𝑐 (𝑡1, 𝑡2))2 |
𝐹 (𝑡2) − 𝐹 (𝑡1)

and,

|𝑉 (𝑋𝑡1 ,𝑡2) − (𝐻 (𝑋) + log ℎ2,1−𝑐 (𝑡1, 𝑡2))2 | = |𝑉 (𝑋) − (𝐻 (𝑋) + log ℎ2,1−𝑐 (𝑡1, 𝑡2))2 |
𝐹 (𝑡2) − 𝐹 (𝑡1)

.

Proof. Let (2.5) hold. Then,
𝜕𝐼𝐻 (𝑋𝑡1 ,𝑡2 )

𝜕𝑡1
= ℎ1(𝑡1, 𝑡2) [𝑐 − 1] .

By partially integrating both sides of the above equations, we get

𝐼𝐻 (𝑋𝑡1 ,𝑡2) = log (𝐹 (𝑡2) − 𝐹 (𝑡1))1−𝑐 + 𝐻 (𝑋)

which again on using (2.5) yields

𝑐 = 𝐻 (𝑋) + log
𝑓 (𝑡1)

(𝐹 (𝑡2) − 𝐹 (𝑡1))𝑐
.

Thus, the result follows. Substituting the values of 𝑐2 in (2.7), we get the final expression. On proceeding
as above with the assumption (2.6), one may obtain the same result. �

Remark 2.1. In Theorem 2.1, if (2.5) and (2.6) hold simultaneously, then ℎ1(𝑡1, 𝑡2) = ℎ2 (𝑡1, 𝑡2) which
yields 𝑓 (𝑡1) = 𝑓 (𝑡2), ∀(𝑡1, 𝑡2) ∈ 𝐷. Thus, 𝑋 must be a uniformly distributed random variable for which
varentropy is constant.

It is worthwhile to mention that achieving the expression of varentropy in compact form is not
easy or requires more effort. However, using certain transformation, one can evaluate varentropy for
such distributions in terms of varentropy of known distributions. In other words, if one has a specific
transformation that results to the desired distribution from the known distribution, then the varentropy
can be readily evaluated. Moreover, studying varentropy under transformation may be useful in analyzing
relation and properties that are inherited. In the next proposition, we look for interval varentropy under
affine transformation. We recall that if

𝑌 = 𝑎𝑋 + 𝑏, 𝑎 > 0, 𝑏 ≥ 0
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then the interval entropies of 𝑋 and 𝑌 are related by (cf. [18])

𝐼𝐻 (𝑌𝑡1 ,𝑡2 ) = 𝐼𝐻
(
𝑋(𝑡1−𝑏)/𝑎, (𝑡2−𝑏)/𝑎

) + log 𝑎. (2.8)

Proposition 2.2. Let 𝑌 = 𝑎𝑋 + 𝑏, with 𝑎 > 0 and 𝑏 ≥ 0. Then, their varentropies are related by

𝑉 (𝑌𝑡1 ,𝑡2 ) = 𝑉
(
𝑋(𝑡1−𝑏)/𝑎, (𝑡2−𝑏)/𝑎

)
, 0 ≤ 𝑏 < 𝑡1 < 𝑡2. (2.9)

Proof. The proof is similar as that of Proposition 3.2 of Di Crescenzo and Paolillo [8]. �

The following example gives an application of the above proposition.

Example 2.3. Let 𝑋 follow Pareto-I distribution 𝐹 (𝑥) = 1 − (𝑎/𝑥)𝑏 with 𝑎 = 1, 𝑏 = 2 and 𝑥 > 𝑎. If
𝑌 = 𝜙(𝑋) = 𝑋 − 𝑎, then 𝑌 follows Pareto-II (Lomax) distribution. In light of Proposition 2.2, we have

𝑉 (𝑌𝑡1 ,𝑡2) = 𝑉 (𝑋𝑡1+𝑎,𝑡2+𝑎) =
(1/𝑡1)2(log (2(1/𝑡1)3))2 − (1/𝑡2)2(log (2(1/𝑡2)3))2

(1/𝑡1)2 − (1/𝑡2)2

+
(
1 + 1

2

)2

−
[ (1/𝑡1)2 log (2(1/𝑡1)3) − (1/𝑡2)2 log (2(1/𝑡2)3)

(1/𝑡1)2 − (1/𝑡2)2

]2

,

which is difficult to obtain otherwise.

