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Abstract

An affine symplectic singularity X with a good C∗-action is called a conical symplectic

variety. In this paper we prove the following theorem. For fixed positive integers N and

d, there are only a finite number of conical symplectic varieties of dimension 2d with

maximal weights N , up to an isomorphism. To prove the main theorem, we first relate

a conical symplectic variety with a log Fano Kawamata log terminal (klt) pair, which

has a contact structure. By the boundedness result for log Fano klt pairs with fixed

Cartier index, we prove that conical symplectic varieties of a fixed dimension and with

a fixed maximal weight form a bounded family. Next we prove the rigidity of conical

symplectic varieties by using Poisson deformations.

1. Introduction

An affine variety X is conical if X can be written as SpecR with a finitely generated domain

R over C which is positively graded: R =
⊕

i>0Ri where R0 = C. The grading determines a

C∗-action on X, and the origin 0 ∈ X defined by the maximal ideal m :=
⊕

i>0Ri is a unique

fixed point of the C∗-action. We often say that X has a good C∗-action in such a situation.

A conical symplectic variety (X,ω) is a pair of a conical normal affine variety X and a

holomorphic symplectic 2-form ω on the regular locus Xreg, where (i) ω extends to a holomorphic

2-form on a resolution Z → X of X, and (ii) ω is homogeneous with respect to the C∗-action.

Conical symplectic varieties play an important role in algebraic geometry (cf. [Bea00,

Nam13c]) and geometric representation theory (cf. [BPW12, BLPW14]). Examples are nilpotent

orbit closures of a semisimple complex Lie algebra (cf. [CM93]), Slodowy slices to such nilpotent

orbits [Slo80] and Nakajima quiver varieties [Nak94].

Two conical symplectic varieties (X1, ω1) and (X2, ω2) are called isomorphic if there is a

C∗-equivariant isomorphism ϕ : X1→ X2 such that ω1 = ϕ∗ω2.

Take a set of minimal homogeneous generators {z0, . . . , zn} of the C-algebra R. We may

assume that wt(z0) 6 wt(z1) 6 · · · 6 wt(zn) and further that their greatest common divisor is 1.

We put ai := wt(zi). Then the (n + 1)-tuple (a0, . . . , an) is uniquely determined by the graded

algebra R. We call the number an the maximal weight of R. We state our main result.

Main Theorem. For positive integers N and d, there are only a finite number of conical

symplectic varieties of dimension 2d with maximal weights N , up to an isomorphism.
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Example. We must bound the maximal weight of X for the Main Theorem to hold. In fact,
A2n−1 surface singularities

f := x2n + y2 + z2 = 0, ω := Res(dx ∧ dy ∧ dz/f)

are conical symplectic varieties of dimension 2; their weights are (1, n, n) and the maximal weights
are not bounded above.

The proof of the Main Theorem consists of two parts. First, we shall relate a conical
symplectic variety X of dimension 2d with a contact Fano orbifold P(X)orb of dimension
2d− 1. The underlying variety P(X) of the orbifold is equipped with a divisor ∆ with standard
coefficients, and (P(X),∆) is a log Fano variety with Kawamata log terminal (klt) singularities.
If we fix the maximal weight N of X, then the Cartier index of −KP(X)−∆ is bounded above by
a constant depending only on d and N . By a recent result of Hacon et al. [HMX14], the set of all
such log Fano varieties forms a bounded family. This fact enables us to construct a flat family of
conical symplectic varieties over a quasi-projective base so that any conical symplectic variety of
dimension 2d with the maximal weight N appears somewhere in this family (Proposition 2.11).

Second, we shall prove that all fibres of the flat family on the same connected component
are isomorphic as conical symplectic varieties (Proposition 3.3). Notice that a symplectic variety
has a natural Poisson structure and the family constructed above can be regarded as a Poisson
deformation of the symplectic variety. A conical symplectic variety X has a universal Poisson
deformation over an affine space [Nam11]. The central fibre X of the universal family has a
C∗-action, but no nearby fibre does. This fact means that X is rigid under a Poisson deformation
together with the C∗-action (Corollary 3.2) and Proposition 3.3 follows. The Main Theorem is
a corollary of Propositions 2.11 and 3.3.

2. Contact orbifolds

In this section (X,ω) is a conical symplectic variety of dimension 2d with the maximal weight
N . By definition ω is homogeneous with respect to the C∗-action. We denote by l the degree
(weight) of ω. By [Nam13a, Lemma 2.2], we have l > 0.

