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Abstract We consider the radially symmetric positive solutions to quasilinear problem

−4u− u4u2 + λu = f(u), in RN ,

having prescribed mass
∫
RN |u|2 = a2, where a > 0 is a constant, λ appears as a Lagrange multiplier.

We focus on the pure L2-supercritical case and combination case of L2-subcritical and L2-supercritical
nonlinearities

f(u) = τ |u|q−2u+ |u|p−2u, τ > 0, where 2 < q < 2 +
4

N
and p > p̄,

where p̄ := 4 + 4
N

is the L2-critical exponent. Our work extends and develops some recent results in the
literature.
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1. Introduction and main results

In this paper,1 we study the following quasilinear Schrödinger equation:

−4u− u∆u2 + λu = f(u), in RN , (1.1)

which is often referred as modified nonlinear Schrödinger equation. This kind of equations
arise when ones are looking for standing waves ψ(t, x) = e−iλtu(x) for the time-dependent

1 Supported by the NSFC (12171014, ZR2020MA005, ZR2021MA096).
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quasilinear Schrödinger equation:

{
i∂tψ +∆ψ + κρ′(|ψ|2)ψ∆(ρ(|ψ|2)) + f(|ψ|2)ψ = 0, in R+ × RN ,

ψ(0, x) = ψ0(x), in RN ,
(1.2)

where κ ∈ R is a constant, ρ and f are real functions. We would like to mention that
quasilinear equation in form of (1.2) appears in many respects of mathematical physics.
Moreover, (1.2) has been derived as models of several phenomena corresponding to the
existence of various types of nonlinear term ρ. In particular, the case ρ(s) = s is used for
the superfluid film equation in plasma physics by Kurihura [21].
The semilinear case κ=0 has been widely studied in the past decades with general

nonlinearity. Wei and Wu [42] studied normalized solutions for Schrodinger equations
with critical Sobolev exponent and mixed nonlinearities, they proved the existence and
non-existence of ground states and precisely asymptotic behaviours of ground states and
mountain-pass type solutions as parameters go to their boundary, their studies answered
some open questions proposed by Soave [37]. We also refer the reader to [3, 5, 7, 8, 32, 39,
40, 46] and references therein for more valuable results. Compared to the semilinear case,
the quasilinear case (κ=1) becomes much more challenging due to the existence of the
non-convex term u∆u2. One of the main difficulties of (1.1) is that the energy functional
is non-differentiable in W 1,2(RN ) when N ≥ 2, see [30]. In the past two decades, there
are some ideas and approaches were developed to overcome this difficulty, such as the
minimization methods [30] where the non-differentiability of the energy functional does
not come into play, the methods of a Nehari manifold argument, see [15, 26, 33], the
methods of changing variables [13, 25] which reduced the quasilinear equation to a semi-
linear one and used an Orlicz space framework, and a perturbation method in a series
of papers [27–29] which recovered the differentiability by considering a perturbed func-
tional on a smaller function space. Recently, Dong and Mao in [31] applied perturbation
method and Moser’s iteration technique to study a class of general quasilinear elliptic
equations which admits infinitely many negative energy solutions by establishing a new
convergence theorem and a weighted space to recover the compactness.
When looking for the solution to (1.1), a possible choice is to consider λ ∈ R fixed in

which case it is called fixed frequency problem, and find solutions as critical points of the
energy functional:

Eλ(u) =
1

2

∫
RN

(|∇u|2 + λ|u|2) +
∫
RN

|u|2|∇u|2 −
∫
RN

F (u), (1.3)

on the space,

H =

{
u ∈W 1,2(RN ) :

∫
RN

|u|2|∇u|2 < +∞
}
,

https://doi.org/10.1017/S001309152400004X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152400004X


Quasilinear Schrödinger equations 351

where F (u) =
∫ u

0
f(t)dt. It is not difficult to check that u is a weak solution to (1.1) if

and only if for any ϕ ∈ C∞
0 (RN ),

E′
λ(u)ϕ = lim

t→0+

Eλ(u+ tϕ)− Eλ(u)

t
= 0.

In this case, the existence and multiplicity of solutions to (1.1) have been intensively
studied during the past decades, see [13, 15, 25–30, 33] and their references therein. We
also refer to [1, 4, 16, 34] for the uniqueness of ground states to (1.1).
Alternatively, one can search for solutions to (1.1) having a prescribed mass:∫

RN
|u|2 = a2. (1.4)

In this case ones aim at finding a real number λ ∈ R and u ∈ W 1,2(RN ) solving (1.1)
and (1.4). Indeed, λ ∈ R appears as a Lagrange multiplier. This approach seems to be
particularly meaningful from the physical point of view, and often offers a good insight
into the dynamical properties of the stationary solutions to (1.2). In this case, solutions
to (1.1) and (1.4) are critical points of the energy functional:

I(u) =
1

2

∫
RN

|∇u|2 +
∫
RN

|u|2|∇u|2 −
∫
RN

F (u), (1.5)

on the smooth manifold:

S̃(a) :=

{
u ∈ H :

∫
RN

|u|2 = a2
}
,

that is, a normalized solution to (1.1) is a u ∈ S̃(a) such that there exists a λ ∈ R
satisfying:∫

RN
∇u · ∇ϕ+ 2

∫
RN

(uϕ|∇u|2 + |u|2∇u · ∇ϕ) + λ

∫
RN

uϕ−
∫
RN

f(u)ϕ = 0,

for every ϕ ∈ C∞
0 (RN ). Meanwhile, using this approach, a critical exponent appears, the

L2-critical exponent p̄ = 4 + 4
N , which is derived by using a Gagliardo–Nirenberg-type

inequality:

∫
RN

|u|p ≤ C(p,N)

‖Qp‖
p−2
N+2
1

(∫
RN

|u|2
)4N−p(N−2)

2(N+2)
(
4

∫
RN

|u|2|∇u|2
)N(p−2)

2(N+2)
. (1.6)

The above inequality is related to a sharp Gagliardo–Nirenberg inequality [2]:

∫
RN

|u|
p
2 ≤ C(p,N)

‖Qp‖
p−2
N+2
1

(∫
RN

|u|
) 4N−p(N−2)

2(N+2)
(∫

RN
|∇u|2

)N(p−2)
2(N+2)

, ∀u ∈ E1, (1.7)
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where 2 < p < 2 · 2∗,

C(p,N) =
p(N + 2)

[4N − (N − 2)p]
4−N(p−2)
2(N+2) [2N(p− 2)]

N(p−2)
2(N+2)

,

Eq := {u ∈ Lq(RN ) : ∇u ∈ L2(RN )},

with the norm ‖u‖Eq := |∇u|2+|u|q and Qp is the unique positive solution to the following
equation [35].

−∆u+ 1 = u
p
2−1, in RN .

L2-critical exponent p̄ is the threshold exponent for many dynamical properties. From
the variational point of view, p̄ decides that I (u) is bounded or unbounded from below

on S̃(a).
If f(u) = |u|p−2u, for the L2-subcritical case 2 < p < p̄, to avoid the non-

differentiability of
∫
RN |u|2|∇u|2, Colin et al. [14] studied the minimization problem

m̃(a) = inf
u∈S̃(a)

I(u) > −∞, (1.8)

and proved the existence and some properties such as orbital stability or instability of
the normalized solutions to (1.1). Inspired by [14], Jeanjean et al. [20] also considered
the minimization problem (1.8) and extended some results of Colin et al. [14]. After that,
Zeng et al. [45] studied the existence and asymptotic behaviour of the minimizers to:

inf
u∈S̃(a)

(
I(u) +

1

2

∫
RN

V (x)|u|2
)
,

where V (x ) is an infinite potential well. For the L2-critical case p = p̄, we refer to [23, 44].
In [44], Ye et al. proved that the minimization problem (1.8) has no minimizer for all
a > 0 and they also proved that there exists a a∗ > 0 such that for a > a∗ and N ≤ 3,
(1.1) has at least one radially symmetric positive normalized solution. Based on [44], Li
and Zou [23] obtained a radially symmetric positive normalized solution to (1.1) with