In the next result, the effect of monotonic transformations on interval varentropy is studied. Before
that recall if 𝜙 is any differentiable and strictly monotonic function and 𝑌 = 𝜙(𝑋), then past entropies
of 𝑋 and 𝑌 are related by

𝐻 (𝑌(𝑡) ) =
{
𝐻 (𝑋(𝜙−1 (𝑡)) ) + 𝐸 [log 𝜙′(𝑋) |𝑋 < 𝜙−1(𝑡)], for 𝜙 increasing,
𝐻 (𝑋𝜙−1 (𝑡) ) + 𝐸 [log {−𝜙′(𝑋)}|𝑋 > 𝜙−1(𝑡)], for 𝜙 decreasing

the residual entropies of 𝑋 and 𝑌 by

𝐻 (𝑌𝑡 ) =
{
𝐻 (𝑋𝜙−1 (𝑡) ) + 𝐸 [log 𝜙′(𝑋) |𝑋 > 𝜙−1(𝑡)], for 𝜙 increasing,
𝐻 (𝑋(𝜙−1 (𝑡)) ) + 𝐸 [log {−𝜙′(𝑋)}|𝑋 < 𝜙−1(𝑡)], for 𝜙 decreasing

and, the interval entropies of 𝑋 and 𝑌 by

𝐼𝐻 (𝑌𝑡1 ,𝑡2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐼𝐻 (𝑋𝜙−1 (𝑡1) ,𝜙−1 (𝑡2) )
+𝐸 [log 𝜙′(𝑋) |𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)], for 𝜙 increasing,

𝐼𝐻 (𝑋𝜙−1 (𝑡2) ,𝜙−1 (𝑡1) )
+𝐸 [log {−𝜙′(𝑋)}|𝜙−1(𝑡2) < 𝑋 < 𝜙−1(𝑡1)], for 𝜙 decreasing.

(2.10)

Proposition 2.3. Let 𝑌 = 𝜙(𝑋), where 𝜙 is a differentiable and strictly monotonic function.

(i) If 𝜙 is strictly increasing, then

𝑉 (𝑌𝑡1 ,𝑡2) = 𝑉 (𝑋𝜙−1 (𝑡1) ,𝜙−1 (𝑡2) ) + Var[log 𝜙′(𝑋) |𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)]

− 2𝐸
[
log

𝑓𝑋 (𝑋)
𝐹𝑋 (𝜙−1(𝑡2)) − 𝐹𝑋 (𝜙−1(𝑡1))

log 𝜙′(𝑋) |𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)
]

− 2𝐼𝐻 (𝑋𝜙−1 (𝑡1) ,𝜙−1 (𝑡2) )𝐸 [log 𝜙′(𝑋) |𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)] . (2.11)
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(ii) If 𝜙 is strictly decreasing, then

𝑉 (𝑌𝑡1 ,𝑡2 ) = 𝑉 (𝑋𝜙−1 (𝑡2) ,𝜙−1 (𝑡1) ) + Var[log {−𝜙′(𝑋)}|𝜙−1(𝑡2) < 𝑋 < 𝜙−1(𝑡1)]

− 2𝐸
[
log

𝑓𝑋 (𝑋)
𝐹𝑋 (𝜙−1(𝑡1)) − 𝐹𝑋 (𝜙−1(𝑡2))

log {−𝜙′(𝑋)}|𝜙−1(𝑡2) < 𝑋 < 𝜙−1(𝑡1)
]

− 2𝐼𝐻 (𝑋𝜙−1 (𝑡2) ,𝜙−1 (𝑡1) )𝐸 [log {−𝜙′(𝑋)}|𝜙−1(𝑡2) < 𝑋 < 𝜙−1(𝑡1)] . (2.12)

Proof. (i) On assuming 𝜙 to be strictly increasing we have 𝐹𝑌 (𝑥) = 𝐹𝑋 (𝜙−1(𝑥)) and 𝑓𝑌 (𝑥) =
𝑓𝑋 (𝜙−1(𝑥))/𝜙′(𝜙−1(𝑥)). Hence using the definition of interval varentropy and (2.10), we have

𝑉 (𝑌𝑡1 ,𝑡2) =
∫ 𝜙−1 (𝑡2)

𝜙−1 (𝑡1)

𝑓𝑋 (𝑥)
𝐹𝑋 (𝜙−1(𝑡2)) − 𝐹𝑋 (𝜙−1(𝑡1))

[
log

(1/𝜙′(𝑥)) 𝑓𝑋 (𝑥)
𝐹𝑋 (𝜙−1(𝑡2)) − 𝐹𝑋 (𝜙−1(𝑡1))

]2

𝑑𝑥

− [𝐼𝐻 (𝑋𝜙−1 (𝑡1) ,𝜙−1 (𝑡2) ) + 𝐸 [log 𝜙′(𝑋) | 𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)]]2. (2.13)

Expanding

log
(1/𝜙′(𝑥)) 𝑓𝑋 (𝑥)

𝐹𝑋 (𝜙−1(𝑡2)) − 𝐹𝑋 (𝜙−1(𝑡1))
= log

𝑓𝑋 (𝑥)
𝐹𝑋 (𝜙−1(𝑡2)) − 𝐹𝑋 (𝜙−1(𝑡1))

− log 𝜙′(𝑥)

on streching the squares in (2.13), observing

∫ 𝜙−1 (𝑡2)

𝜙−1 (𝑡1)

𝑓𝑋 (𝑥)
𝐹𝑋 (𝜙−1(𝑡2)) − 𝐹𝑋 (𝜙−1(𝑡1))

