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Abstract
This work proposes a novel grasp detection method, the Efficient Grasp Aware Network (EGA-Net), for robotic
visual grasp detection. Our method obtains semantic information for grasping through feature extraction. It effi-
ciently obtains feature channel weights related to grasping tasks through the constructed ECA-ResNet module,
which can smooth the network’s learning. Meanwhile, we use concatenation to obtain low-level features with
rich spatial information. Our method inputs an RGB-D image and outputs the grasp poses and their quality score.
The EGA-Net is trained and tested on the Cornell and Jacquard datasets, and we achieve 98.9% and 95.8% accu-
racy, respectively. The proposed method only takes 24 ms for real-time performance to process an RGB-D image.
Moreover, our method achieved better results in the comparison experiment. In the real-world grasp experiments,
we use a 6-degree of freedom (DOF) UR-5 robotic arm to demonstrate its robust grasping of unseen objects in
various scenes. We also demonstrate that our model can successfully grasp different types of objects without any
processing in advance. The experiment results validate our model’s exceptional robustness and generalization.

1. Introduction
With the development of robotics and artificial intelligence, robot intelligent operation has excellent
research potential. Among many critical operational capabilities, the ability to grasp is fundamental and
essential, which will bring enormous power to the industry, home, service, warehouse, medical field, and
so on refs. [1–5]. Moreover, effectively grasping transparent and specular objects remains challenging
in robot grasp operations [6–8].

Nowadays, methods for grasping tasks can be summarized as analytic and data-driven methods.
Though methods based on analytic methods can reliably grasp objects, these approaches usually require
miscellaneous information about the object, such as the geometry of the object, a physical model,
kinematics, dynamics, and mechanical analysis, and which are often not easily accessible [9–11].

In contrast, many modern data-driven methods for grasping objects rely on only visual informa-
tion. It is very efficient for application because visual information is often easier and quicker to obtain.
Meanwhile, with the improvement of computability, more and more researchers have developed deep
learning methods for robotic manipulations [12–18]. Considering robots often inevitably need to grasp
objects in unstructured scenes, many studies around deep learning methods based on visual information
have become active [19, 20].

Most modern grasp detection [21–23] is based on convolutional neural networks, which have become
the mainstream for grasp tasks based on visual information. Specifying a suitable grasp configuration is
an essential issue in the image from the visual sensor. Reference [24] proposed a method that represented
the grasp configuration with a rectangle. Besides, some researchers proposed that a series of grasp
candidates be generated first, and then the optimal grasp be selected from them [25]. However, these
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methods are relatively time-consuming and limited to real-time performance in generating candidates.
Meanwhile, there is still room for improvement in the success rate of grasping.

Grasp tasks require both efficient real-time performance and accuracy. Reference [12] proposed a
novel grasp detection method that is based on Unet [26]. The method can predict the pixel-level grasp-
ing pose and grasping quality based on the input image without generating candidates. Therefore, it
is sufficiently fast for real-time work, and considering it incorporates the squeeze-and-excitation (SE)
attention mechanism [27], the approach achieves impressive accuracy on public datasets. However, the
SE attention mechanism still has certain shortcomings, such as when obtaining channel features, using
dimensionality reduction to a low-dimensional space first and then mapping it back to the original dimen-
sion, which makes it impossible to establish a direct relationship between the channel and its weight,
which can affect both accuracy and real-time performance.

In order to solve these problems and improve the performance of grasp detection, this paper presents
a visual grasp detection framework. We adopt the residual block with the Efficient Channel Attention
(ECA) mechanism incorporated. It overcomes the reaction of dimensionality reduction in the traditional
SE attention mechanism and utilizes informative features to improve the network model’s predicted
accuracy by establishing a direct relationship between the channel and its weight. It can efficiently and
accurately identify the graspable area of the object in the input image and output pixel-wise quality
scores to obtain appropriate grasp configuration. We also evaluate our method on the Cornell dataset
and the Jacquard dataset. The result shows our method achieves 98.9% and 95.8% accuracy, respectively,
which is competitive with the state-of-the-art. Through using a 6-degree of freedom (DOF) UR-5 robotic
arm for real-world grasp experiments, our method achieves a 93.6% grasp success rate in unstructured
real-world scenes.