By using the minimal homogeneous generators in the introduction we have a surjection from
the polynomial ring to R,

C[x0, . . . , xn]→ R,

which sends each xi to zi. Correspondingly, X is embedded in Cn+1. The quotient variety Cn+1−
{0}/C∗ by the C∗-action (x0, . . . , xn) → (ta0x0, . . . , t

anxn) is the weighted projective space
P(a0, . . . , an). We put P(X) := X − {0}/C∗. By definition P(X) is a closed subvariety of
P(a0, . . . , an). Put Wi := {xi = 1} ⊂ Cn+1. Then the projection map p : Cn+1 − {0} →
P(a0, . . . , an) induces a map pi : Wi → P(a0, . . . , an), which is a finite Galois covering of the
image. The collection {pi} defines a smooth orbifold structure on P(a0, . . . , an) in the sense of
[Mum83, § 2]. More exactly, the following conditions are satisfied.

(i) For each i, Wi is a smooth variety, pi : Wi → pi(Wi) is a finite Galois covering,1 and⋃
Im(pi) = P(a0, . . . , an).

(ii) Let (Wi×P(a0,...,an)Wj)
n denote the normalization of the fibre product Wi×P(a0,...,an)Wj .

Then the maps (Wi×P(a0,...,an)Wj)
n
→Wi and (Wi×P(a0,...,an)Wj)

n
→Wj are both étale maps.

1 The precise definition of an orbifold only needs a slightly weaker condition: pi : Wi → P(a0, . . . , an) factorizes

as Wi
qi
→Wi/Gi

ri
→ P(a0, . . . , an) where Gi is a finite group and ri is an étale map.
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The orbifold P(a0, . . . , an) admits an orbifold line bundle OP(a0,...,an)(1). Put Di := {xi = 0}
⊂ P(a0, . . . , an) and D :=

⋃
Di. Since xi are minimal generators, D̄ := P(X)∩D is a divisor of

P(X). Let

D̄ =
⋃
D̄α

be the decomposition into irreducible components.2

The map p : X−{0}→ P(X) is a C∗-fibre bundle over P(X)− D̄. But a fibre over a general
point of D̄α may possibly be a multiple fibre. We denote its multiplicity by mα.

By putting Ui := X ∩Wi and πi := pi|Ui , the collection {πi : Ui→ P(X)} of covering maps
induces a (not necessarily smooth) orbifold structure on P(X). Namely, we have the following
properties.

(i) For each i, Ui is a normal variety, πi : Ui → πi(Ui) is a finite Galois covering, and⋃
Im(πi) = P(X).

(ii) The maps (Ui ×P(X) Uj)
n
→ Ui and (Ui ×P(X) Uj)

n
→ Uj are both étale maps.

We put L := OP(a0,...,an)(1)|P(X), which is an orbifold line bundle on P(X). We call L the
tautological line bundle. Then X − {0} → P(X) can be regarded as an orbifold C∗-bundle
(L−1)×. Notice that X has only rational Gorenstein singularities and, in particular, the log pair
(X, 0) of the X and the zero divisor has klt singularities. We define a Q-divisor ∆ by

∆ :=
∑

(1− 1/mα)D̄α.

The following lemma [Nam13b, § 1, Lemma] will be a key step toward our main theorem.

Lemma 2.1. The pair (P(X),∆) is a log Fano variety, that is, (P(X),∆) has klt singularities
and −(KP(X) + ∆) is an ample Q-divisor.

Moreover, the symplectic structure on X induces a contact orbifold structure on P(X)
[Nam13a, Theorem 4.4.1]. We shall briefly explain this. First of all, a contact structure on a
complex manifold Z of dimension 2d− 1 is an exact sequence of vector bundles

0→ E
j
→ ΘZ

θ
→ L→ 0,

with a vector bundle E of rank 2d− 2 and a line bundle L. Here θ induces a pairing map

E × E → L (x, y)→ θ([j(x), j(y)]),

and we require that it is non-degenerate. If Z admits such a contact structure, then we have
−KZ

∼= L⊗d. The map θ can be regarded as a section of Ω1
Z ⊗L, and we call it the contact form.

Moreover, L is called a contact line bundle.
We can slightly generalize this notion to a singular variety Z. Let us assume that Z is a

normal variety of dimension 2d − 1 and let L be a line bundle on Z. If Zreg admits a contact
structure with the contact line bundle L|Zreg , then we call it a contact structure on Z. The
twisted 1-form θ ∈ Γ(Zreg,Ω

1
Z ⊗ L|Zreg) is also called the contact form.

We now go back to our situation. As explained above, P(X) admits orbifold charts
Ui → P(X). The orbifold line bundle OP(a0,...,an)(1) restricts to a line bundle Li on Ui, and
the collection {Li} determines an orbifold line bundle L on P(X). We then have a contact

2 The index α is usually different from the original index i of Di because Di1 ∩ · · · ∩ Dik ∩ P(X) may possibly
become an irreducible component of D̄ or Di ∩P(X) may split into more than two irreducible components of D̄.
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structure on each Ui with the contact line bundle L⊗li , where l = wt(ω). Let us denote the
contact form by θi. Notice that θi is a section of Ω1

(Ui)reg
⊗ L⊗li |(Ui)reg . Consider the diagram

Ui
pi
← (Ui ×P(X) Uj)

n pj
→ Uj .