N ≥ 4 and a∗ < a <

(
N−2

N−2− 4
N

)N
2

a∗, in the sense that they extended some results of

[44]. For the L2-supercritical case p > p̄, to our best knowledge, there are few results on
this direction, only [23]. In [23], by using some ingenious methods, Li and Zou obtained
many interesting and important results which also enlightened our work. Firstly, by the
perturbation method, Li and Zou proved the existence and multiplicity of normalized
solutions to (1.1) by applying the index theory. It seems that no literatures involve the
case of general nonlinearities, when it is non-homogeneous and L2-supercritical. It is also
blank even for the existence. Thus, it is natural to consider the work which involves the
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existence and some properties of the normalized solutions to (1.1) with L2-supercritical
general nonlinearities. And one of our goals is to make some progresses in these respects.
If f(u) = τ |u|q−2u+ |u|p−2u, where τ > 0, 2 < q < 2 + 4

N and p > p̄, one can see that
the (1.1) has more general nonlinearities and the interplay between L2-subcritical and
L2-supercritical nonlinearities strongly affects the geometry of the energy functional and
the existence and properties of normalized solutions. So it is more difficult to study (1.1)
than the pure homogeneous nonlinearities |u|p−2u. For the semilinear elliptic equations
with combined nonlinearities:

−∆u = λu+ µ|u|q−2u+ |u|p−2u, (1.9)

where µ ∈ R, 2 < q < 2+ 4
N and 2+ 4

N < p ≤ 2∗. Soave [36, 37] studied the existence and
some properties of the ground state normalized solutions to (1.9) in a smaller function
space P+ and P−, where the Pohozaev manifold:

P = P+ ∪ P0 ∪ P−.

This strategy was used also by other authors in order to study other type of Schrodinger
equation and, according to my knowledge, a pioneering article with this tool was [41]
in which G. Tarantello studied a class of non-homogeneous elliptic equations involving
critical Sobolev exponent. But for the quasilinear Schrödinger equations with combined
nonlinearities, to be our best knowledge, there is no work which involves this respect.
Motivated by [36, 37, 41], it is natural to consider whether we can prove the existence
and some properties of the ground state normalized solutions to (1.1) with combined
nonlinearities. Hence, the other goal of this paper is devoted to giving the proof in this
respect.
Our main results read as follows.

Theorem 1.1. Assume that (F1) and (F2) holds:
(F1) f ∈ C(R,R), f 6=0, f(t) = o(t) as t→ 0 and there exist α, β ∈ R satisfying:

p̄ < α ≤ β <∞,

such that

αF (t) ≤ f(t)t ≤ βF (t), where N = 1, 2.

(F2) The function defined by F̃ (t) := 1
2f(t)t− F (t) is of class C 1 and

F̃ ′(t)t ≥ αF̃ (t), ∀ t ∈ R,

where α is given by (F1).
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Then for any a> 0, there exists a radially symmetric positive normalized ground state
solution u ∈W 1,2(RN ) ∩ L∞(RN ) to (1.1) in the sense that:

I(u) = inf
{
I(v) : v ∈ S̃(a), I|′

S̃(a)
(v) = 0, v 6= 0

}
.

Theorem 1.2. If f(u) = τ |u|q−2u+|u|p−2u, τ > 0 and assume that one of the following
conditions holds:
(H1) N = 1, 2, 2 < q < 2 + 4

N and p > p̄.
(H2) N=3, 2 < q < 2 + 4

N and p̄ < p ≤ 2∗.
Let us also assume that(

τa(1−γq)q
)pγp−2 (

a(1−γp)p
)2−qγq

<

(
p(2− qγq)

2Cp
N,p(pγp − qγq)

)2−qγq (
q(pγp − 2)

2Cq
N,q(pγp − qγq)

)pγp−2

,

(1.10)

where γp := N(p−2)
2p , p > 2, 2∗ := 2N

N−2 is the Sobolev critical exponent. If p̄ < p < 2∗,

then CN,p is the best constant in the Gagliardo–Nirenberg inequality [ 43]. If p = 2∗, then
CN,p is the optimal constant in the Sobolev inequality [ 38]. Then the following holds:
(i) I(u)|S̃(a) has a critical point û ∈ W 1,2(RN ) ∩ L∞(RN ) at level m(a, τ) < 0 which

is an interior minimizer of I(u) on the set:

Ak := {u ∈ S̃(a) : |∇u|22 < k},

for a suitable k> 0 small enough. Moreover, û is a ground state normalized solution to
( 1.1).
(ii) I(u)|S̃(a) has a second critical point of mountain-pass type u ∈ W 1,2(RN ) ∩

L∞(RN ) at level σ(a, τ) > 0.
(iii) Both û and u are radially symmetric positive functions.

Remark 1.1. It’s well known that quasilinear Schrödinger equation (1.1) is in con-
trast with semilinear Schrödinger equation [3, 7, 8, 32, 36, 37, 39–41, 46]. (1.1) becomes
much more complicated due to the existence of the term u∆u2 which implies that the
corresponding energy functional I (u) in case of N ≥ 2 is non-differentiable in Sobolev
space H, in addition, the existence of the L2-supercritical nonlinearities means the associ-
ated energy functional of (1.1) is unbounded from below on S̃(a) which prevents us using
similar minimax variational argument to that used to semilinear Schrödinger equation.
On the other hand, different from [23] which studied the quasilinear equations in form
of (1.1) with pure L2-supercritical homogeneous nonlinearity |u|p−2u, we here consider
the combination case of L2-subcritical and L2-supercritical nonlinearities which forces
us to find an ingenious function space which is smaller than the Pohozaev manifold on
which we analyse the geometry of the energy functional and prove the multiplicity and
properties of normalized solutions. Our work extends and develops some recent results
in the literature.

Our proof is based on variational methods. Due to the existence of u∆u2 and
L2-supercritical nonlinearities, the associated energy functional of (1.1) is non-smooth
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and unbounded from below on S̃(a). To get over this problem, we adopt perturba-
tion methods and need to find appropriate condition and Pohozaev manifold which is
a smaller function space and a natural constraint in S̃(a) in which one may find some
critical points of the energy functional. But for the combination of L2-subcritical and
L2-supercritical nonlinearities, note that the interplay strongly affects the geometry of
the energy functional, hence we need to not only find a certain subset of R2 to which
parameters pair (p, q) belongs but also build an ingenious function space which is smaller
than the Pohozaev manifold (see (2.1) for more details) in order to prove the multiplic-
ity and properties of normalized solutions. And we also need a additional condition, see
(1.10). It’s worth noting that the dimensions in Theorems 1.1 and 1.2 are limited due to
an important lemma which is used to control the Lagrange multipliers, see Lemma 2.2
for more details.
The remainder of this paper is organized as follows. In § 2 we give the perturbation

setting and collect some important preliminaries. Section 3 is devoted to give the proof
of the compactness of P.S. sequences for Iµ|S(a). In § 4 we will consider the critical points
of Iµ|S(a) in Theorem 1.1. Section 5 is devoted to study the critical points of Iµ|S(a) in
Theorem 1.2. Finally, in § 6 we give the proofs of Theorems 1.1 and 1.2.
Regarding the notation, in this paper, the notation | · |p denotes the Lp-norm. The

symbols⇀ and → denote weak convergence and strong convergence respectively. Capital
latter C andK stand for positive constants which may depend on some parameters, whose
precise value can change from line to line.

2. Preliminaries

2.1. Perturbation setting

Let I (u) be defined by (1.5). It is not difficult to show that the I (u) is of class C 1 in
W 1,2(RN ) if and only if N =1 due to the existence of the term

∫
RN |u|2|∇u|2. In order to

deal with the dimensions N ≥ 2, we need to overcome the non-differentiability at first.
And here a perturbation method is used to solve this difficulty. Then for N ≥ 2 and any
µ ∈ (0, 1], we introduce a perturbation problem:

Iµ(u) :=
µ

θ

∫
RN

|∇u|θ + I(u),

where θ satisfies:

4N

N + 2
< θ < min

{
4N + 4

N + 2
, N

}
if N ≥ 3,

and,

2 < θ < 3 if N = 2.

We consider the corresponding space X :=W 1,θ(RN )∩W 1,2(RN ). Then X is a reflexive
Banach space. We get from Lemma A.1 [23] that Iµ ∈ C1(X ). To find some critical points
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of Iµ|S(a), where

S(a) :=

{
u ∈ X :

∫
RN

|u|2 = a2
}
,

we can recall the L2-norm preserved transform [18]:

u ∈ S(a) 7→ s ∗ u(x) = e
N
2 su(esx) ∈ S(a).

And, we will study the fiber maps:

Ψµ(s) :=Iµ(s ∗ u)

=
µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− e−Ns

∫
RN

F (e
N
2 su).