The contributions can be summarized as follows:

1) We have constructed the Efficient Channel Attention Residual Network (ECA-ResNet) module
based on ref. [28] that directly establishes the relationship between channels and weights, which
is beneficial for improving channel attention learning and reducing model complexity. The mod-
ule enables the Efficient Grasp Aware Network (EGA-Net) to distinguish between objects and
backgrounds and avoids the gradient vanishing problem caused by increasing the number of
layers through residual layers, thereby improving learning efficiency.

2) The EGA-Net is proposed to generate pixel-level grasp poses and their quality score. The EGA-
Net consists of two parts: feature extraction and feature fusion. Feature extraction is used to
emphasize and obtain semantic information relevant to grasping features, while feature fusion
is used to fuse low-level information containing rich spatial information. Meanwhile, it is only
trained on the dataset that contains a single type of object; it still has a high success rate in
grasping different types of objects.

3) Our method achieves competitive results versus state-of-the-art grasp methods on public datasets
and real-world robotic grasp experiments.

2. Related work
2.1. Methods for grasp task
In the earlier period, most researchers used analytical methods to grasp tasks based on hand-engineering
the features in specific tasks [29–31]. Meanwhile, though these methods possess high performance
for grasping known objects, they cannot be extended to grasp unknown objects. When facing differ-
ent scenes or types of objects, this method is often no longer applicable. With the rapid development
of artificial intelligence, a new grasp detection method called the data-driven method has shown great
potential in grasp tasks [13, 14]. These methods can solve the shortcomings of the analytic methods.
It typically uses machine learning to develop models that map information read by sensors directly
to ground truth from humans, physical, and simulation trials. These methods often require large-scale
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datasets to support training. The most important conception of the method is to enable robots to imitate
human grasp strategies [32]. Meanwhile, it typically requires close interaction between sensors and the
environment.

2.2. Deep learning methods for grasp detection
In recent years, deep learning methods have achieved enormous advances in computer vision, natural
language processing, and reinforce learning [18, 33, 34]. Inspired by these fields, many robotic
researchers have begun to attempt to apply deep learning techniques to the field of grasp detection.
Reference [35] proposed a visual enhancement guided grasp detection model (VERGNet), which
includes a low-light feature enhancement strategy to improve the effectiveness of robot grasping
under low-light conditions. Reference [36] further improved the performance of the Generative
Residual Convolutional Neural Network (GR-ConvNet) by adding a dropout layer and replacing the
rectified linear unit (ReLU) activation function with Mish as the activation function. Reference [37]
proposes Selective Kernel convolution Grasp detection Network (SKGNet) based on Selective Kernel
Convolution. It achieved excellent performance on single-type object datasets. However, a large number
of model parameters compromised the real-time performance of the network. The current notable grasp
detection methods can be divided into regression-based, classification-based, and detection-based
methods.

The method by which the model directly predicts the grasp configuration by inputting relevant obser-
vation data of objects that can be grasped implicitly into the model is called the regression-based method.
Reference [25] directly regresses the raw RGB-D image to obtain the grasp configuration instead of clas-
sifying many small patches in a sliding window type method and only needs to consider a single image
and make a global prediction.

Rather than regression-based methods, ref. [38] plans the grasp representation orientation map-
ping as a classification task, which defines the learning problem to be classified with null hypothesis
competition.

For detection-based methods, this type of method draws inspiration from the idea of semantic seg-
mentation, transforming the prediction of grasp configuration into a prediction of the segmentation
problem of optimal grasp area, such as refs. [13, 14].

In general, these detection-based methods can directly predict reliable grasp configurations and are
highly effective. The above methods have achieved remarkable results in the field of grasp detection.
However, they still need to consider the use of attention mechanisms to distinguish objects and back-
grounds better, and there is still room for improvement in the accuracy of grasp detection. In addition,
many detection methods do not consider grasping different types of objects, such as opaque, transparent,
and specular objects. Thus, we propose a novel approach, EGA-Net, to address these issues by ECA-
ResNet module based on ref. [28], which enables the network to reweigh channel weights to extract
grasp-related information better. So, our method can distinguish between objects and backgrounds.
Meanwhile, by using RGB-D multi-modal data as input to the EGA-Net, our method can effectively
grasp different types of objects.