Then we have p∗i (θi) = p∗j (θj) for all i and j. Thus θ := {θi} can be regarded as a section of

Hom(ΘP(X)orb ,L⊗l). We call the pair (θ,L⊗l) a contact orbifold structure on P(X)orb, and the

orbifold line bundle L⊗l is called its contact line bundle. Similarly to the ordinary case, we have
an isomorphism −KP(X)orb

∼= L⊗ld of orbifold line bundles.

By the construction of P(X), the orbifold line bundle L⊗N ! is a usual line bundle on P(X)
and so is −K⊗N !

P(X)orb
. Notice here that KP(X)orb = p∗(KP(X) + ∆), where p : P(X)orb→ P(X) is

the natural map. Therefore N !(KP(X) + ∆) is a Cartier divisor.

Theorem 2.2 (Hacon et al. [HMX14, Corollary 1.8]). Let m and r be fixed positive integers.
Let D be the set of klt log Fano pairs (Y,∆) such that dimY = m and −r(KY + ∆) are ample
Cartier divisors. Then D forms a bounded family.

In particular, the self-intersection number (−KY −∆)m is bounded above by some constant
depending only on m and r.

We now apply Theorem 2.2 above by putting r = N !.

Lemma 2.3. The weight l of ω is bounded above by some constant depending only on d and N .

Proof. Since −KP(X)orb
∼= L⊗ld and L⊗N ! = p∗L for L ∈ Pic(P(X)), we have −(KP(X) + ∆) ∼Q

ld/N ! ·L. Here (−KP(X)−∆)2d−1 is bounded above by a constant depending on N and d. On the

other hand, L2d−1 is a positive integer; this implies that l must be bounded above by a constant
depending on N and d. 2

Lemma 2.4. The number of the minimal homogeneous generators of R is bounded above by
some constant depending only on d and N .

Proof. By Theorem 2.2 there is a positive integer q (which is a multiple of r) depending only on r
and d such that q(−KP(X) +∆) is a very ample Cartier divisor and h0(P(X), q(−KP(X)−∆)) =

h0(P(X),−K⊗q
P(X)orb

) is bounded above by a constant depending on r and d.

There are only finitely many possibilities for a weight of R because the weight is less than
or equal to N . Since r = N !, the integer q is a multiple of any possible weight.

Note that −K⊗q
P(X)orb

∼= L⊗qld. Take an arbitrary weight, say a. Suppose that exactly

s elements (say, z1, . . . , zs) have the weight a among the minimal homogeneous generators.
Note that these are elements of H0(P(X),L⊗a). Write q = q′a. Then (z1)

q′dl, (z1)
q′dl−1z2,

. . . , (z1)
q′dl−1zs are linearly independent elements of H0(P(X),L⊗qld). In fact, suppose to the

contrary that there is a non-trivial relation λ1(z1)
q′dl + λ2(z1)

q′dl−1z2 + · · ·+ λs(z1)
q′dl−1zs = 0.

Then we have an equality
(z1)

q′dl−1 · (λ1z1 + · · ·+ λszs) = 0

in R =
⊕

i>0H
0(P(X),L⊗i). Since R is a domain, we conclude that z1 = 0 or Σλizi = 0. But,

by the assumption, both z1 and Σλizi are non-zero, which is absurd; hence (z1)
q′dl, (z1)

q′dl−1z2,
. . . , (z1)

q′dl−1zs are linearly independent. This means that

s 6 h0(P(X),L⊗qld) = h0(P(X),−K⊗q
P(X)orb

).

In particular, s is bounded above by a constant depending only on d and N . 2
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The graded coordinate ring of a weighted projective space is called a weighted polynomial
ring.

Corollary 2.5. Fix positive integers d and N . Then there are finitely many weighted
polynomial rings S1, . . . , Sk such that any graded coordinate ring R of a conical symplectic
variety of dimension 2d with the maximal weight N can be realized as a quotient of some Si.

In the corollary, we put Pi := Proj(Si). Then we have the following result.