Define

Qµ(u) :=
d

ds
|s=0Iµ(s ∗ u)

=(1 + γθ)µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 + (2 +N)

∫
RN

|u|2|∇u|2

− N

2

∫
RN

[f(u)u− 2F (u)]

=(1 + γθ)µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 + (2 +N)

∫
RN

|u|2|∇u|2 −N

∫
RN

F̃ (u).

Then, Qµ ∈ C1(X ), see Lemma A.1 in [23] for more details. We also define the Pohozaev
manifold:

Qµ(a) := {u ∈ S(a) : Qµ(u) = 0},

then we observed that critical points of Iµ(u)|S(a) allow to project a function on Qµ(a).
In this direction, we will study the decomposition of Qµ(a) into the disjoint union:

Qµ(a) = Q+
µ (a) ∪Q0

µ(a) ∪Q−
µ (a),

where

Q+
µ (a) :=

{
u ∈ Qµ(a) : Ψ

′′
µ(0) > 0

}
,

Q0
µ(a) :=

{
u ∈ Qµ(a) : Ψ

′′
µ(0) = 0

}
, (2.1)

Q−
µ (a) :=

{
u ∈ Qµ(a) : Ψ

′′
µ(0) < 0

}
.
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Proposition 2.1. Let u ∈ S(a). Then s ∈ R is a critical point of Ψµ(s) if and only if
s ∗ u ∈ Qµ(a).

Proof. For u ∈ S(a) and s ∈ R, we get:

Ψ′
µ(s) =(1 + γθ)µe

θ(1+γθ)s

∫
RN

|∇u|θ + e2s
∫
RN

|∇u|2 + (2 +N)e(2+N)s

∫
RN

|u|2|∇u|2

− N

2
e−Ns

∫
RN

[
f(e

N
2 su)u− 2F (e

N
2 su)

]
=(1 + γθ)µ

∫
RN

|∇(s ∗ u)|θ +
∫
RN

|∇(s ∗ u)|2 + (2 +N)

∫
RN

|s ∗ u|2|∇(s ∗ u)|2

− N

2

∫
RN

[f(s ∗ u)(s ∗ u)− 2F (s ∗ u)] = Qµ(s ∗ u).

Therefore, s ∈ R is a critical point of Ψµ(s) if and only if s ∗ u ∈ Qµ(a).
In particular, u ∈ Qµ(a) if and only if 0 is a critical point of Ψµ(s). By Lemma 3.5 in

[6], the map (s, u) ∈ R×X 7→ s ∗ u ∈ X is continuous. �

2.2. An essential lemma

The following lemma is used to control the values of the corresponding Lagrange
multipliers in this paper.

Lemma 2.2. For any 0 ≤ µ ≤ 1, assume that u 6=0 is a critical of Iµ|S(a), it follows
that there exists a λ ∈ R, such that

I ′µ(u) + λu = 0.

Suppose that one of the following conditions holds:
(a) f(u) satisfies (F1) and (F2), a> 0.
(b) f(u) = τ |u|q−2u+ |u|p−2u, τ > 0 satisfies (H1) and (H2), a> 0.
Then λ> 0.

Proof. For the case (a), by applying Qµ(u) = 0 and (1.1), we get

λa2 =µ

(
2(1 + γθ)

N
− 1

)∫
RN

|∇u|θ

+

(
2

N
− 1

)∫
RN

|∇u|2 +
[
2(2 +N)

N
− 4

] ∫
RN

|u|2|∇u|2 + 2

∫
RN

F (u).

So if condition (a) holds, in the sense that N ≤ 2, then we have λ> 0.
For the case (b), combining Qµ(u) = 0 with (1.1), we have:

λγpa
2 =µ(1 + γθ − γp)

∫
RN

|∇u|θ

+ (1− γp)

∫
RN

|∇u|2 + (2 +N − 4γp)

∫
RN

|u|2|∇u|2 + τ(γp − γq)

∫
RN

|u|q
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=µ(1 +
N(θ − p)

θp
)

∫
RN

|∇u|θ

+
2N − (N − 2)p

2p

∫
RN

|∇u|2 + 4N − (N − 2)p

p

∫
RN

|u|2|∇u|2

+ τ(γp − γq)

∫
RN

|u|q.

So if condition (b) holds, we immediately get λ> 0. �

3. The compactness of P.S. sequence of Iµ|S(a)

Lemma 3.1. Let 0 < µ ≤ 1, N ≥ 2, assume that one of the following conditions holds
(a) f(u) satisfies (F1) and (F2).
(b) f(u) = τ |u|q−2u+ |u|p−2u, τ > 0 satisfies (H1) and (H2).
Let {un} ⊂ Sr(a) be a P.S. sequence for Iµ|S(a) at level c 6=0, and assume in addition

that Qµ(un) → 0 as n→ ∞. Then up to a subsequence

un ⇀ uµ in X and I ′µ(uµ) + λµuµ = 0.

Moreover, if λµ 6= 0, we have that:

un → uµ in X .

Proof. The proof is divided into three steps.
Step 1. {un} is bounded in Xr.
We consider the case that f (u) satisfies (F1) and (F2) at first. Since Qµ(un) → 0, it

shows that:

(1 + γθ)µ

∫
RN

|∇un|θ +
∫
RN

|∇un|2 + (2 +N)

∫
RN

|un|2|∇un|2

− N

2

∫
RN

[f(un)un − 2F (un)] = o(1) as n→ ∞.

We deduce from (F1) that (α− 2)F (u) ≤ f(u)u− 2F (u) ≤ (β − 2)F (u), then Q̃µ(un) ≥
o(1), where

Q̃µ(un) := (1+γθ)µ

∫
RN

|∇un|θ+
∫
RN

|∇un|2+(2+N)

∫
RN

|un|2|∇un|2−αγα
∫
RN

F (un).

Thus, for {un} ⊂ Sr(a) with Qµ(un) → 0, there holds:

Iµ(un) ≥ Iµ(un)−
1

αγα
Q̃µ(un)

=
αγα − θ − θγθ

θαγα
µ

∫
RN

|∇un|θ +
αγα − 2

2αγα

∫
RN

|∇un|2
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+
αγα − 2−N

αγα

∫
RN

|un|2|∇un|2 + o(1).

Since αγα − θ − θγθ > 0, αγα − 2 > 0, αγα − 2 − N > 0 and Iµ(un) → c < +∞, then
there exists a constant C1 > 0 such that:

sup
n≥1

max

{
µ

∫
RN

|∇un|θ,
∫
RN

|∇un|2,
∫
RN

|un|2|∇un|2
}

≤ C1 < +∞,

this implies {un} is bounded in Xr.
If f(u) = τ |u|q−2u+ |u|p−2u, τ > 0 satisfies (H1) and (H2), then by Qµ(un) → 0 and

the Gagliardo–Nirenberg inequality, we have:

Iµ(un) =Iµ(un)−
1

pγp
Qµ(un)

=
pγp − θ − θγθ

θpγp
µ

∫
RN

|∇un|θ +
pγp − 2

2pγp

∫
RN

|∇un|2

+
pγp − 2−N

pγp

∫
RN

|un|2|∇un|2 −
τ(pγp − qγq)

qpγp

∫
RN

|un|q + o(1)

≥pγp − θ − θγθ
θpγp

µ

∫
RN

|∇un|θ +
pγp − 2

2pγp

∫
RN

|∇un|2

+
pγp − 2−N

pγp

∫
RN

|un|2|∇un|2 −
τ(pγp − qγq)

qpγp
Cq

N,qa
(1−γq)q|∇un|

qγq
2 + o(1).

Since Iµ(un) → c < +∞ as n→ ∞, then there exists a constant C2 > 0 such that:

pγp − 2

2pγp
|∇un|22 −

τ(pγp − qγq)

qpγp
Cq

N,qa
(1−γq)q|∇un|

qγq
2 ≤ C2.

Since qγq < 2, then there exists C3 > 0 such that for every n ≥ 1, we have |∇un|2 ≤ C3.
Recalling that Iµ(un) → c < +∞ as n → ∞, we deduce that there exists a constant
C4 > 0 such that:

sup
n≥1

max

{
µ

∫
RN

|∇un|θ,
∫
RN

|∇un|2,
∫
RN

|un|2|∇un|2
}

≤ C4 < +∞,

it shows that {un} is bounded in Xr.
Step 2. {λn} is bounded.
Since N ≥ 2, the embedding Xr ↪→ Lr(RN ) is compact for r ∈ (2, 2∗). We deduce

from the boundedness of the P.S. sequence {un} that, up to a subsequence, there exists
a uµ ∈ Xr such that:

un → uµ in X and in L2(RN ),

un → uµ in Lr(RN ), ∀r ∈ (2, 2∗),
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un → uµ a.e. on RN .