3. Problem statement
We describe the grasping task as a robot using the generated grasp configuration to perform grasping.
Specifically, by inputting the RGB-D image of the grasping scene into our model, the model will output
four heat maps representing the grasp configuration. We selected the grasp configuration with the highest
grasp quality as the action that the robotic arm will perform, and we used a depth camera to obtain the
RGB-D image of the grasping scene.

Most studies on grasp detection mainly use two grasp representations: grasp contact points and grasp
rectangle. The grasp contact points representation method has the characteristics of being simple, direct,
and easy to identify. It can perform dense grasp detection on the image in tasks. However, it cannot
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Figure 1. The transformation between the camera coordinate frame and the robot reference coordinate
frame.

indicate the width of the opening or the orientation of the end-effector in detail [39]. Considering the
characteristics of our method, we choose the grasp rectangle as the grasp detection representation and
use an improved version of the grasp rectangle [14] to represent an appropriate grasp configuration and
overcome the limitation of the grasp point representation method. We denote the grasp configuration in
the image coordinate frame as:

GI(q, p, θ , ω) (1)

where q represents the grasp quality, p(u, v) corresponds to the gripper’s center position in image coor-
dinate frame, the gripper’s rotation angle around the z-axis is represented by θ , and ω represents the
required gripper width.

Grasp quality takes a value of [0, 1]; the closer the score is to 1, the more likely the robotic arm is to
grasp the object under the given grasp configuration successfully. To enable model learning smoothly,
we calculate the gripper’s rotation angle θ using sin(2φ) and cos(2φ) during post-processing by:

θ = 1

2
arctan

sin(2φ)

cos(2φ)
, θ ∈

[
−π

2
,
π

2

]
(2)

Because the gripper is symmetrical around ± π

2
. Thus, θ is given in the range

[− π

2
, π

2

]
. For ω, its pixel

values are set in the range of [0, ωmax], and ωmax can be adjusted according to the maximum width of the
gripper. The above grasp configuration is described in the image coordinate frame. We can convert the
grasp configuration to the robot reference coordinate frame by:

GR = TRC(TCI(GI)) (3)

where TCI is the transformation of the image coordinate frame to the camera coordinate frame, and TRC

converts the camera coordinate frame to the robot reference coordinate frame by the hand-eye calibration
result (see Figure 1).

4. Method
The grasp detection task we need to complete requires the use of a model to process the input image
and classify the objects to be grasped in the image and the environment, similar to a segmentation task.
In addition, we also need to extract semantic information about the object’s properties, such as position
and posture. Considering practical applications, we also need to simplify model complexity as much as
possible to ensure its real-time performance.

Based on the above requirements, we consider selecting a segmentation network with outstanding
segmentation and relatively lightweight performance as the backbone. We propose a novel model, a
framework used initially for biomedical image segmentation [26]. To improve the accuracy of prediction,
we introduce the ECA-ResNet module. Our robot visual grasp detection pipeline can be divided into
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Figure 2. The robot visual grasp detection pipeline.

Figure 3. ECA-ResNet module.

three parts: first, we use a depth camera to obtain the required visual information, and then our model
serves as the perception function. Finally, we send the appropriate grasp configuration to the robotic
arm to complete the grasp action (see Figure 2).

4.1. Efficient Channel Attention Residual Network (ECA-ResNet)
In order to improve the prediction accuracy of the model, we need to make the network ignore environ-
mental information unrelated to the object as much as possible. Introducing attention mechanisms has
been proven effective by most works [12, 15, 27, 28, 40]. Therefore, we adopt a channel attention mech-
anism to improve the network’s ability to obtain global features, reduce attention to noise and trivial
information, and extract feature channels related to grasping tasks.

We proposed the ECA-ResNet module into our model; the module is given in Figure 3. It consisted
of three convolution layers at first. Then, the global average pooling (GAP) and ECA module, where
the reduction ratio r is set to 16, was used. Specifically, assuming the input is X, the channel weight
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calculated by the ECA can be represented by Equation 4:

Weca = σ (Wpoe(f (X))) (4)

where f (X) = 1
HW

∑H,W
i=1, j=1 Xij is channel-wise GAP, σ is a Sigmoid function, and Wpoe has⎡

⎢⎢⎢⎢⎢⎢⎣

ω1 · · · ωk 0 0 · · · · · · 0

0 ω1 · · · ωk 0 · · · · · · 0

...
...