[log 𝜙′(𝑋)]2 𝑑𝑥 −
(
𝐸 [log 𝜙′(𝑋) |𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)]

)2

= Var[log 𝜙′(𝑋) |𝜙−1(𝑡1) < 𝑋 < 𝜙−1(𝑡2)]

and after some arrangements we obtain the result.
(ii) When 𝜙 is strictly decreasing, we have 𝐹𝑌 (𝑥) = 𝐹̄𝑋 (𝜙−1(𝑥)) and 𝑓𝑌 (𝑥) =

− 𝑓𝑋 (𝜙−1(𝑥))/𝜙′(𝜙−1(𝑥)). On proceeding as in part (i)

𝑉 (𝑌𝑡1 ,𝑡2) =
∫ 𝜙−1 (𝑡2)

𝜙−1 (𝑡1)

− 𝑓𝑋 (𝑥)
𝐹̄𝑋 (𝜙−1(𝑡2)) − 𝐹̄𝑋 (𝜙−1(𝑡1))

[
log

(−1/𝜙′(𝑥)) 𝑓𝑋 (𝑥)
𝐹̄𝑋 (𝜙−1(𝑡2)) − 𝐹̄𝑋 (𝜙−1(𝑡1))

]2

𝑑𝑥

− [
𝐼𝐻 (𝑋𝜙−1 (𝑡2) ,𝜙−1 (𝑡1) ) + 𝐸 [log {−𝜙′(𝑋)}|𝜙−1(𝑡2) < 𝑋 < 𝜙−1(𝑡1)]

]2 (2.14)

on streching the squares in (2.14) and after some arrangements we have the result. �

Consider the following example to illustrate the effectiveness of the result.

Example 2.4. Let 𝑋 follow exponential distribution with density function 𝑓 (𝑥) = 𝜆 exp(−𝜆𝑥), where
𝑥 > 0 and 𝜆 > 0. Consider the transformation 𝑌 = 𝜙(𝑋) = 𝑋2, which is differentiable, strictly
increasing and convex function. Subsequently, 𝜙(𝑋) follows Weibull distribution with distribution
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function 𝐺 (𝑥) = 1 − exp(−𝜆√𝑥), 𝑥 > 0. Therefore, Proposition 2.3 yields

𝑉 (𝑌𝑡1 ,𝑡2) = 1 + 𝑒−𝜆
√
𝑡1 (log (𝜆𝑒−𝜆

√
𝑡1))2 − 𝑒−𝜆

√
𝑡2 (log (𝜆𝑒−𝜆

√
𝑡2))2

𝑒−𝜆
√
𝑡1 − 𝑒−𝜆

√
𝑡2

−
[
𝑒−𝜆

√
𝑡1 log (𝜆𝑒−𝜆

√
𝑡1) − 𝑒−𝜆

√
𝑡2 log (𝜆𝑒−𝜆

√
𝑡2)

𝑒−𝜆
√
𝑡1 − 𝑒−𝜆

√
𝑡2

]2

+ Var[log (2𝑋) |√𝑡1 < 𝑋 <
√
𝑡2]

− 2𝐸
[
log

𝜆𝑒−𝜆𝑋

𝑒−𝜆
√
𝑡1 − 𝑒−𝜆

√
𝑡2

log (2𝑋) |√𝑡1 < 𝑋 <
√
𝑡2

]
− 2𝐸 [log (2𝑋) |√𝑡1 < 𝑋 <

√
𝑡2]

×
[
1 + log (𝑒−𝜆

√
𝑡1 − 𝑒−𝜆

√
𝑡2) + 𝑒−𝜆

√
𝑡2 log (𝜆𝑒−𝜆

√
𝑡2) − 𝑒−𝜆

√
𝑡1 log (𝜆𝑒−𝜆

√
𝑡1)

𝑒−𝜆
√
𝑡1 − 𝑒−𝜆

√
𝑡2

]
.

2.2. Bounds

Here, we give some bounds for the interval varentropy as it may not always be possible to get an
analytical expression for it. Firstly, we look for a suitable lower bound of𝑉 (𝑋𝑡1 ,𝑡2) expressed as variance
of 𝑋 in the interval (𝑡1, 𝑡2) which is defined as

𝜎2(𝑡1, 𝑡2) = Var(𝑋 | 𝑡1 < 𝑋 < 𝑡2) =
∫ 𝑡2

𝑡1

𝑥2 𝑓 (𝑥)
𝐹 (𝑡2) − 𝐹 (𝑡1)

𝑑𝑥 − (𝑚(𝑡1, 𝑡2))2,

where 𝑚(𝑡1, 𝑡2) = 𝐸 (𝑋 | 𝑡1 < 𝑋 < 𝑡2) is the doubly truncated mean.