Combining interpolation with the inequality (1.6), we have that:

un → uµ in Lr(RN ), ∀r ∈ (2, 2 · 2∗).

Thus, if f (u) satisfies (a) or (b), we have:∫
RN

f(un)un →
∫
RN

f(uµ)uµ and intRNF (un) →
∫
RN

F (uµ).

We claim that uµ 6= 0. Suppose that uµ = 0, then as n→ ∞:

(1 + γθ)µ

∫
RN

|∇un|θ +
∫
RN

|∇un|2 + (2 +N)

∫
RN

|un|2|∇un|2

= Qµ(un) +
N

2

∫
RN

[f(un)un − 2F (un)] → 0,

which implies that Iµ(un) → 0, in contradiction with Iµ(un) → c 6= 0. So uµ 6= 0. By
Lemma 3 in [9], it follows from Iµ|′S(a)(un) → 0 that there exists a sequence λn ∈ R such
that:

I ′µ(un) + λnun = 0 in X ∗. (3.1)

Hence λn = − 1
a2
I ′µ(un)[un] + on(1) is bounded in R, and up to a subsequence, there

exists a λµ ∈ R, such that λn → λµ.
Step 3. Conclusion.
By weak convergence, (3.1) shows that:

I ′µ(uµ) + λµuµ = 0 in X ∗. (3.2)

Then, testing (3.2) with x · ∇u and u, we get Qµ(uµ) = 0. That is,

Qµ(un) +
N

2

∫
RN

[f(un)un − 2F (un)] → Qµ(uµ) +
N

2

∫
RN

[f(uµ)uµ − 2F (uµ)].

Then, combining the weak lower semi-continuous property, see Lemma 4.3 in [12], we
have:

µ

∫
RN

|∇un|θ → µ

∫
RN

|∇uµ|θ,∫
RN

|∇un|2 →
∫
RN

|∇uµ|2,∫
RN

|un|2|∇un|2 →
∫
RN

|uµ|2|∇uµ|2.
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Hence we get,

I ′µ(un)[un] → I ′µ(uµ)[uµ]. (3.3)

Combining with (3.1)-(3.3), there must be λn|un|22 → λµ|uµ|22. So λµ 6= 0 shows that
un → uµ in X .
In order to deal with the dimension N =1, we need a variant of Lemma 3.1. �

Lemma 3.2. Let 0 < µ ≤ 1, N ≥ 1, assume that one of the following conditions
holds:
(a) f(u) satisfies (F1) and (F2).
(b) f(u) = τ |u|q−2u+ |u|p−2u, τ > 0 satisfies (H1) and (H2).
Let {un} ⊂ Sr(a) be a P.S. sequence for Iµ|S(a) at level c 6=0, and suppose in addition

that:
(i) Qµ(un) → 0 as n→ ∞.
(ii) There exists {vn} ⊂ Sr(a), with vn radially decreasing, such that ‖vn − un‖ → 0

as n→ ∞.
Then up to a subsequence

un ⇀ uµ in X and I ′µ(uµ) + λµuµ = 0.

Moreover, if λµ 6= 0, we have that

un → uµ in X .

Proof. Similar to the proof of the Lemma 3.1, it is not difficult to modify the proof
developed in dimensions N ≥ 2. For the case of N =1, Xr does not embed compactly
in Lr(RN ). By Proposition 1.7.1 in [10], we see that the compactness holds for bounded
sequence of radially decreasing functions. Here we omit the details. �

4. The critical points of perturbed functional for Theorem 1.1

4.1. Properties of Qµ(a)

Lemma 4.1. Let 0 < µ ≤ 1 and for any critical point of Iµ|Qµ(a), if Q0
µ(a) = ∅, then

there exists λ ∈ R such that:

I ′µ(u) + λu = 0 in X ∗.

Proof. Let 0 < µ ≤ 1 and u is a critical point of Iµ|Qµ(a), then by the Lagrange
multipliers rule there exist λ, ν ∈ R such that:

dIµ(u) + λu+ νdQµ(u) = 0 in X ∗. (4.1)

We only need to prove that ν=0, to this end we get the Pohozaev identity:

Φ′
µ(0) =

d

ds
φµ(s ∗ u)|s=0 = 0,
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where φµ(u) := Iµ(u) +
1
2λ|u|

2
2 + νQµ(u) is the corresponding energy functional to (4.1).

Since

Φµ(s) := φµ(s ∗ u) = Iµ(s ∗ u) +
1

2
λ|u|22 + νQµ(s ∗ u) = Ψµ(s) +

1

2
λ|u|22 + νΨ′

µ(s),

then we have

Φ′
µ(s) :=

d

ds
φµ(s ∗ u) = Ψ′

µ(s) + νΨ′′
µ(s).

Hence

0 = Φ′
µ(0) = (1 + ν)Ψ′

µ(0) + νΨ′′
µ(0) = Qµ(u) + νΨ′′

µ(0).

Since Q0
µ(a) = ∅, then Ψ′′

µ(0) 6= 0, so ν=0. �

Lemma 4.2. Under the assumption (F1),

D(a) := inf
0<µ≤1,u∈Qµ(a)

∫
RN

|u|2|∇u|2 > 0,

is independent of µ.

Proof. For any u ∈ Qµ(a), we have:

(1 + γθ)µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 + (2 +N)

∫
RN

|u|2|∇u|2 − N

2

∫
RN

[f(u)u− 2F (u)] = 0,

then

(2 +N)

∫
RN

|u|2|∇u|2 ≤ N

2

∫
RN

[f(u)u− 2F (u)].

We get from (F1) that f(u)u − 2F (u) ≤ (β − 2)F (u) and
∫
RN F (u) ≤

F (1)
∫
RN
(
|u|α + |u|β

)
. By the inequality (1.6), there holds

(2 +N)

∫
RN

|u|2|∇u|2 ≤N(β − 2)

2
F (1)

∫
RN

(
|u|α + |u|β

)
≤N(β − 2)

2
F (1)K1(α,N)a

4N−α(N−2)
(N+2)

(∫
RN

|u|2|∇u|2
)N(α−2)

2(N+2)

+
N(β − 2)

2
F (1)K2(β,N)a

4N−β(N−2)
(N+2)

(∫
RN

|u|2|∇u|2
)N(β−2)

2(N+2)
.

Since N(β−2)
2(N+2) >

N(α−2)
2(N+2) > 1, we have D(a) > 0. �
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Lemma 4.3. Let 0 < µ ≤ 1 and for any u ∈ Qµ(a), if f(u) satisfies (F1) and (F2),
then Ψ′′

µ(0) < 0 and Qµ(a) is a natural constraint of Iµ|S(a).

Proof.

Ψ′′
µ(s) = θ(1 + γθ)

2µeθ(1+γθ)s

∫
RN

|∇u|θ + 2e2s
∫
RN

|∇u|2

+ (2 +N)2e(2+N)s

∫
RN

|u|2|∇u|2

+N2e−Ns

∫
RN

F̃ (e
N
2 su)− N2

2
e−

N
2 s

∫
RN

F̃ ′(e
N
2 su)u.

Thus

Ψ′′
µ(0) =θ(1 + γθ)

2µ

∫
RN

|∇u|θ + 2

∫
RN

|∇u|2 + (2 +N)2
∫
RN

|u|2|∇u|2

+N2

∫
RN

F̃ (u)− N2

2

∫
RN

F̃ ′(u)u.

Then by the assumption (F2) and Qµ(u) = 0,

Ψ′′
µ(0) ≤θ(1 + γθ)

2µ

∫
RN

|∇u|θ + 2

∫
RN

|∇u|2 + (2 +N)2
∫
RN

|u|2|∇u|2

+N2

∫
RN

F̃ (u)− N2

2
α

∫
RN

F̃ (u)

=(1 + γθ)µ(θ + θγθ − αγα)

∫
RN

|∇u|θ + (2− αγα)

∫
RN

|∇u|2

+ (2 +N)(2 +N − αγα)

∫
RN

|u|2|∇u|2.