...
...

. . .
...

...
...

0 · · · 0 0 · · · ω1 · · · ωk

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

As for Equation 5, such method can be efficiently implemented by a fast 1D convolution with kernel
size of k:

σ (Wpoe(f (X))) = σ (C1Dk(f (X))) (6)

After channel-wise GAP without dimensionality reduction, the ECA module obtains local cross-channel
interaction by considering the impact of k neighbors [28]. Replacing the two full connections in the
traditional SE block with 1D convolution can directly establish the relationship between channels and
their weights. In the SE block, the channel weight calculated can be represented by Equation 7:

Wse = σ (W2ReLu(W1(f (X)))) (7)

where there are a total of 2 × ( C2

r
) parameters, W1 and W2 contain parameters C × ( C

r
) and ( C

r
) × C,

respectively. The fact that the ECA module only contains k parameters, which is usually less than
2 × ( C2

r
). So, we simplified the complexity of the model. We improve the model’s prediction accuracy

and real-time performance based on the above reasons. Meanwhile, we can improve the effect of our
model by increasing the number of layers. However, excessive layers may prevent smooth learning; they
induce problems such as vanishing gradients, overfitting, and dimensionality errors, which harm perfor-
mance [41]. So, we use the residual layer to solve the problems above. As shown in the bottom frame
of Figure 3, assuming the input is xin, the output xout of the ECA-ResNet module can be represented by
Equation 8. ⎧⎪⎨

⎪⎩
xout0 =WConv(xin),

xout1 = σ (Wpoe(f (xout0)))xout0,

xout = xin + xout1

(8)

whereWConvRelu indicates three convolution operations, with a ReLU after each convolution operation.

4.2. Network architecture
We present the architecture of the EGA-Net in Figure 4, which is inspired by ref. [26]. To fully utilize
visual information, we use the 4-channel multi-modal RGB-D image as input to the model [6]. The model
consists of two parts: feature extraction and feature fusion. The feature extraction obtains high-level
information in the image through convolution and pooling operations and emphasizes semantic infor-
mation relevant to grasping features using the constructed ECA-ResNet module. Afterward, to ensure
that low-level information containing rich spatial information is not lost, we concatenate low-level fea-
tures and ultimately output a heatmap that includes grasp quality, grasp angle, and grasp width in the
feature fusion section. The process can be described as follows: First, features of the 4-channel image
are extracted by a convolutional layer to get a sizeable receptive field; the output size is 224 × 224 × 32.
Then, the output as input forwards Maxpooling (kernelsize = 2, stride = 2) and Doubledownsample lay-
ers (kernelsize = 3, padding = 1), and the size of the output is 112 × 112 × 64, defined as x1. We will
pass this output through Maxpooling and Doubledownsample again; the output size is 56 × 56 × 128.
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Figure 4. Architecture of the Efficient Grasp Aware Network.

After that, the efficient channel attention and residual layer are used to suppress the corresponding triv-
ial background area, which smooths learning, extracts the saliency features, and improves the predicted
accuracy of the network. MaxPooling and Doubledownsample layers were followed after this ECA mod-
ule, and the output size is 28 × 28 × 256, defined as x2. The output as input forwards the ECA module
and Maxpooling and Doubledownsample layers again; the output size is 14 × 14 × 512, defined as x3.
Then, x3 is fed into the ECA module, and the output size is also 14 × 14 × 512, defined as x4. We feed x3

and x4 into the Upsample layer, concatenate them, and then pass them to the double convolutional layer.
The output size is 28 × 28 × 256. Meanwhile, we use the batch normalization and the ReLU function
in all convolution layers.

Our EGA-Net model processes the 4-channel image in a single pass to predict an appropriate grasp
configuration, which includes four components: grasp quality, sin(2φ), cos(2φ), and the opening width
of the gripper. We choose the pixel p = (u, v) with the highest grasp quality in the grasp quality heat map
as the grasp position and use the grasp angle and grasp width represented by the same pixel position in
the grasp angle heat map and grasp width heat map as the grasp configuration.

A grasp rectangle can represent the necessary parameters mentioned above. Specifically, in the image
coordinate frame, we use the position of the pixel p = (u, v) with the highest grasp quality in the grasp
quality map output from the EGA-Net as the vertical projection of the center of the gripper’s fingertips,
the angle θ of the rectangle as the rotation angle of the gripper around the z-axis, and the length ω of
the rectangle as the gripping width, as shown in the Figure 5.