Theorem 2.3. Let 𝑚(𝑡1, 𝑡2) and 𝜎2(𝑡1, 𝑡2) be the mean and variance of 𝑋𝑡1 ,𝑡2 both assumed to be defined
on R. Then, for all (𝑡1, 𝑡2) ∈ 𝐷,

𝑉 (𝑋𝑡1 ,𝑡2) ≥ 𝜎2(𝑡1, 𝑡2)(𝐸 [𝜔′
𝑡1 ,𝑡2

(𝑋𝑡1 ,𝑡2)])2,

where 𝜔′
𝑡1 ,𝑡2

(𝑥) is the derivative of the function 𝜔𝑡1 ,𝑡2 (𝑥) which is defined by

𝜎2(𝑡1, 𝑡2)𝜔𝑡1 ,𝑡2 (𝑥) 𝑓𝑋𝑡1 ,𝑡2 (𝑥) =
∫ 𝑥

0
[𝑚(𝑡1, 𝑡2) − 𝑧] 𝑓𝑋𝑡1 ,𝑡2 (𝑧) 𝑑𝑧, 𝑥 > 0. (2.15)

Proof. Recall from Cacoullos and Papathanasiou [5] that for an absolutely continuous random variable
𝑋 with mean 𝜇 and variance 𝜎2

Var[𝑔(𝑋)] ≥ 𝜎2(𝐸 [𝜔(𝑋)𝑔′(𝑋)])2, (2.16)

where 𝜔(𝑥) is defined by

𝜎2𝜔(𝑥) 𝑓 (𝑥) =
∫ 𝑥

0
(𝜇 − 𝑧) 𝑓 (𝑧) 𝑑𝑧.

Hence on considering 𝑋𝑡1 ,𝑡2 as the random variable in (2.16) and 𝑔(𝑥) = − log 𝑓𝑋𝑡1 ,𝑡2 (𝑥), we get

Var(− log 𝑓𝑋𝑡1 ,𝑡2 (𝑋𝑡1 ,𝑡2 )) = 𝑉 (𝑋𝑡1 ,𝑡2 ) ≥ 𝜎2(𝑡1, 𝑡2)
[
𝐸

(
𝜔𝑡1 ,𝑡2 (𝑋𝑡1 ,𝑡2)

𝑓 ′𝑋𝑡1 ,𝑡2
(𝑋𝑡1 ,𝑡2 )

𝑓𝑋𝑡1 ,𝑡2 (𝑋𝑡1 ,𝑡2 )

)]2

.

On differentiating both sides of (2.15), we get

𝜔𝑡1 ,𝑡2 (𝑥)
𝑓 ′𝑋𝑡1 ,𝑡2

(𝑥)
𝑓𝑋𝑡1 ,𝑡2 (𝑥)

=
𝑚(𝑡1, 𝑡2) − 𝑥

𝜎2(𝑡1, 𝑡2)
− 𝜔′

𝑡1 ,𝑡2
(𝑥).
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Thus,

𝑉 (𝑋𝑡1 ,𝑡2) ≥ 𝜎2(𝑡1, 𝑡2)
[
𝐸

(
𝑚(𝑡1, 𝑡2) − 𝑋𝑡1 ,𝑡2

𝜎2(𝑡1, 𝑡2)
− 𝜔′

𝑡1 ,𝑡2
(𝑋𝑡1 ,𝑡2)

)]2

= 𝜎2(𝑡1, 𝑡2)(𝐸 [𝜔′
𝑡1 ,𝑡2

(𝑋𝑡1 ,𝑡2 )])2.

�

The following theorem gives an upper bound of𝑉 (𝑋𝑡1 ,𝑡2 ). The proof being similar to that of Theorem
3.4 of Di Crescenzo and Paolillo [8] is omitted.

Theorem 2.4. If 𝑓 is the log-concave density function of a random variable 𝑋 . Then,

𝑉 (𝑋𝑡1 ,𝑡2) ≤ 1, for 0 < 𝑡1 < 𝑡2.

We conclude the section by providing an upper bound for varentropy of a doubly truncated random
variable if its density function is not log-concave.

Theorem 2.5. If 𝑋 is a random lifetime such that its density function satisfies

𝑒−𝛼𝑥−𝛽 ≤ 𝑓 (𝑥) ≤ 1, ∀𝑥 ≥ 0, (2.17)

where 𝛼 > 0 and 𝛽 ≥ 0. Then, for all (𝑡1, 𝑡2) ∈ 𝐷

𝑉 (𝑋𝑡1 ,𝑡2 ) ≤ 𝛼[𝐼𝐻𝜔 (𝑋𝑡1 ,𝑡2) − 𝑚(𝑡1, 𝑡2) log (𝐹 (𝑡2) − 𝐹 (𝑡1))] + 𝛽[𝐼𝐻 (𝑋𝑡1 ,𝑡2) − log (𝐹 (𝑡2) − 𝐹 (𝑡1))]
− [𝐼𝐻 (𝑋𝑡1 ,𝑡2) − log (𝐹 (𝑡2) − 𝐹 (𝑡1))]2,

where 𝐼𝐻𝜔 (𝑋𝑡1 ,𝑡2) is the weighted interval entropy (cf. [17]).