Corollary 2.6. There are flat families of closed subschemes of Pi(1 6 i 6 k), Yi ⊂ Pi × Ti,
parameterized by reduced quasi-projective schemes Ti such that, for any conical symplectic
variety X of dimension 2d with the maximal weight N , there is a point t ∈ Ti for some i and
P(X) = Yi,t.

Proof. Let q be the least common multiple of all weights of the minimal homogeneous generators
of all Si. Then OPi(q) is an ample line bundle for every i. Take a conical symplectic symplectic
variety X of dimension 2d with the maximal weight N . Then P(X) can be embedded in some
Pi. By Theorem 2.2 there are only finitely many possibilities of the Hilbert polynomial χ(P(X),
OP(X)(qn)). Such closed subschemes of Pi form a bounded family. 2

Let Y ⊂ P×T be one of the flat families in Corollary 2.6. Define a map f : Y → T to be the

composite Y → P × T pr2
→ T . Let {Wi → P} be the orbifold charts for the weighted projective

space P constructed in the beginning of this section. Denote by Gi the Galois group for Wi→ P.
Then the collection {Wi×T → P×T} also gives relative orbifold charts for P×T/T . By pulling

back these charts by the inclusion map Y → P× T , we have relative orbifold charts {Ui
πi
→ Y}

for Y/T . If necessary, we stratify T into a disjoint union of a finite number of locally closed
sets by using the generic flatness property (cf. [Mum86, Lecture 8, Proposition]) repeatedly
so that all Ui are flat over each stratum and replace T by the disjoint union of such subsets.
Thus we may assume that Ui are all flat over T . Let Oorb

P (1) := {OWi(1)} be the tautological
orbifold line bundle on P. Denote simply by OWi×T (1) the pullback of OWi(1) by the projection
Wi × T →Wi. Then {OWi×T (1)|Ui} gives a relative tautological orbifold line bundle Oorb

Y (1) on

Y. For each j ∈ Z, we define a usual sheaf Lj on Y by Lj := {πGi
∗ OWi×T (j)|Ui}. Notice that Lj is

flat over T . On the other hand, for t ∈ T , one can consider the orbifold structure on Yt induced
by the embedding Yt ⊂ P. We similarly define a tautological orbifold line bundle Oorb

Yt (1) and

the usual sheaves Ljt on Yt. We have Lj ⊗OY OYt ∼= Ljt .
We define

T ′ := {t ∈ T | f∗Lj ⊗OT
k(t) ∼= H0(Yt,Ljt ) and f∗Lj are locally free at t for all j > 0}.

Lemma 2.7. The set T ′ is a non-empty Zariski open subset of T .

Proof. First we show that there is a positive integer j0 such that H1(Yt,Ljt ) = 0 for all j > j0
and for all t ∈ T . Take a positive integer q so that OP(q) is a very ample line bundle on P. Notice
that Lj ⊗ OP(q) ∼= Lj+q for all j. We consider the sheaves Lj for j with 0 6 j < q. Notice that
they are flat over T .

We shall prove that there is a positive integer nj such that H1(Yt,Ljt (qn)) = 0 for all n > nj
and for all t. As T is of finite type over C, we can take a positive integer nj so that Rpf∗Lj(qn) = 0
for all p > 0 and for all n > nj (Serre vanishing theorem). Notice that, for any point t ∈ T , one
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has Hp(Yt,Ljt (qn)) = 0 for p > 2d − 1. Fix an integer n with n > nj and let us consider the

base change map ϕp(t) : Rpf∗Lj(qn) ⊗ k(t) → Hp(Yt,Ljt (qn)). By the base change theorem,
when ϕp(t) is surjective, the map ϕp−1(t) is a surjection if and only if Rpf∗Lj(qn) is locally
free at t. First of all, ϕ2d(t) is a surjection because H2d(Yt,Ljt (qn)) = 0. Since R2df∗Lj(qn) = 0,
the map ϕ2d−1(t) is also a surjection. We can repeat this argument to conclude that ϕ1(t) is a
surjection because Rpf∗Lj(qn) = 0 for all p > 0. Since R1f∗Lj(qn) = 0, we finally obtain that
H1(Yt,Ljt (qn)) = 0.

Put ν := max{n0, . . . , nq−1}. Then we have H1(Yt,Ljt ) = 0 for all j > qν and for all t ∈ T .

By the base change theorem, f∗Lj are locally free and f∗Lj ⊗OT
k(t) ∼= H0(Yt,Ljt ) for all j > qν

and for all t ∈ T .
We next consider the sheaves Lj for j < qν. For each such j, it is an open condition for T

that f∗Lj is locally free at t and f∗Lj ⊗OT
k(t) ∼= H0(Yt,Ljt ) holds. Therefore T ′ is a non-empty

Zariski open subset of T . 2

Define
X := (SpecT ⊕j>0 f∗Lj)×T T ′.