Since αγα > θ + θγθ, αγα > 2 and αγα > 2 +N when α > 4 + 4
N , then

Ψ′′
µ(0) ≤ (2 +N)(2 +N − αγα)D(a) < 0.

Hence by Lemma 4.1 we have that Qµ(a) is a natural constraint of Iµ|S(a). �

Lemma 4.4. For any 0 < µ ≤ 1 and any u ∈ X \ {0}, if f(u) satisfies (F1) and (F2).
Then the following statements hold.
1) There exists a unique sµ(u) ∈ R such that sµ(u) ∗ u ∈ Qµ(a), and

Iµ(sµ(u) ∗ u) = max
s>0

Iµ(s ∗ u).

2) Iµ(s ∗ u) is strictly increasing in s ∈ (−∞, sµ(u)), is strictly decreasing in s ∈
(sµ(u),+∞),

lim
s→−∞

Iµ(s ∗ u) = 0+, lim
s→+∞

Iµ(s ∗ u) = −∞ and Iµ(sµ(u) ∗ u) > 0.
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3) sµ(u) < 0 if and only if Qµ(u) < 0.
4) The map u ∈ X \ {0} → sµ(u) ∈ R is of class C 1.

Proof. For any 0 < µ ≤ 1 and any u ∈ S(a), |s ∗ u|2 = a and |∇(s ∗ u)|2 = es|∇u|2.
We deduce from (F1) that for all t ∈ R,{

sβF (t) ≤ F (ts) ≤ sαF (t) if s ≤ 1,

sαF (t) ≤ F (ts) ≤ sβF (t) if s ≥ 1.

So for s < 0, we get:

Ψµ(s) =Iµ(s ∗ u)

=
µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− e−Ns

∫
RN

F (e
N
2 su)

≥ µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− e−Ns · e
N
2 sα

∫
RN

F (u)

=
µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− eαγαs

∫
RN

F (u).

Since αγα > θ + θγθ, αγα > 2 and αγα > 2 +N when α > 4 + 4
N , then Ψµ(s) → 0+ as

s→ −∞. For s > 1, we get:

Ψµ(s) =Iµ(s ∗ u)

≤ µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− eαγαs

∫
RN

F (u).

In view of αγα > θ+θγθ, αγα > 2 and αγα > 2+N when α > 4+ 4
N , then Ψµ(s) → −∞

as s→ +∞. Therefore, there exists s1 ∈ R such that:

Iµ(s1 ∗ u) = max
s>0

Iµ(s ∗ u) > 0.

Hence Ψ′
µ(s1) = 0 and by the Proposition 2.1, we get s1 ∗ u ∈ Qµ(a). Assume that there

exists s2 ∈ R such that s2 ∗ u ∈ Qµ(a). Without loss of generality, suppose that s1 < s2,
by Lemma 4.3, we have that s1 and s2 are strict local maximum of Ψµ(s). Then there
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exists s3 ∈ (s1, s2) such that:

Ψµ(s3) = min
s∈(s1,s2)

Ψµ(s).

It follows that s3 is a local minimum of Ψµ(s). So we get Ψ′
µ(s3) = 0 and s3 ∗ u ∈ Qµ(a)

with Ψ′′
µ,s3∗u(0) = I ′′µ(s3 ∗ u) = Ψ′′

µ(s3) ≥ 0, which is in contradiction with Lemma 4.3.

By Iµ(sµ(u)∗u) = max
s>0

Iµ(s∗u) > 0 and the uniqueness of sµ(u), we have that Ψ
′
µ(s) >

0 in s ∈ (−∞, sµ(u)) and Ψ′
µ(s) < 0 in s ∈ (sµ(u),+∞). This implies that Iµ(s ∗ u) is

strictly increasing in s ∈ (−∞, sµ(u)) and is strictly decreasing in s ∈ (sµ(u),+∞). So
if sµ(u) < 0 then Qµ(u) = Ψ′

µ(0) < 0. On the other hand, Qµ(u) = Ψ′
µ(0) < 0, then

0 ∈ (sµ(u),+∞), so sµ(u) < 0.
Now we prove that the map u ∈ X\{0} → sµ(u) ∈ R is of class C 1. LetGµ(s) := Ψ′

µ(s).
Then Gµ(sµ(u)) = Ψ′

µ(sµ) = 0. Moreover, by Lemma 4.3 we have:

G′
µ(sµ(u)) = Ψ′′

µ(sµ(u)) = Ψ′′
µ,sµ(u)∗u(0) < 0.

Then, the Implicit Function Theorem [11] implies that the map u ∈ X \{0} → sµ(u) ∈ R
is of class C 1. �

4.2. Ground state critical point of Iµ|S(a)

In this subsection we study a minimization problem:

mµ(a) := inf
u∈Qµ(a)

Iµ(u).

If mµ(a) is achieved, we obtain a minimizer which is a ground state critical point of
Iµ|S(a).

Lemma 4.5. For any 0 < µ ≤ 1, if f(u) satisfies (F1), we get:

mµ(a) ≥ D0(a) :=
αγα − 2−N

αγα
D(a) > 0.

Proof. Since Qµ(u) = 0, then,

(1 + γθ)µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 + (2 +N)

∫
RN

|u|2|∇u|2

− N

2

∫
RN

[f(u)u− 2F (u)] = 0.

We deduce from (F1) that (α−2)F (u) ≤ f(u)u−2F (u) ≤ (β−2)F (u), then Q̃µ(u) ≥ 0,
where

Q̃µ(u) = (1 + γθ)µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 + (2 +N)

∫
RN

|u|2|∇u|2 − αγα

∫
RN

F (u).
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Thus for any u ∈ Qµ(a), there is:

Iµ(u) ≥ Iµ(u)−
1

αγα
Q̃µ(u)

=
αγα − θ − θγθ

θαγα
µ

∫
RN

|∇u|θ + αγα − 2

2αγα

∫
RN

|∇u|2 + αγα − 2−N

αγα

∫
RN

|u|2|∇u|2.

Since αγα − θ − θγθ > 0, αγα − 2 > 0 and αγα − 2−N > 0, then

Iµ(u) ≥
αγα − 2−N

αγα

∫
RN

|u|2|∇u|2 ≥ αγα − 2−N

αγα
D(a) > 0.

Therefore

mµ(a) ≥ D0(a) :=
αγα − 2−N

αγα
D(a) > 0.

Lemma 4.6. There exists a ρ> 0 which is small and is independent of µ such that
for any 0 < µ ≤ 1, if f(u) satisfies (F1), then for any u ∈ Bµ(ρ, a), we get:

0 < sup
u∈Bµ(ρ,a)

Iµ(u) < D0(a) and Iµ(u), Qµ(u) > 0,

where

Bµ(ρ, a) =

{
u ∈ S(a) : µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 +
∫
RN

|u|2|∇u|2 ≤ ρ

}
.

Proof. We get from the definition of Iµ(u) that:

sup
u∈Bµ(ρ,a)

Iµ(u) ≤ max

{
1

θ
,
1

2
, 1

}
ρ < D0(a),

where ρ> 0 is small and is not dependent of µ. For any u ∈ ∂Bµ(r, a) with 0 < r < ρ, by
the inequality (1.6), we have,

inf
u∈∂Bµ(r,a)

Iµ(u) ≥
µ

θ

∫
RN

|∇u|θ + 1

2

∫
RN

|∇u|2 +
∫
RN

|u|2|∇u|2

− F (1)K1(α,N)a
4N−α(N−2)

(N+2)

(∫
RN

|u|2|∇u|2
)N(α−2)

2(N+2)

− F (1)K2(β,N)a
4N−β(N−2)

(N+2)

(∫
RN

|u|2|∇u|2
)N(β−2)

2(N+2)

≥µ
θ

∫
RN

|∇u|θ + 1

2

∫
RN

|∇u|2 + C

∫
RN

|u|2|∇u|2

≥C1(a, θ, α, β,N)r > 0.
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In the same way we also get:

inf
u∈∂Bµ(r,a)

Qµ(u) ≥ C2(a, θ, α, β,N)r > 0,

we finish the proof.
To find a P.S. sequence, we study the augmented functional Ĩµ which follows the

strategy firstly introduced in [18]

Ĩµ(s, u) :=Iµ(s ∗ u)

=
µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− e−Ns

∫
RN

F (e
N
2 su), (4.2)

and look at the restriction Ĩµ|R×S(a). We have that Ĩµ is of class C 1 and also a P.S.

sequence for Ĩµ|R×Sr(a) is a P.S. sequence for Ĩµ|R×S(a) because Ĩµ(u) is invariant under
rotations. �

Lemma 4.7. For u ∈ S(a) and s ∈ R, the map,

TuS(a) → Ts∗uS(a), ϕ 7→ s ∗ ϕ,

is a linear isomorphism with inverse ψ 7→ (−s) ∗ ψ, where TuS(a) denotes the tangent
space to S(a) in u.