Proof. From Equation (2.1) using (2.17), we have

𝑉 (𝑋𝑡1 ,𝑡2) ≤ − 1
𝐹 (𝑡2) − 𝐹 (𝑡1)

∫ 𝑡2

𝑡1

(𝛼𝑥 + 𝛽) 𝑓 (𝑥) log 𝑓 (𝑥) 𝑑𝑥

− (− log (𝐹 (𝑡2) − 𝐹 (𝑡1)) + 𝐼𝐻 (𝑋𝑡1 ,𝑡2 ))2. (2.18)

We note (cf. Eq. (8) of [17])∫ 𝑡2

𝑡1

𝑥 𝑓 (𝑥) log 𝑓 (𝑥) 𝑑𝑥 = (𝐹 (𝑡2) − 𝐹 (𝑡1)) [log 𝐹 (𝑡2) − 𝐹 (𝑡1)𝑚(𝑡1, 𝑡2) − 𝐼𝐻𝜔 (𝑋𝑡1 ,𝑡2 )] . (2.19)

Moreover, from (1.6), we have∫ 𝑡2

𝑡1

𝑓 (𝑥) log 𝑓 (𝑥) 𝑑𝑥 = (𝐹 (𝑡2) − 𝐹 (𝑡1)) [log 𝐹 (𝑡2) − 𝐹 (𝑡1) − 𝐼𝐻 (𝑋𝑡1 ,𝑡2 )] . (2.20)

Finally, on substituting (2.19) and (2.20) in (2.18), we obtain the result. �

3. Simulation study and data analysis

In this section, we analyze the effect of 𝑡1 and 𝑡2 on varentropy by proposing a simple parametric
estimator for it. We study its monotonicity based on simulated data and investigate our observations on
real-life data sets.
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3.1. Simulation study

Here, we carry out a simulation study to illustrate our intuitive idea of decreasing varentropy in shrinking
interval. Let 𝑋 follow Exp(𝜆), then

𝑉 (𝑋𝑡1 ,𝑡2) =
∫ 𝑡2

𝑡1

𝜆𝑒−𝜆𝑥

𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2

[
log

𝜆𝑒−𝜆𝑥

𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2

]2

𝑑𝑥

−
[∫ 𝑡2

𝑡1

𝜆𝑒−𝜆𝑥

𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2
log

𝜆𝑒−𝜆𝑥

𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2
𝑑𝑥

]2

. (3.1)

Now, to estimate 𝑉 (𝑋𝑡1 ,𝑡2), we use the method of maximum likelihood. For this, we first estimate the
unknown parameter 𝜆 denoted by 𝜆̂ using the maximum likelihood estimation method and then use it
in (3.1) to get the maximum likelihood estimator (MLE) of 𝑉 (𝑋𝑡1 ,𝑡2 ). Thus, for calculating 𝜆̂, let us
consider 𝑥𝑖 , 𝑖 = 1, 2, . . . , 𝑛 that are independent and identically distributed random samples from doubly
truncated exponential distribution with parameter 𝜆 such that 𝑡1 < 𝑥𝑖 < 𝑡2. The log-likelihood function
for the data 𝑥𝑖 is written as:

𝐿(𝜆 | 𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑛 log𝜆 − 𝜆
𝑛∑
𝑖=1

𝑥𝑖 − 𝑛 log (exp (−𝜆𝑡1) − exp (−𝜆𝑡2)). (3.2)

We use nonlinear minimization (nlm) technique in R-software to maximize the log-likelihood function
(3.2) and get 𝜆̂. On obtaining 𝜆̂, the MLE of 𝑉 (𝑋𝑡1 ,𝑡2 ) can be computed using the formula

𝑉̂ (𝑋𝑡1 ,𝑡2) =
∫ 𝑡2

𝑡1

𝜆̂𝑒−𝜆̂𝑥

𝑒−𝜆̂𝑡1 − 𝑒−𝜆̂𝑡2

[
log

𝜆̂𝑒−𝜆̂𝑥

𝑒−𝜆̂𝑡1 − 𝑒−𝜆̂𝑡2

]2

𝑑𝑥

−
[∫ 𝑡2

𝑡1

𝜆̂𝑒−𝜆̂𝑥

𝑒−𝜆̂𝑡1 − 𝑒−𝜆̂𝑡2
log

𝜆̂𝑒−𝜆̂𝑥

𝑒−𝜆̂𝑡1 − 𝑒−𝜆̂𝑡2
𝑑𝑥

]2

. (3.3)

For different values of 𝑡1 and 𝑡2, the estimated values of 𝑉 (𝑋𝑡1 ,𝑡2) can be calculated from (3.3).
In order to verify our intuition, we carry out a Monte-Carlo simulation study. The estimated values

are computed based on 1000 simulation each of size 𝑛 (𝑛 = 10, 20, 50, 100, 500) from exponential
distribution with parameter 𝜆 = 0.5 for different truncation limits. Averages are calculated from these
1,000 values of 𝜆̂ and 𝑉̂ (𝑋𝑡1 ,𝑡2 ) which are then considered as their final values. Bias and mean squared
error (MSE) are also calculated. In Table 1, we list the estimates along with observed values, bias and
MSE. It is observed that 𝑉̂ (𝑋𝑡1 ,𝑡2) increases as 𝑡2 increases or 𝑡1 decreases (keeping the other fixed). This
shows that varentropy decreases when the object’s outcome is confined into a shrinking interval. The
results of simulation study shows that as the sample size increases, absolute values of bias and MSE
decreases. The estimates are nearly unbiased when large sample size is considered.