4.3. Evaluation metric
To fairly evaluate the performance of our model, we use the rectangle metric for our method. According
to ref. [42], it can be considered successful when a grasp configuration meets the following conditions:

• The intersection over union (IOU) score between the predicted grasp Gp and the ground truth
grasp Gt is higher than 25%

• The difference between the grasp orientation of the predicted grasp rectangle and the grasp
orientation of the ground truth rectangle is less than 30◦.
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Figure 5. The grasp rectangle represents grasp configuration.

Where the IOU score for the predicted grasp Gp and the ground truth grasp Gt is defined as:

IOU(Gp, Gt) = Gp ∩ Gt

Gp ∪ Gt

(9)

where Gp is the predicted grasp rectangle and Gt is the ground truth grasp rectangle. The IOU score is
the quotient of the area of intersection between two rectangles and the area of union.

4.4. Loss function
In order to train our model well, we need to choose a stable and efficient loss function. Thus, we calculate
all losses in the output of the EGA-Net and choose the sum of losses to optimize our model. The entire
function is defined as:

Loss(Gp, Gt) = 1

n

∑
i

li (10)

where n represents the number of samples, li = αlpos + β(lcos + lsin) + γ lω, lpos, lcos, lsin, and lω are the
smooth L1 losses of all outputs of the model, respectively. Where smoothL1 loss is defined as:

smoothL1 =
{

0.5(Gt − Gp)2, if |Gt − Gp| < 1

|Gt − Gp| − 0.5, otherwise
(11)

A suitable grasp configuration is crucial for successfully grasping an object. Thus, the position and
rotation angle of the gripper are very important. Besides, an appropriate gripper opening width can
avoid unnecessary collisions. Thus, we experimentally set α = 1, β = 10, and γ = 5.

4.5. Training details
All networks involved in this paper are implemented with PyTorch. All networks are trained end-to-end
with a single NVIDIA TITAN V GPU, which has a total of 192 GB of memory. The batch size is set
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to 8, and the optimizer used in this paper is Adam. The learning rate is set to 0.0001. We take a center
crop of 224×224 pixels for input data.

5. Experiment setup
To verify the performance of the proposed method, we choose to test it on the Cornell dataset and
the Jacquard dataset. The Cornell dataset is widely used in the field of grasp detection, but it contains
comparatively less data, in fact. Some researchers have proposed methods to improve the performance
of models trained on limited datasets and have demonstrated through experiments that these methods
are effective [43, 44]. Thus, we also chose to test the performance of the method using the large-scale
Jacquard dataset. Meanwhile, we conducted ablation studies to test the contribution of each component
in the network, demonstrating the high performance of our method through comparison experiments. In
addition, we implemented the method on a real robotic arm to verify its feasibility.

5.1. Cornell dataset
The Cornell dataset is the first dataset to use the grasp rectangle as a grasp representation and is widely
used. The Cornell dataset contains a total of 224 objects with 885 RGB-D images. Each RGB-D image
has a resolution of 640 × 480 pixels. It has approximately 5110 positive and 2909 negative grasps. Each
image is labeled with multiple grasp poses, which is helpful for our model to output a pixel-level grasp
configuration. The quality of the dataset will directly affect the performance of the trained model. We
improve the performance of the model by implementing an augmented Cornell dataset using random
zooms, crops, and rotations.

We divided the dataset into two parts, where 90% of the dataset is used as the training set, and 10%
is the testing set. In order to demonstrate the performance of our model fairly, we divide the Cornell
dataset into two sets: image-wise (IW) and object-wise (OW).

5.2. Jacquard dataset
Compared to the Cornell dataset, the Jacquard dataset has a wider variety of object types and a larger
scale of labeled data, which is beneficial for improving the model’s generalization ability. The Jacquard
dataset contains 11,000 objects with 54,000 images, which collects labeled data through self-supervised
simulation of robotic arms. Because the dataset is enough for the training process, data augmentation
will not be performed in this dataset. Similarly, we use 90% of the dataset as the training set and the
other 10% as the testing set.