Proof. For any u ∈ S(a) and s ∈ R, by Lemma 3.6 in [6], we can prove the map

TuS(a) → Ts∗uS(a), ϕ 7→ s ∗ ϕ,

is a linear isomorphism with inverse ψ 7→ (−s) ∗ ψ, here we omit it.
Denoting by Icµ the closed sublevel set {u ∈ S(a) : Iµ(u) ≤ c}, we introduce the

minimax class:

Γ := {γ(τ) = (α, β) ∈ C([0, 1],R× Sr(a)); γ(0) ∈ (0, Bµ(ρ, a)), γ(1) ∈ (0, I0µ)},

with the minimax level:

σµ(a) := inf
γ∈Γ

max
(s,u)∈γ([0,1])

Ĩµ(s, u).

Lemma 4.8. For any 0 < µ ≤ 1, mµ(a) = σµ(a).

Proof. For any 0 < µ ≤ 1 and any u ∈ Sr(a). Since Iµ(s ∗ u) → 0+, then there
exists s0 << −1, such that s0 ∗ u ∈ Bµ(ρ, a), Iµ(s0 ∗ u) > 0 and Qµ(s0 ∗ u) > 0.
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By Lemma 4.4 there exists s1 >> 1 such that Iµ(s1 ∗ u) < 0. We deduce from the
continuity of s ∈ R 7→ s ∗ u ∈ Sr(a) that:

γu : χ ∈ [0, 1] 7→ (0, ((1− χ)sµ(u) + χs1) ∗ u) ∈ R× Sr(a), (4.3)

is a path in Γ. Hence the minimax value σµ(a) is a real number.
We claim that ∀γ ∈ Γ, there exists χγ ∈ (0, 1) such that α(χγ)∗β(χγ) ∈ Qµ(a). Indeed,

since γ(0) = (α(0), β(0)) ∈ (0, Bµ(ρ, a)), we have:

Iµ(α(0) ∗ β(0)) = Iµ(β(0)) > 0 and Qµ(α(0) ∗ β(0)) = Qµ(β(0)) > 0.

Also since Iµ(β(1)) = Ĩµ(α(1), β(1)) = Ĩµ(γ(1)) < 0, we deduce from Proposition 2.1
and Lemma 4.4 that sµ(β(1)) < 0, which implies that Qµ(β(1)) < 0. Moreover, the map
Qµ(α(χ) ∗ β(χ)) is continuous in Γ. It follows that for any γ ∈ Γ, there exists χγ ∈ (0, 1)
such that Qµ(α(χγ) ∗ β(χγ)) = 0, in the sense that α(τγ) ∗ β(τγ) ∈ Qµ(a).
For any γ ∈ Γ, we get from α(χγ) ∗ β(χγ) ∈ Qµ(a) that:

max
γ([0,1])

Ĩµ ≥ Ĩµ(γ(χγ)) = Iµ(α(χγ) ∗ β(χγ)) ≥ inf
Qµ(a)∩Sr(a)

Iµ,

which deduces that σµ(a) ≥ inf
Qµ(a)∩Sr(a)

Iµ. On the other hand, if u ∈ Qµ(a)∩Sr(a), then

γu defined in (4.3) is a path in Γ with:

Iµ(u) = Ĩµ(0, u) = max
γu([0,1])

Ĩµ ≥ σµ(a),

which gives inf
Qµ(a)∩Sr(a)

Iµ ≥ σµ(a), thus σµ(a) = inf
Qµ(a)∩Sr(a)

Iµ. In order to prove the

equality mµ(a) = inf
Qµ(a)∩Sr(a)

Iµ, we only need to prove that:

mµ(a) ≥ inf
Qµ(a)∩Sr(a)

Iµ.

By the symmetric decreasing rearrangement [22], we see that the above inequality can
be achieved easily. �

Existence of the ground state for Iµ|S(a).
When N =1, we take µ=0 and the process is similar to the case of N ≥ 2, so we focus

on the case N ≥ 2. Firstly, for any 0 < µ ≤ 1, Lemma 4.4, Lemma 4.5 and Lemma 4.8
imply that:

mµ(a) = σµ(a) = inf
Qµ(a)∩Sr(a)

Iµ > 0 ≥ sup
(Qµ(a)∪I0µ)∩Sr(a)

Iµ = sup
((0,Qµ(a))∪(0,I0µ))∩Sr(a)

Iµ.

By using the terminology in Section 5 [17], we get that {γ([0, 1]) : γ ∈ Γ} is a homotopic
stable family with extended closed boundary (0, Bµ(ρ, a)) ∪ (0, I0µ), where γ([0, 1]) is the
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compact subset of R × Sr(a). We also deduce that the superlevel set {Ĩµ ≥ σµ(a)} is

a dual set, in the sense that {Ĩµ ≥ σµ(a)} satisfies the assumptions (F’1) and (F’2) in
Theorem 5.2 [17]. Hence we can take any minimizing sequence {γn = (αn, βn)} ⊂ Γ for
σµ(a), with the property that αn ≡ 0 and βn ≥ 0 a.e. on RN for every χ ∈ [0, 1], there

exists a P.S. sequence {(sn, wn)} ⊂ R× Sr(a) for Ĩµ|R×Sr(a) at level σµ(a), that is:

∂sĨµ(sn, wn) → 0 and ∂uĨµ(sn, wn) → 0 as n→ ∞, (4.4)

with the additional property that:

|sn|+ distX (wn, βn([0, 1])) → 0 as n→ ∞. (4.5)

By (4.2) and (4.4), we have Qµ(sn ∗ wn) → 0 and

‖∂uĨµ(sn, wn)‖(TwnSr(a))∗ → 0 as n→ ∞,

Since {sn} is bounded due to (4.5), this implies that:

dIµ(sn∗wn)[sn∗ϕ] = o(1)‖ϕ‖ = o(1)‖sn∗ϕ‖ as n→ ∞, for every ϕ ∈ TwnSr(a). (4.6)

Let then un := sn ∗ wn. By Lemma 4.7 equation (4.6) establishes that {un} ⊂ Sr(a)
is a P.S. sequence for Iµ|Sr(a), at level σµ(a) > 0 with Qµ(un) → 0. Thus it is also a
P.S. sequence for Iµ|S(a) at level σµ(a) > 0 with Qµ(un) → 0 because the problem is
invariant under rotations. We deduce from Lemma 3.1 that up to a subsequence such
that un → uµ in X , where uµ ∈ S(a) is a radially symmetric and real function. From
(4.5) we have that uµ ≥ 0 a.e. on RN , finally the strong maximum principle shows that
uµ > 0.

5. The critical points of perturbed functional for Theorem 1.1

5.1. Properties of Qµ(a)

Lemma 5.1. Let 0 < µ ≤ 1, under the assumption of (1.10), then Q0
µ(a) = ∅.

Proof. Suppose that there exists u ∈ Q0
µ(a), then we get Qµ(u) = 0 and Ψ′′

µ(u) = 0,

(1 + γθ)µ

∫
RN

|∇u|θ +
∫
RN

|∇u|2 + (2 +N)

∫
RN

|u|2|∇u|2

− τγq

∫
RN

|u|q − γp

∫
RN

|u|p = 0,

(5.1)

θ(1 + γθ)
2µ

∫
RN

|∇u|θ + 2

∫
RN

|∇u|2 + (2 +N)2
∫
RN

|u|2|∇u|2

− τqγ2q

∫
RN

|u|q − pγ2p

∫
RN

|u|p = 0.

(5.2)
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Combining (5.1) with (5.2), we have:

(1 + γθ)(pγp − θ − θγθ)µ

∫
RN

|∇u|θ + (pγp − 2)

∫
RN

|∇u|2

+ (2 +N)(pγp − 2−N)

∫
RN

|u|2|∇u|2 − τγq(pγp − qγq)

∫
RN

|u|q = 0,

Since pγp > θ+ θγθ, pγp > 2, pγp > 2+N and pγp > qγq when p > 4+ 4
N , then we get:

(pγp − 2)|∇u|22 ≤ τγq(pγp − qγq)|u|qq.