3.2. Analysis of real data sets

In this subsection, we analyze two real data sets. First, we consider the data set representing number of
deaths due to COVID-19 from 10 March to 19 May 2021 in India obtained from the electronic source
https://www.worldometers.info/coronavirus/country/india/. The COVID-19 pandemic is considered as
one of the most crucial and unprecedented global health calamities of the century. The corona virus
disease is an infectious respiratory disease, the outbreak of which has embarked a health crisis across
the globe. Due to the extremely contagious nature of the virus, it has rapidly spread around the world,
posing enormous health, economic, environmental and social challenges to the entire human population.
“Flattening the curve” has been a struggle to slow down the transmission by testing and treating patients,
quarantining suspected persons through contact tracing, restricting large gatherings and so on. In this
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Table 1. 𝑉̂ (𝑋𝑡1 ,𝑡2 ), Bias and MSE (𝑛 = 10, 20, 50, 100, 500).

Observed value
(𝑡1, 𝑡2) Estimated value of 𝑉 (𝑋𝑡1 ,𝑡2) of 𝑉 (𝑋𝑡1 ,𝑡2)

𝑛 = 10 𝑛 = 20 𝑛 = 50 𝑛 = 100 𝑛 = 500

(3,10) 0.6013766 0.6038589 0.6067724 0.6064658 0.6063198 0.6066866
(3,15) 0.8761645 0.8921935 0.9024666 0.9071998 0.9097668 0.9103209
(3,20) 0.9664215 0.9748702 0.9811485 0.9832821 0.9848968 0.9852934
(20,30) 0.7968679 0.8136733 0.8218697 0.8270583 0.8285709 0.8292582
(15,30) 0.9441441 0.9555236 0.9634935 0.9659992 0.9682838 0.9688546
(10,30) 0.9842591 0.9902652 0.9932547 0.994408 0.9952549 0.9954596
(2,9) 0.6019084 0.6056856 0.6061596 0.6062802 0.6071317 0.6066866

(𝑡1, 𝑡2) BIAS

𝑛 = 10 𝑛 = 20 𝑛 = 50 𝑛 = 100 𝑛 = 500

(3,10) −0.00531008 −0.002827735 8.58 × 10−05 −0.000220831 −0.000366872
(3,15) −0.03415636 −0.01812741 −7.85 × 10−03 −3.12 × 10−03 −5.54 × 10−04

(3,20) −1.89 × 10−02 −1.04 × 10−02 −4.14 × 10−03 −2.01 × 10−03 −3.97 × 10−04

(20,30) −0.03239027 −0.01558487 −0.007388461 −0.002199917 −0.000687271
(15,30) −0.02471049 −1.33 × 10−02 −5.36 × 10−03 −2.86 × 10−03 −5.71 × 10−04

(10,30) −1.12 × 10−02 −5.19 × 10−03 −2.20 × 10−03 −1.05 × 10−03 −2.05 × 10−04

(2,9) −0.004778259 −0.001000996 −0.000527054 −0.00040645 0.000445071

(𝑡1, 𝑡2) MSE

𝑛 = 10 𝑛 = 20 𝑛 = 50 𝑛 = 100 𝑛 = 500

(3,10) 0.05573927 0.03189461 0.01395793 0.007242432 0.001476407
(3,15) 1.79 × 10−02 8.36 × 10−03 3.11 × 10−03 1.46 × 10−03 2.94 × 10−04

(3,20) 3.34 × 10−03 1.15 × 10−03 2.92 × 10−04 1.18 × 10−04 1.91 × 10−05

(20,30) 0.03203411 0.01576497 6.47 × 10−03 3.21 × 10−03 6.81 × 10−04

(15,30) 6.72 × 10−03 2.60 × 10−03 7.64 × 10−04 3.51 × 10−04 6.26 × 10−05

(10,30) 1.11 × 10−03 2.66 × 10−04 6.06 × 10−05 2.13 × 10−05 2.93 × 10−06

(2,9) 0.05644365 0.03173088 1.40 × 10−02 7.24 × 10−03 1.48 × 10−03

part, we modestly contribute to the subject by evaluating interval varentropy for the data taking different
truncation limits showing the efficiency of our intuition in this regard. It could be relevant to provide
a precise estimation for some measures of interest related to COVID-19 cases, to propose an efficient
strategy for estimating and fitting data on COVID-19 death cases in other countries, or in a more
challenging way, model the distribution of the number of cases for any pandemic with similar features
and under a similar environment. The number of deaths per day are given below:

Data Set: 135, 113, 158, 160, 121, 131, 188, 172, 156, 190, 197, 214, 198, 278, 250, 258, 293, 312,
296, 267, 356, 459, 472, 718, 518, 481, 450, 636, 690, 810, 780, 847, 914, 890, 1043, 1059, 1208, 1355,
1530, 1655, 1798, 2070, 2155, 2313, 2677, 2835, 2873, 2830, 3367, 3731, 3587, 3602, 4318, 3739, 3884,
4358, 4423, 4244, 4567, 4476, 4069, 4381, 4837, 4706, 4530, 4870, 4859, 4378, 4714, 4967, 4177.