As each direct summand f∗Lj is flat over T , the map X → T ′ is flat. Let us return to
Corollary 2.6. The construction above enables us to make a flat family Xi→ T ′i of affine schemes
with good C∗-actions on an open subset T ′i of each Ti.

Corollary 2.8. There is a flat family of affine schemes with good C∗-actions X → T
parameterized by reduced quasi-projective schemes T such that, for any conical symplectic
variety X of dimension 2d with the maximal weight N , there is a point t ∈ T and X ∼= Xt
as a C∗-variety.

Proof. The family X → T is nothing but the disjoint union of {Xi → T ′i}. Let X be a conical
symplectic variety of dim 2d with the maximal weight N . By Corollary 2.6 there is a point t of
some Ti and P(X) = Yi,t ⊂ Pi. Since the coordinate ring R of X is normal, the natural maps
H0(Pi, OPi(j))→ H0(P(X), OP(X)(j)) are surjective for all j > 0. This fact implies that t ∈ T ′i
and Xi,t = X. 2

Let f : X → T be the flat family in Corollary 2.8. By Elkik [Elk78, Théorème 4], the set

X 0 := {x ∈ X | Xf(x) has rational singularities at x}
is a Zariski open subset of X . By the C∗-action we also see that

T 0 := {t ∈ T | Xt has rational singularities}
is a Zariski open subset of T . We take a resolution Trat of T 0. Note that Trat is the disjoint
union of finitely many non-singular quasi-projective varieties. We put Xrat := X ×T Trat and let
frat : Xrat→ Trat be the induced flat family. Again by [Elk78], Xrat has only rational singularities.
In particular, it is normal. Notice that any conical symplectic variety of dimension 2d with the
maximal weight N is realized as a fibre of this family.

We next stratify Trat into the disjoint union of locally closed smooth subsets Trat,i so
that Xrat ×Trat Trat,i → Trat,i have C∗-equivariant simultaneous resolutions. To obtain such a
stratification, we first take a C∗-equivariant resolution X̃rat → Xrat. By Bertini’s theorem there
is an open subset T 0

rat of Trat such that this resolution gives simultaneous resolutions of fibres over
T 0
rat. Next stratify the complement Trat − T 0

rat into locally closed smooth subsets, take maximal
strata and repeat the same for the families over them. Thus we have proved the following result.
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Proposition 2.9. There is a flat family of affine varieties with good C∗-actions X → T
parameterized by the disjoint union T of a finite number of quasi-projective non-singular varieties
such that:

(i) Xt have only rational singularities for all t ∈ T ;

(ii) there is a C∗-equivariant simultaneous resolution Z → X of X/T (namely, Zt → Xt are
resolutions for all t ∈ T ); and

(iii) for any conical symplectic variety X of dimension 2d with the maximal weight N , there is
a point t ∈ T and X ∼= Xt as a C∗-variety.

Let X f
→ T and Z g

→ T be the families in Proposition 2.9. Let us consider the relative
dualizing sheaf ωX/T of f . For t ∈ T , we have ωX/T ⊗OX OXt

∼= ωXt . The locus Tgor ⊂ T where
ωXt is invertible is an open subset of T . We put Xgor := X ×T Tgor and Zgor := Z ×T Tgor. Then
f and g respectively induce maps fgor : Xgor → Tgor and ggor : Zgor → Tgor. Notice that any
conical symplectic variety X of dimension 2d with the maximal weight N still appears in some
fibre of fgor.

Proposition 2.10 (Base change theorem). Let h : W → S be a morphism of quasi-projective
schemes over C. Assume that W is normal and C∗ acts on W fibrewise with respect to h. Let
F be a C∗-linearized coherent OW -module on W , which is flat over S. Then the higher direct
image sheaves Rih∗F are naturally graded: Rih∗F =

⊕
j∈Z(Rih∗F )(j). Assume that (Rih∗F )(j0)

(i > 0) are all coherent sheaves on S for j0. Then the following properties hold.

(a) For each i, the function S → Z defined by

s→ dimH i(Ws, Fs)(j0)

is upper-semicontinuous on S.

(b) Assume that S is reduced and connected. If the function s → dimH i(Ws, Fs)(j0) is
constant, then (Rih∗F )(j0) is a locally free sheaf on S and, for all s ∈ S, the natural map
φis : (Rih∗F )(j0)⊗OT

k(s)→ H i(Ws, Fs)(j0) is an isomorphism.