We deduce from the Gagliardo–Nirenberg inequality that:

|∇u|22 ≤ τγq(pγp − qγq)

pγp − 2
|u|qq

≤ τγq(pγp − qγq)

pγp − 2
Cq

N,q|∇u|
qγq
2 a(1−γq)q.

(5.3)

In the same way we get,

|∇u|22 ≤ γp(pγp − qγq)

2− qγq
Cp

N,p|∇u|
pγp
2 a(1−γp)p. (5.4)

From (5.3) and (5.4) we conclude that:

(
Cp

N,pγp
pγp − qγq
2− qγq

) 1
2−pγp

a
− (1−γp)p

pγp−2 ≤
(
Cq

N,qγq
pγp − qγq
pγp − 2

) 1
2−qγq (

τa(1−γq)q
) 1

2−qγq ,

that is

(
2− qγq

Cp
N,pγp(pγp − qγq)

)2−qγq (
pγp − 2

Cq
N,qγq(pγp − qγq)

)pγp

≤
(
τa(1−γq)q

)pγp−2 (
a(1−γp)p

)2−qγq
. (5.5)

It is easy to check that this is in contradiction with (1.10), this implies that
Q0

µ(a) = ∅. �

Lemma 5.2. Let 0 < µ ≤ 1, under the assumption of (1.10), then Qµ(a) is a C 1-
submanifold of codimension 1 in S(a).
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Proof. Qµ(a) is a subset of X and defined by G(u) = 0 and Qµ(u) = 0, where

G(u) = a2 −
∫
RN

|u|2,

clearly G ∈ C1(X ). Then we only need to check that

d(Qµ, G) : X → R2 is surjective.

If dQµ and dG(u) are linearly dependent, in the sense that there exists ν ∈ R such that:

2ν

∫
RN

uφ =θ(1 + γθ)µ

∫
RN

|∇u|θ−2∇u∇φ+ 2

∫
RN

∇u∇φ+ (2 +N)2∫
RN

(|u|2∇u∇φ+ uφ|∇u|2)− τqγq

∫
RN

|u|q−2uφ− pγp

∫
RN

|u|p−2uφ,

for any φ ∈ X . Testing the above equality with φ = x · ∇u and φ = u, we get:

0 =θ(1 + γθ)
2µ

∫
RN

|∇u|θ + 2

∫
RN

|∇u|2 + (2 +N)2
∫
RN

|u|2|∇u|2

− τqγ2q

∫
RN

|u|q − pγ2p

∫
RN

|u|p,

it shows that u ∈ Q0
µ(a), which is contradicts with Q0

µ(a) = ∅, hence

d(Qµ, G) : X → R2 is surjective,

which finish the proof.
For any 0 < µ ≤ 1 and any u ∈ S(a), we have,

Iµ(u) ≥ E(u) =
1

2

∫
RN

|∇u|2 − τ

q

∫
RN

|u|q − 1

p

∫
RN

|u|p

≥ 1

2
|∇u|22 −

τCq
N,q

q
a(1−γq)q|∇u|qγq2 −

Cp
N,p

p
a(1−γp)p|∇u|pγp2 .

(5.6)

Hence it is natural to study the function h : R+ → R:

h(t) :=
1

2
t2 −

τCq
N,q

q
a(1−γq)qtqγq −

Cp
N,p

p
a(1−γp)ptpγp ,

to understand the geometry of the functional Iµ|S(a). Since τ > 0 and qγq < 2 < pγp, we
see that h(0+) = 0− and h(+∞) = −∞. Under the assumption (1.10), we deduce from
Lemma 5.1 [36] that the function h has two extreme points, one is a local strict minimum
at negative level, the other one is a global strict maximum at positive level. Moreover,
there exist 0 < R0 < R1, both depending on a and τ , such that h(R0) = 0 = h(R1) and
h(t) > 0 if and only if t ∈ (R0, R1). �
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Lemma 5.3. For any 0 < µ ≤ 1 and any u ∈ S(a), under the assumption of (1.10),
the function Ψµ has exactly two critical points sµ(u) < tµ(u) ∈ R and two zeros cµ(u) <
dµ(u) ∈ R, with sµ(u) < cµ(u) < tµ(u) < dµ(u). Moreover:
1) sµ(u) ∗ u ∈ Q+

µ (a), tµ(u) ∗ u ∈ Q−
µ (a), and s ∗ u ∈ Qµ(a) if and only if s = sµ(u) or

s = tµ(u).
2) |∇(s ∗ u)|2 ≤ R0 for any s ≤ cµ(u), and

Iµ(sµ(u) ∗ u) = min{Iµ(s ∗ u) : s ∈ R and |∇(s ∗ u)|2 < R0} < 0.

3) We get

Iµ(tµ(u) ∗ u) = max{Iµ(s ∗ u) : s ∈ R} > 0,

and Ψµ is strictly decreasing and concave on (tµ(u),+∞). In particular, tµ(u) < 0 if and
only if Qµ(u) < 0.
4) The maps u ∈ S(a) 7→ sµ(u) ∈ R and u ∈ S(a) 7→ tµ(u) ∈ R are of class C 1.

Proof. Let 0 < µ ≤ 1 and u ∈ S(a). By Proposition 2.1 we know that s ∗ u ∈ Qµ(a)
if and only if Ψ′

µ(s) = 0. Thus we prove that Ψµ has at least two critical points at first.
Recalling (4.6), we get:

Ψµ(s) = Iµ(s ∗ u) ≥ E(s ∗ u) ≥ h(|∇(s ∗ u)|2) = h(es|∇u|2).

Hence the C 2 function Ψµ is positive on
(
ln

R0
|∇u|2

, ln
R1

|∇u|2

)
. Combining Ψµ(−∞) = 0−

with Ψµ(+∞) = −∞, we have that Ψµ has at least two critical points. One is a local

minimum point sµ(u) on
(
−∞, ln

R0
|∇u|2

)
with Ψµ(sµ(u)) < 0. And the other one is a

global maximum point tµ(u) with tµ(u) > sµ(u) and Ψµ(tµ(u)) > 0. Let us check that
there are no other critical points of Ψµ(s). Indeed the equality Ψ′

µ(s) = 0 shows that:

0 =Qµ(s ∗ u) = Ψ′
µ(s)

=(1 + γθ)µe
θ(1+γθ)s

∫
RN

|∇u|θ + e2s
∫
RN

|∇u|2 + (2 +N)e(2+N)s

∫
RN

|u|2|∇u|2

− τγqe
qγqs

∫
RN

|u|q − γpe
pγps

∫
RN

|u|p

=eqγqs
(
(1 + γθ)µe

(θ+θγθ−qγq)s

∫
RN

|∇u|θ + e(2−qγq)s

∫
RN

|∇u|2
)

+ eqγqs
(
(2 +N)e(2+N−qγq)s

∫
RN

|u|2|∇u|2 − τγq

∫
RN

|u|q − γpe
(pγp−qγq)s

∫
RN

|u|p
)
.

Since qγq < θγθ, qγq < 2 and qγq < pγp when 2 < q < 2 + 4
N and 4 + 4

N < p ≤ 2∗,
then 0 = Qµ(s ∗ u) = 0 if only and if

τγq

∫
RN

|u|q = fµ(s), (5.7)
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where

fµ(s) =(1 + γθ)µe
(θ+θγθ−qγq)s

∫
RN

|∇u|θ + e(2−qγq)s

∫
RN

|∇u|2

+ (2 +N)e(2+N−qγq)s

∫
RN

|u|2|∇u|2 − γpe
(pγp−qγq)s

∫
RN

|u|p.

But fµ(s) has a unique maximum point, thus equation (5.7) has at most two solutions.
Hence we know that Ψµ has exactly two critical points sµ(u) and tµ(u). We deduce

from Proposition 2.1 that sµ(u) ∗ u, tµ(u) ∗ u ∈ Qµ(a). Meanwhile, s ∗ u ∈ Qµ(a) implies
s ∈ {sµ(u), tµ(u)}. We also get that Ψ′′

µ,sµ(u)∗u(0) = Ψ′′
µ(sµ(u)) ≥ 0 by using the property

of minimality. SinceQ0
µ(a) = ∅, then sµ(u)∗u ∈ Q+

µ (a). In the same way tµ(u)∗u ∈ Q−
µ (a).