5.3. Grasp experiment
We use a 6-DOF UR-5 robotic arm with a Robotiq 2F-140 gripper for robotic grasp-and-place. We adopt
an Intel RealSense D435i RGB-D camera that uses stereo vision to calculate depth and an infrared pro-
jector that is fixed 0.8 m above the workspace (see Figure 6) to obtain information about the objects. The
EGA-Net is performed on a PC running Windows 10 with a 2.6 GHz Intel Core i7-10750 CPU, NVIDIA
GTX 1650Ti graphics card, and 16 GB of RAM allocated per job. To verify the generalization ability
of our model, we selected a series of objects with different shapes and types for the grasp experiment in
the physical world, all of which the model had never seen before.

We perform grasp tests of the isolated scene, the cluttered scene, and the non-clutter scene. All objects
used in the experiment are shown in Figure 7. It is worth noting that even when facing challenging types
(transparent and specular) of objects, our model can still achieve a great success rate in a variety of
scenes.
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Figure 6. Grasp experiment.

(a) (b)

(c)

Figure 7. Objects of a variety of scenes.

6. Experiments
6.1. Grasp detection on cornell dataset
Because the EGA-Net combines the color space containing rich texture information with depth data
containing object shape information, the method can predict the angle and width of the object to be
grasped well. In addition, through the ECA-Resnet module, the EGA-Net can distinguish objects from
the background and segment suitable grasp areas.

To show the effectiveness of our method, the EGA-Net is compared with recent methods in Table I.
The EGA-Net outperforms these methods and achieves an accuracy of 98.9%, which is competitive with
the state-of-the-art. It is worth noting that EGA-Net can accurately locate the object to be grasped from
the environment through the application of attention mechanisms; meanwhile, a dropout layer is added
to each of the output layers of the network to improve generalization ability. Data augmentation is used
to enrich the dataset during training, making the network achieve better results under OW. Due to the
lighter weight of the ECA-ResNet modules we use, the average inference speed of the model can reach
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Table I. Results on Cornell dataset.

Authors Algorithm IW(%) OW(%) Speed(ms)
Jiang [42] Fast Search 60.5 58.3 5000
Lenz [24] SAE, struct. reg 73.9 75.6 1350
Morrison [13] GG-CNN 73.0 69.0 19
Asif [45] GeaspNet 90.2 90.6 24
Kumra [14] GR-ConvNet-RGB-D 97.7 96.6 20
Wang [15] TF-grasp 97.9 96.7 41.6
i Yu [12] SE-ResUnet 98.2 97.1 25
Our EGA-Net 97.8 98.9 24

Figure 8. The part grasp detection results on the Cornell dataset.

24 ms per image, with high real-time performance. We also present the part prediction results of EGA-
Net on the Cornell dataset in Figure 8. We chose the grasp configuration with the highest grasp quality
for the robotic arm to execute, which is shown in the top row of the Figure 8. The other rows are heat
maps of grasp quality, angle, and width, respectively. It shows our method achieved impressive results
on the Cornell dataset.
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Table II. Results on Jacquard dataset.

Authors Algorithm Accuracy(%)
Morrison [13] GG-CNN 84
Kumra [14] GR-ConvNet-RGB-D 94.6
Wang [15] TF-Grasp 94.6
Yu [12] SE-ResUnet 95.7
Our EGA-Net 95.8

6.2. Grasp detection on jacquard dataset
The performance on the Jacquard dataset is shown in Table II, and our proposed method achieved high
accuracy, achieving a prediction accuracy of 95.8%. We have also provided heat maps of prediction
results on the part of the Jacquard datasets, as shown in Figure 9. From the Figure 9, we can qualita-
tively observe that our method can predict secure and robust grasp configuration, which contributes to
increased prediction accuracy for grasp detection tasks.

6.3. Ablation studies
In order to assess the influence of the incorporated components on the predictive performance of the
model, we conducted ablation experiments. The accuracy of the model trained on the Cornell dataset
was measured using the same training methodology to evaluate the contributions of each component, as
presented in Table III. Our findings from these experiments reveal that incorporating an attention mech-
anism is beneficial for improving network performance. Specifically, we found that the ECA mechanism
outperforms other attention mechanisms in terms of effectiveness. Additionally, when combined with
residual networks, it further enhances overall model performance.