We can take C∗-equivariant affine open coverings of W by the theorem of Sumihiro
(cf. [KKMS73, ch. I, § 2]). Then the proof of Proposition 2.10 is similar to [Mum70, II, 5].

We apply this proposition to ggor : Zgor → Tgor and Ωk
Zgor/Tgor

. Notice that

(Ri(ggor)∗Ω
k
Zgor/Tgor

)(l) are all coherent sheaves on Tgor for any l. Let us consider the relative

differential map

((ggor)∗Ω
2
Zgor/Tgor

)(l)
d
→ ((ggor)∗Ω

3
Zgor/Tgor

)(l)

and put

F := Ker(d), G := Coker(d).

Fix an integer l. Then one can find a non-empty Zariski open dense subset Tl of Tgor so that,
if t ∈ Tl, then both F and G are free at t,

((ggor)∗Ω
2
Zgor/Tgor

)(l)⊗ k(t) ∼= H0(Zgor,t,Ω
2
Zgor,t

)(l),

and

((ggor)∗Ω
3
Zgor/Tgor

)(l)⊗ k(t) ∼= H0(Zgor,t,Ω
3
Zgor,t

)(l).
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A d-closed 2-form ω0 of weight l on a fibre Zgor,t (t ∈ Tl) is an element of Ker[H0(Zgor,t,

Ω2
Zgor,t

)(l)
d
→ H0(Zgor,t,Ω

3
Zgor,t

)(l)]. By the exact sequence

F ⊗ k(t)→ H0(Zgor,t,Ω
2
Zgor,t

)(l)
d
→ H0(Zgor,t,Ω

3
Zgor,t

)(l),

ω0 comes from an element ω′0 ∈ F⊗k(t). Then ω′0 lifts to a local section ω of F . If we regard ω as
a local section of ((ggor)∗Ω

2
Zgor/Tgor

)(l), it is a d-closed relative 2-form extending the original ω0.

Assume that Xt (t ∈ Tl) is a conical symplectic variety and ω0 is the extension of the
symplectic 2-form on Xt,reg to the resolution Zt. The wedge product ∧dω0 is regarded as a
section of the dualizing sheaf ωXgor,t by the identification H0(Zgor,t,Ω

2d
Zgor,t

) ∼= H0(Xgor,t, ωXgor,t).

Then ∧dω0 generates the invertible sheaf ωXgor,t . We also see that ∧dω generates ωXgor/Tgor on
near fibres of Xgor,t.

The argument here shows that

Tsymp,l := {t ∈ Tl | Xgor,t is a conical symplectic variety with a symplectic form of weight l}

is an open subset of Tl. We have fixed an integer l. But notice that the choice of such an l is
finite by Lemma 2.3.

We put Xsymp,l := X ×T Tsymp,l and Zsymp,l := Z ×T Tsymp,l. Then Xsymp,l→ Tsymp,l is a flat
family of conical symplectic varieties with symplectic forms of weight l and Zsymp,l → Tsymp,l is
its simultaneous resolution.

To specify the symplectic form on each fibre of Xsymp,l → Tsymp,l, we consider the vector
bundle p : Vl := V(F∗|Tsymp,l

)→ Tsymp,l. Each point v ∈ Vl corresponds to a d-closed holomorphic
2-form ωv on the regular part of (Xsymp,l)p(v). Moreover, ωv extends to a holomorphic 2-form
on the resolution (Zsymp,l)p(v). Let V 0

l be the non-empty Zariski open subset of Vl where ωv is
non-degenerate. Take the base change Xsymp,l×Tsymp,l

V 0
l → V 0

l . Then the regular locus of a fibre
of this family is naturally equipped with a symplectic 2-form of weight l.

Stratify T\Tl into locally closed smooth subsets, take maximal strata and repeat the same
for the families over them. Then we get the following proposition.

Proposition 2.11. There is a flat family of the pairs of affine symplectic varieties with good
C∗-actions and symplectic forms: (X , ωX/T ) → T parameterized by the disjoint union T of a
finite number of quasi-projective non-singular varieties such that:

(i) for each connected component Ti of T , all fibres (Xt, ωt) over t ∈ Ti are conical symplectic
varieties admitting symplectic forms of a fixed weight li > 0;

(ii) there is a C∗-equivariant simultaneous resolution Z → X of X/T (namely, Zt → Xt are
resolutions for all t ∈ T ); and

(iii) for any conical symplectic variety (X,ω) of dimension 2d with the maximal weight N , there
is a point t ∈ T and (X,ω) ∼= (Xt, ωt) as a C∗-symplectic variety.