It has been observed using R-software, that the exponential distribution with parameter 𝜆 = 0.00051
can be fitted to this data set. The same has been verified through goodness-of-fit test. The Kol-
mogorov–Smirnov (K-S) distance between the empirical distribution and the fitted distribution functions
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Table 2. Estimated values of 𝑉 (𝑋𝑡1 ,𝑡2) of COVID-19 data for different truncation limits.

(𝑡1, 𝑡2) (150, 500) (150, 1500) (150, 2000) (150, 2500) (500, 2500) (1000, 2500)
𝑉̂ (𝑋𝑡1 ,𝑡2) 0.2200667 0.565146 0.6475002 0.653555 0.2391786 0.09042856

Table 3. Estimated values of 𝑉 (𝑋𝑡1 ,𝑡2) for cancer data for different truncation limits.

(𝑡1, 𝑡2) (1, 7) (1, 13) (1, 20) (4, 25) (8, 25) (14, 25)
𝑉̂ (𝑋𝑡1 ,𝑡2) 0.005039003 0.1313979 0.3698107 0.5452078 0.3485048 0.2431603

and the associated 𝑝-value were obtained as 0.14918 and 0.07631, respectively. Next, we obtain 𝑉̂ (𝑋𝑡1 ,𝑡2 )
by estimating 𝜆 using the method of maximum likelihood for different truncation limit. It is clear from
Table 2, that 𝑉̂ (𝑋𝑡1 ,𝑡2) increases with respect to 𝑡2 and decreases with respect to 𝑡1 (keeping the other
fixed).

The second data set represents remission times (in months) of a random sample of 128 bladder cancer
patients reported in Lee and Wang [15]:

Data Set: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51,
2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 6.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88,
5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,
17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40,
5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28,
2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

As observed by Shanker et al. [24], exponential distribution with parameter 𝜆 = 0.106773 can be
fitted to this data set. The same has been verified through a goodness-of-fit test using R-software. It is
seen from Table 3, that 𝑉̂ (𝑋𝑡1 ,𝑡2) is a partially increasing function of the interval (𝑡1, 𝑡2).

Therefore, the monotonic behavior of the estimates as observed for simulated data are validated by
the COVID-19 death data and remission time of cancer patients data.

4. Some applications

Motivated by the applications of residual varentropy concerning proportional hazard rate model and first-
passage time problem of an Ornstein–Uhlenbeck jump-diffusion process with catastrophes as illustrated
by Di Crescenzo and Paolillo [8], in this section we investigate some applications of varentropy of
a doubly truncated random variable. We begin with the usefulness of our proposed concept for the
choice of most acceptable system. Another application is followed by the effectiveness of evaluating the
scatterness between two time points in the first-passage time jump-diffusion process. Further progress
toward applications of varentropy will intend to other stochastic models of interest such as order statistics,
spacings, record values, inaccuracy measures based on the relevation transform and its reversed version
(cf. [8]). Also, to establish empirical version of doubly truncated varentropy for its suitable nonparametric
estimates.

4.1. Most acceptable system

A system is said to be better in a specific time interval if it lives longer and there is less uncertainty
about its survival time. This notion find its effectiveness in reliability engineering in choosing the
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Figure 3. Plot of 𝐼𝐻 (𝑌𝑖 0.5,1.5) − 𝐼𝐻 (𝑋0.5,1.5) for 𝑛 ∈ {2, . . . , 50}.

Figure 4. Graphical representation of the interval varentropy of parallel system.

most acceptable system. Recently, Moharana and Kayal [19] have shown that a parallel system is mostly
acceptable than a single component system in some stochastic sense. A question may occur at this point: Is
a parallel system, independent of number of components 𝑛, most acceptable? This question seeks interest
and elucidate the usefulness of doubly truncated varentropy. For example, consider a parallel system of
𝑛 components with lifetime 𝑌𝑖 , 𝑖 = 1, 2, . . . , 𝑛. Let 𝑌 ′