6.4. Comparison studies
We conducted comparison studies and used the same input data and training settings to compare the
performance of our method with other outstanding methods like GG-CNN [13], GR-ConvNet [14], and
SE-ResUnet [12] on the Cornell dataset, Jacquard dataset, and real-world scenes. In the comparison
studies, for fairness, we used same training settings and the same input data for each dataset and only
changed the network for the experiment.

For the Cornell dataset, as shown in Figure 10, our method achieves higher grasp quality in terms
of the object’s graspable region. Additionally, for a given grasp point, our method determines a more
suitable grasp angle and width. This advantage enhances the safety and reliability of robotic arm grasp
actions in real-world scenes.

For the Jacquard dataset, as shown in Figure 11, our method can accurately distinguish between the
background and object of each scene. GG-CNN’s grasp angle of prediction and SE-ResUnet’s grasp
angle of prediction are incorrect, which can cause collisions between the gripper and the object and
prevent successful grasp. Although GR-Convnet predicts a feasible grasp configuration, our method
predicts a more suitable grasp angle and a more reliable grasp quality heat map. Overall, compared to
other advanced methods, our method is able to generate more reliable grasp configuration under the
same input data.

Furthermore, we conducted a comparative analysis of the performance of various methods in real-
world scenes. The objects involved were unseen, and some of them possessed unique physical properties.
Firstly, our evaluation focused on predicting the grasp configuration of individual objects, as illustrated
in Figure 12. For the left-side specular object, all methods effectively predicted the grasp configura-
tion. However, GG-CNN’s grasp width of prediction was suboptimal, while GR-Convnet’s angle of
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Table III. The experimental results of different component net-
works.

Accuracy(%)
Network IW OW
Unet 91.0 92.1
SE-Unet 92.1 93.3
EGA-Net (without residual layer) 93.3 94.4
EGA-Net 97.8 98.9

Figure 9. The part grasp detection results on the Jacquard dataset.

prediction risked collisions between the gripper and the object. Although SE-ResUnet generates a suit-
able grasp position and angle, its grasp width requires refinement. In contrast, our method produced a
more appropriate grasp configuration, which not only reliably grasps objects but also has a more suitable
grasp width. For transparent objects on the right side, because transparent objects have unique physical
properties; even humans can sometimes find it difficult to distinguish them from their environment. GR-
Convnet and SE-ResUnet view objects and the environment as one and do not detect the existence of
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Figure 10. Comparison of grasp detection results on the Cornell dataset.

objects. GG-CNN has detected the object, but the angle and width could be better. Compared to opaque
objects, our model has shown a decrease in the prediction of graspable areas but still predicts a suitable
grasp pose. Secondly, while our models are trained only on data sets with individual objects, we verify
the generalization of our method by comparing the results of the prediction of multiple objects, as shown
in Figure 13. For all opaque objects on the left side of Figure 13, GG-CNN’s predicted grasp poses will
result in collisions, and the GR-Convnet and SE-ResUnet predicted grasp poses can grasp objects, but
overall, they are not as accurate as the predictions of the EGA-Net. For objects containing various dif-
ferent physical properties in the scene on the right side of the Figure 13, only the EGA-Net accurately
predicted the appropriate grasp position, and other methods ignored the presence of transparent objects
due to the inability to distinguish between the transparent objects and the environment.

We also conducted comparison experiments on the most difficult-to-predict transparent objects and
specular objects separately, as shown in Figure 14. Due to the introduction of multiple objects in the
scene, there is less environmental information unrelated to grasping, which reduces the difficulty of
detecting object positions and enables most algorithms to generate detection results. The results show
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Figure 11. Comparison of grasp detection results on the Jacquard dataset.

that EGA-Net can predict the appropriate grasp configuration for different types of objects with higher
robustness and prediction accuracy, which is superior to the current multiple methods in the real world.

6.5. The robot visual grasp detection pipeline
The 4-channel RGB-D image from the RealSense D435i camera is input to the EGA-Net, which predicts
the appropriate grasp configuration for our robot and executes the grasp action. When an object is picked
up by the gripper and placed in the box, we think it is a successful grasp; otherwise, it is considered a
failed one.

6.5.1. Objects in isolated scene(Including trasparent and specular objects)
As far as we know, there are methods for grasping transparent objects [14, 46]. However, the position
grasped by these methods is in an opaque area of the object. The performance of these methods could
be better when facing completely transparent objects.

https://doi.org/10.1017/S0263574724001358 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001358


16 Haonan Xi et al.

Figure 12. Comparison studies with individual objects.