3. Rigidity of conical symplectic varieties

Let (X,ω) be a conical symplectic variety with a symplectic form ω of weight l. The symplectic
form ω determines a Poisson structure on Xreg. By the normality of X, this Poisson structure
uniquely extends to a Poisson structure { , } on X. Here a Poisson structure on X precisely
means a skew-symmetric C-bilinear map { , } : OX × OX → OX which is a biderivation with
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respect to the first and second factors, and satisfies the Jacobi identity. We will consider a Poisson
deformation of the Poisson variety. A T -scheme X → T is called a Poisson T -scheme if there is
a OT -bilinear Poisson bracket { , }X : OX ×OX → OX , which is a biderivation and satisfies the
Jacobi identity. Let T be a scheme over C and let 0 ∈ T be a closed point.

A Poisson deformation of the Poisson variety X over T is a Poisson T -scheme f : X → T
together with an isomorphism ϕ : X0

∼= X which satisfies the following conditions:

(i) f is a flat surjective morphism; and

(ii) { , }X restricts to the original Poisson structure { , } on X via the identification ϕ.

Two Poisson deformations (X/T, ϕ) and (X ′/T, ϕ′) with the same base are equivalent if there
is a T -isomorphism X ∼= X ′ of Poisson schemes such that it induces the identity on the central
fibre. For a local Artinian C-algebra A with residue field C, we define PDX(A) to be the set of
equivalence classes of Poisson deformations of X over Spec(A). Then it defines a functor

PDX : (Art)C→ (Set)

from the category of local Artinian C-algebra with residue field C to the category of sets.

Theorem 3.1 [Nam11, Theorem 5.5]. There is a Poisson deformation Xuniv → Am of X over
an affine space Am with Xuniv,0 = X. This Poisson deformation has the following properties and
is called the universal Poisson deformation of X.

(i) For any Poisson deformation X → T of X over T = Spec(A) with A ∈ (Art)C, there is
a unique morphism φ : T → Am which sends the closed point of T to the centre 0 ∈ Am such
that X/T and Xuniv ×Am T/T are equivalent as Poisson deformations of X.

(ii) There are natural C∗-actions on Xuniv and Am induced from the C∗-action on X such
that the map Xuniv→ Am is C∗-equivariant. Moreover the coordinate ring C[y1, . . . , ym] of Am

is positively graded so that wt(yi) > 0 for all i.

Corollary 3.2. Let (X,ω) be a conical symplectic variety and let T := Spec(A) be a non-
singular affine curve with a base point 0 ∈ T . Assume that X → T is a Poisson deformation of
X. Assume that C∗ acts on X in such a way that:

(i) it induces a C∗-action on each fibre of X/T and the C∗-action on the central fibre coincides
with the original C∗-action on X; and

(ii) the Poisson bracket on each fibre is homogeneous with respect to this action.

Then there is a C∗-equivariant Poisson isomorphism f : X ×T T̂ ∼= X× T̂ over T̂ := Spec(Â),
where Â is the completion of A along the defining ideal m of 0.

Proof. Notice that Â ∼= C[[t]]. Put Tn := Spec(C[[t]]/(tn+1)) and Xn := X ×T Tn. The formal
Poisson deformation {Xn→ Tn} determines a morphism φ : Spec(C[[t]])→Am by Theorem 3.1.
By assumption (i), Im(φ) is contained in the C∗-fixed locus of Am. By the last property in (ii)
of Theorem 3.1, this means that φ is the constant map to the origin of Am. We will now

construct isomorphisms between formal Poisson deformations {Xn}n>0
βn
→ {X × Tn}n>0, where

the right-hand side is a trivial Poisson deformation of X. Assume that we already have βn−1.

Since φ is constant, we have an equivalence Xn

β′n∼= X ×Tn of Poisson deformations of X. We put
β′n−1 := β′n|Xn−1 . Then γn−1 := β−1n−1◦β′n−1 is a Poisson automorphism of Xn−1. By (the proof of)
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[Nam11, Corollary 2.5], γn−1 lifts to a Poisson automorphism γn of Xn. Define βn := β′n ◦ γ−1n .
Then βn is a Poisson isomorphism from Xn to X × Tn extending βn−1.