𝑖 s be independent and identically distributed with
common distribution function 𝐹 (𝑥) as given in Counterexample 2.1. Then, 𝑋 = max{𝑌1, 𝑌2, . . . , 𝑌𝑛}
represents the system lifetime. The distribution function of 𝑋 is 𝐺 (𝑥) = [𝐹 (𝑥)]𝑛. Now, choosing the
specified time interval as (0.5, 1.5), Figure 3 shows the difference 𝐼𝐻 (𝑌𝑖 0.5,1.5)− 𝐼𝐻 (𝑋0.5,1.5) is positive.
Apparently, for any 𝑛, the parallel system is most acceptable. However, Figure 4(a) shows that a parallel
system with 𝑛 = 7 has the maximum varentropy. A magnified view of Figure 4(a) is given in Figure
4(b) depicting the peak for 𝑛 = 7. Obviously, this is not desirable. Thus, a parallel system having seven
components fails to be the most acceptable system when scatterness of the information is of utmost
importance. Therefore, in choosing better system based on doubly truncated entropy, doubly truncated
varentropy should also be taken care of. In conclusion, we state “A system having less uncertainty about
its survival time along with less varentropy should be considered as most acceptable system.”

4.2. First-passage times of an Ornstein–Uhlenbeck jump-diffusion process

The Ehrenfest model traces a simple diffusion process as a Markov chain, where gas molecules in a
container separated into two equal parts by a permeable membrane diffuse in a random manner. Such
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Figure 5. Graphical representation of (a) 𝐼𝐻 (𝑋2,5) and (b) 𝑉 (𝑋2,5) for 𝜉 ∈ (0, 5).

models and its generalizations are of interest in many fields. In recent times, Dharmaraja et al. [6]
suggested an advanced stochastic model with catastrophes, that is, stochastic resets or in simple terms
the effect of such being the instantaneous transition to the state zero at a steady rate 𝜉 > 0. The system
process subject to catastrophes is considered as a jump-diffusion approximation by choosing a suitable
scaling approach, where the catastrophe rate remains unaffected. The resulting stochastic process, say
{𝑋 (𝑡), 𝑡 ≥ 0}, of jump diffusion is a mean-reverting time-homogeneous Ornstein–Uhlenbeck process
with jumps occurring at a rate 𝜉 and each jump making 𝑋 (𝑡) instantly attain zero state, having state
space R, linear drift and infinitesimal variance given by

𝐴1(𝑥) = −𝛼𝑥, 𝐴2(𝑥) = 𝛼𝜈, (𝛼, 𝜈 > 0).

If 𝑔(𝑡) is the first-passage time (FPT) density of FPT random variable 𝑇𝑦 of 𝑋 (𝑡) through 0, with
𝑋 (0) = 𝑦 ≠ 0, we have (cf. Eq. (49) of [6])

𝑔(𝑡) = 𝑒−𝜉 𝑡 𝑔̃(𝑡) + 𝜉𝑒−𝜉 𝑡 Erf (|𝑦 |𝑒−𝛼𝑡 [𝜈(1 − 𝑒−2𝛼𝑡 )]−1/2), 𝑡 > 0, (4.1)

with 𝑔(0) = 𝜉, where Erf(·) being the error function, and where

𝑔̃(𝑡) = 2𝛼 |𝑦 |𝑒−𝛼𝑡√
𝜋𝜈(1 − 𝑒−2𝛼𝑡 )3/2 exp

{
− 𝑦2𝑒−2𝛼𝑡

𝜈(1 − 𝑒−2𝛼𝑡 )

}
, 𝑡 > 0,

(cf. Eq. (38) of [6]) with 𝑔̃(0) = 0, is the FPT density of the corresponding diffusion process in absence of
catastrophes. We draw attention that the FPT density of the jump-diffusion process marks its interest in
financial mathematics in modeling pricing options with stock prices and time between jumps to describe
return in stock index prices under the effect of large jumps or jump rate. To foresee cases observing
equal or nearly equal average information content will attract more attention in decision making and
thus would require the measure of scatterness. Therefore, analyzing the average information content
along with its scatterness between two time points of first-passage time and studying its changes in terms
of jump rate and state space may be useful for the market analyst to make improved decision. Figures
5 and 6 show some instances of changes in doubly truncated entropy and varentropy with respect to
values of 𝜉 and 𝜈, respectively. It is shown that increasing jump rate 𝜉, decreases entropy while increases
varentropy and a similar behavior is seen in terms of 𝜈 as well, where increasing 𝜈 indicates increasing
𝑁 in the state space.
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Figure 6. Graphical representation of (a) 𝐼𝐻 (𝑋2,5) and (b) 𝑉 (𝑋2,5) for 𝜈 ∈ (1, 3).

5. Conclusion

Most of the survival studies to model statistical data have information of lifetime between two time points.
Considering the fact, measure of uncertainty for doubly truncated random variable is given by Sunoj et al.
[27]. In this paper, we introduced and studied the doubly truncated varentropy. Its objective in connection
with the doubly truncated entropy is to measure the scatterness in it. Precisely, it provides variability of
information given by doubly truncated entropy. We presented several properties covering monotonicity,
behavior under transformation, result for its constancy. In addition, after exploring bounds, some
applications of doubly truncated varentropy have been discussed in details illustrating its advantages.
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