Figure 13. Comparison studies with multiple objects.

Although transparent and specular objects possess unique visual properties, our method adopts a
multi-modal fusion approach and takes the RGB-D image as the input. Thus, it can still predict appro-
priate grasp configuration (see Figure 15). The robotic arm performed 93 successful grasps of the total
100 grasp attempts, achieving a success rate of 93% for transparent and specular objects. The failure
to grasp is due to the network’s inability to detect transparent objects and generate appropriate grasp
configuration.
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Figure 14. Comparison studies of specular objects and transparent objects.

Figure 15. Grasp for transparent and specular objects.
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Figure 16. Physical grasp in clutter.

6.5.2. Objects in clutter scene
We conduct grasp experiments in the clutter scene. We stack objects from non-clutter experiments to
build the clutter scene. In this scene, multiple objects are placed in the workspace, and there is occlusion
between objects. This makes it more difficult for the model to predict the appropriate grasp configuration.
Under the circumstances, we also achieved a success rate of 91% in a total of 100 grasp attempts. The
experiment scene is shown in Figure 16. The most common gripping failure is caused by collisions
between the gripper and surrounding objects.

6.5.3. Objects in non-clutter scene
To verify the generalization ability of our model, we conducted grasp experiments with different types
of objects (see Figure 17). In 20 runs of the experiment (a) (only including opaque objects), we per-
formed 140 attempts, of which 131 were successful (93.6%). Table III shows the results of data-driven
methods for the real robotic grasp experiment. We performed the same experimental setup, only replac-
ing objects to be grasped. Through comparison, our method outperforms current, same-type methods
in real-world experiments. Experiments have shown that our model has a high generalization ability.
Even in different environments (b), (c), (d), and (e) in Figure 17, it still achieves an average success rate
of 88.6% (121/140) for grasping different types of objects. We encountered the most common failure
cause: collision of the gripper with other objects. This may be due to the poor quality of the ground truth
about width in the original dataset.

6.5.4. Error analysis
The output of the grasp detection method has the most critical impact on the successful grasp of objects.
However, some external factors still have an impact on grasp performance.

• The input data used in this paper is the RGB-D image obtained by the Intel RealSense D435i
RGB-D camera. Therefore, adopting an industrial camera with higher performance to improve
the quality of the acquired image, especially the quality of the depth data will enhance the
performance of grasp detection.

• Errors from hand-eye calibration results and the motion of the 6-DOF UR-5 robotic arm can also
affect the grasp’s performance.

• When facing transparent and specular objects, the unique physical properties of these objects
would distort the light path. Therefore, illumination would also affect the performance of
grasping these objects.

7. Conclusion
In this paper, we constructed the ECA-ResNet module to establish the direct relationship between chan-
nels and their weights directly. We help the model better extract semantic information about grasp
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(a)

(b)

(c)

(d)

(e)

Figure 17. Physical grasp in non-clutter. (a) only including opaque objects. (b) only including transpar-
ent objects. (c) only including specular objects. (d) Including opaque,transparent and specular objects.
(e) including transparent and specular objects.

and propose a novel model, EGA-Net, for grasp detection. Our method takes multi-modal informa-
tion (RGB-D image) as input to utilize visual information fully. It can efficiently distinguish important
features, reduce attention to trivial features, and output a pixel-level quality score to obtain appropriate
grasp configuration. The experiments show that our proposed method outperforms previous methods
and achieves 98.9% and 95.8% on the Cornell and Jacquard datasets, respectively. Moreover, our model
does not require any specific processing for input; it can also grasp transparent and specular objects
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with a high success rate, even in different environments. Nevertheless, in the grasp detection of trans-
parent and specular objects, our method still encounters situations where transparent objects cannot be
detected, possibly due to missing depth values. In the future, we plan to use the depth prediction method
to solve the problem of missing depth values. We aim to improve the performance of robots in grasping
transparent objects, enabling robots to replace humans in grasping dangerous transparent objects, such
as post-assay test tubes, which will reduce the risk of infection for relevant practitioners. In addition,
it is valuable to develop multi-modal fusion for grasping, such as visual information (RGB and depth),
temperature, and audio modalities.
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