Note that {X × Tn}n>0 has a natural C∗-action induced by the C∗-action of X. By the
isomorphisms {βn}n>0 above, this C∗-action induces a C∗-action on {Xn}n>0. On the other hand,
{Xn}n>0 has a C∗-action inherited from X . We will construct a Poisson automorphism {ψn}n>0

of {Xn}n>0 inductively so that these two C∗-actions are compatible. At first we put ψ0 := id.
Assume that we are given a Poisson automorphism ψn which makes two C∗-actions compatible.
By (the proof of) [Nam11, Corollary 2.5], ψn lifts to a Poisson automorphism ψ′n+1 of Xn+1. We
denote by ζ1, ζ2 ∈ Γ(X,ΘXn+1/Tn+1

) respectively the relative vector fields generating the first
and second C∗-actions. Let ζ ∈ Γ(X,ΘX) be the vector field (Euler vector field) generating the
C∗-action. Notice that ζ1|X = ζ2|X = ζ. We write

(ψ′n+1)∗ζ1 − ζ2 = tn+1 · Σvi,

with vi ∈ Γ(X,ΘX)(i). In other words, vi is a homogeneous vector field of weight i, that is,
[ζ, vi] = ivi. The Lie derivative Lviζ can be computed as

Lviζ = [vi, ζ] = −ivi.

For the Poisson bivector θ, we have L(ψ′n+1)∗ζ1
θ = Lζ2θ = −l · θ; and hence Lviθ = 0.

By this observation, if we put

ψn+1 := ψ′n+1 + tn+1Σi 6=0(1/i)vi,

then ψn+1 is still a Poisson automorphism of Xn+1 (because Lviθ = 0) and one can write

(ψn+1)∗ζ1 − ζ2 = tn+1v0.

Finally, we show that (ψn+1)∗ζ1 = ζ2 by using the fact that these are both integrated to
C∗-actions. Consider the two C∗-actions on Xn+1 generated by (ψn+1)∗ζ1 and ζ2. As both
vector fields are C∗-invariant (with respect to any one of the two C∗-actions), these C∗-actions
mutually commute. We now prove that these C∗-actions are the same by the induction on n
(the index of Tn). The coordinate ring R of Xn+1 is isomorphic to R ⊗C C[t]/(tn+2), where
X = Spec(R). We may assume that one of the C∗-actions corresponds to the usual grading⊕

i>0(Ri ⊕ tRi ⊕ · · · ⊕ tn+1Ri). Let us consider the weight-i eigenspace Vi of another C∗-action.
Since two C∗-actions are compatible, Vi decomposes as Vi =

⊕
j Vi,j where Vi,j is a subspace of

Rj ⊕ tRj ⊕ · · · ⊕ tn+1Rj . By the induction hypothesis, we have Vi,j ⊂ tn+1Rj if j 6= i. But
the weight-i eigenspace of tn+1R with respect to the second C∗-action also coincides with
tn+1Ri because tn+1R = tn+1R = (tn+1) ⊗C R. This means that Vi,j = 0 if j 6= i. Therefore
Vi = Vi,i ⊂ Ri ⊕ tRi ⊕ · · · ⊕ tn+1Ri and we conclude that the two C∗-actions are the same.

Now the composite

{Xn}n>0
βn◦ψn
→ {X × Tn}n>0

is a C∗-equivariant Poisson isomorphism. By using the C∗-actions of both sides, we then get a
desired C∗-equivariant Poisson isomorphism X ×T T̂ ∼= X × T̂ over Spec(Â). 2

Proposition 3.3. Under the same assumption as in Corollary 3.2, all fibres are isomorphic as
conical symplectic varieties.
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Proof. Let us consider the two T -schemes X and X × T with C∗-actions. We define a functor

HomC∗
T (X , X × T ) : (T -schemes)→ (Set)

by T ′→ HomC∗
T ′ (X ×T T ′, X × T ′). Then it is a functor of locally finite presentation. By Artin’s

approximation theorem [Art69], if we are given a C∗-equivariant morphism f : X ×T T̂ → X× T̂ ,
then there is a pointed algebraic scheme s0 ∈ S (that is, a pointed scheme of finite type over C)
together with an étale map h : (S, s0)→ (T, 0) and a C∗-equivariant morphism g : X×TS→X×S
such that g(s0) : X ×T k(s0)→ X×k(s0) coincides with f(0) : X ×T k(0)→ X×k(0). We apply
this to the morphism f in Corollary 3.2. As f is an isomorphism, we may assume that g is also an
isomorphism, if necessary, by suitably shrinking S. Then we have a C∗-equivariant isomorphism
X ×T S ∼= X×S. This implies that Xh(s) is isomorphic to X as a C∗-variety for any closed point
s ∈ S. By [Nam13a, Theorem 3.1], two conical symplectic varieties having symplectic 2-forms of
the same weight are isomorphic if they are isomorphic as C∗-varieties. 2

Now, by Propositions 2.11 and 3.3, we obtain our Main Theorem.

Main Theorem. For positive integers N and d, there are only a finite number of conical
symplectic varieties of dimension 2d with maximal weights N , up to an isomorphism.
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