Recalling the behaviour at infinity and the monotonicity of Ψµ, we have that Ψµ has
exactly two zeros cµ(u) < dµ(u) with sµ(u) < cµ(u) < tµ(u) < dµ(u). Since Ψµ is a C 2

function, then there are at least two inflection points. In the same way as before, it is not
difficult to see that Ψµ has exactly two inflection points. In particular, Ψµ is concave on
[tµ(u),+∞), so tµ(u) < 0 if and only if Qµ(u) = Ψ′

µ(0) < 0.

We can apply the implicit function theorem on the C 1 function Φµ(s, u) := Ψ′
µ(s) to

show that u ∈ S(a) 7→ sµ(u) ∈ R and u ∈ S(a) 7→ tµ(u) ∈ R are of class C 1. Indeed,

Φµ(sµ(u), u) = 0, ∂Φµ(sµ(u), u) = Ψ′′
µ(sµ(u)) > 0 and Q0

µ(a) = ∅.

Then, it is not possible to pass with continuity from Q+
µ (a) to Q−

µ (a). Hence u ∈ S(a) 7→
sµ(u) is of class C

1. In the same way u ∈ S(a) 7→ tµ(u) is of class C
1. �

5.2. Ground state critical point of Iµ|S(a)

For any k > 0, we define the set:

Ak := {u ∈ S(a) : |∇u|2 < k} and mµ(a, τ) := inf
u∈AR0

Iµ(u),

then we have the following corollary.

Corollary 5.4. For any 0 < µ ≤ 1, we see that Q+
µ (a) is contained in AR0

, and

sup
u∈Q+

µ (a)

Iµ(u) ≤ 0 ≤ inf
u∈Q−

µ (a)

Iµ(u).

Lemma 5.5. For any 0 < µ ≤ 1, we have that:

mµ(a, τ) = inf
u∈Qµ(a)

Iµ(u) = inf
u∈Q+

µ (a)

Iµ(u).

And, there exists a small ξ > 0 such that mµ(a, τ) < inf
u∈AR0

\AR0−ξ

Iµ(u).
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Proof. For any 0 < µ ≤ 1 and u ∈ AR0
, we have:

Iµ(u) ≥ E(u) ≥ h(|∇u|2) ≥ min
t∈[0,R0]

h(t) > −∞,

then mµ(a, τ) > −∞. On the other hand, we get |∇(s ∗ u)|2 < R0 for s << −1. It shows
that Iµ(s ∗ u) < 0. Hence mµ(a, τ) < 0.
By Corollary 5.4 we have Q+

µ (a) ⊂ AR0
, then,

mµ(a, τ) ≤ inf
u∈Q+

µ (a)

Iµ(u).

By Lemma 5.3 we know that if u ∈ AR0
, then sµ(u) ∗ u ∈ Q+

µ (a) ⊂ AR0
, and

Iµ(sµ(u) ∗ u) = min{Iµ(s ∗ u) : s ∈ R and |∇(s ∗ u)|2 < R0} ≤ Iµ(u),

which shows that

inf
u∈Q+

µ (a)

Iµ(u) ≤ mµ(a, τ).

We can prove inf
u∈Qµ(a)

Iµ(u) = inf
u∈Q+

µ (a)

Iµ(u) by using Iµ(u) > 0 on Q−
µ (a), see

Corollary 5.4.

Finally, there exists ρ> 0 such that h(t) ≥ mµ(a,τ)

2 if t ∈ [R0 − ρ,R0], due to the
continuity of h. Therefore, for any u ∈ S(a) with R0 ≤ |∇u|2 ≤ R0, we get

Iµ(u) ≥ E(u) ≥ h(|∇u|2) ≥
mµ(a, τ)

2
> mµ(a, τ).

Existence of a local minimizer. When N =1, we take µ=0 and the process is similar
to the case of N ≥ 2, so we focus on the case N ≥ 2. For any 0 < µ ≤ 1, we study a
minimizing sequence {vn} for Iµ|AR0

. It is natural to suppose that vn ∈ Sr(a) is radially

decreasing for every n. Indeed for every n, if this is not true, we can replace vn with |vn|∗,
where |vn|∗ is the Schwarz rearrangement of |vn|. Hence |vn|∗ is a new function in AR0

.
Moreover, Iµ(|vn|∗) ≤ Iµ(vn). For every n we also have sµ(vn)∗vn ∈ Q+

µ (a). We combine
Lemma 5.3 with Corollary 5.4, then |∇(sµ(vn) ∗ vn)|2 < R0 and,

Iµ(sµ(vn) ∗ vn) = min{Iµ(s ∗ vn) : s ∈ R and |∇(s ∗ vn)|2 < R0} ≤ Iµ(vn).

So we get a new minimizing sequence {wn = sµ(vn) ∗ vn} with the property that wn ∈
Sr(a) ∩Q+

µ (a) is radially decreasing for any n. By Lemma 5.5 we get for every n,

|∇wn|2 < R0 − ξ.

Hence the Ekeland’s variational principle implies the existence of a new minimiz-
ing sequence un ⊂ AR0

for mµ(a, τ) in a standard way. Meanwhile, {un} has the
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additional property:

‖un − wn‖ → 0 as n→ ∞, (5.8)

which is also a P.S. sequence for Iµ|S(a). Since {wn} is bounded, then Qµ(un) → 0. By
Lemma 3.2, up to a subsequence un such that:

un → uµ,1 in X ,

where uµ,1 is an interior local minimizer for Iµ|AR0
. By the maximum principle, uµ,1

is a positive function. To prove that uµ,1 is a ground state for Iµ|S(a), we only use the
fact that any critical point of Iµ|S(a) lies in Qµ(a), and mµ(a, τ) = inf

u∈Qµ(a)
Iµ(u), see

Lemma 5.5.

5.3. The second critical point of Iµ|S(a)

Lemma 5.6. For any 0 < µ ≤ 1, assume that Iµ(u) < mµ(a, τ), then tµ(u) < 0.

Proof. Recalling the function Ψµ(s) and Lemma 5.3, we get:

sµ(u) < cµ(u) < tµ(u) < dµ(u),

so if dµ(u) ≤ 0, then tµ(u) < 0. And we can assume that dµ(u) > 0. We claim that 0 6∈
(cµ(u), dµ(u)). Indeed if 0 ∈ (cµ(u), dµ(u)), then Iµ(u) = Ψµ(0) > 0, which contradicts
with the fact Iµ(u) < mµ(a, τ) < 0. Hence cµ(u) > 0. We get from Lemma 5.3-(2) that:

mµ(a, τ) > Iµ(u) = Ψµ(0) ≥ inf
s∈(−∞,cµ(u)]

Ψµ(s)

≥ inf{Iµ(s ∗ u) : s ∈ R and |∇(s ∗ u)|2 < R0} = Iµ(sµ(u) ∗ u) ≥ mµ(a, τ),

which is also a contradiction. �

Lemma 5.7. For any 0 < µ ≤ 1, we have σ̃µ(a, τ) := inf
u∈Q−

µ (a)

Iµ(u) > 0.

Proof. Recalling the properties of the function h, we can assume that tmax is the strict
maximum point of the function h with h(tmax) > 0.
For any 0 < µ ≤ 1 and u ∈ Q−

µ (a), there exists ωµ(u) ∈ R, such that |∇(ωµ(u))∗u)|2 =
tmax. Furthermore, by Lemma 5.3 and the fact u ∈ Q−

µ (a), then 0 is the unique strict
maximum of the function Ψµ. Thus,

Iµ(u) = Ψµ(0) ≥ Ψµ(ωµ(u)) = Iµ(ωµ(u) ∗ u) ≥ E(ωµ(u) ∗ u) ≥ h(|∇(ωµ(u)) ∗ u)|2)
= h(tmax) > 0.

Since u ∈ Q−
µ (a) is arbitrary, then we conclude that inf

u∈Q−
µ (a)

Iµ(u) ≥ max
t∈R

h(t) > 0. �
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Existence of a second critical point of mountain pass type for Iµ|S(a).
When N =1, we take µ=0 and the process is similar to the case of N ≥ 2, so we focus

on the case N ≥ 2.
In the same way in § 4, we consider the augmented functional Ĩµ:

Ĩµ(s, u) :=Iµ(s ∗ u)

=
µ

θ
eθ(1+γθ)s

∫
RN

|∇u|θ + e2s

2

∫
RN

|∇u|2 + e(2+N)s

∫
RN

|u|2|∇u|2

− τ

q
eqγqs

∫
RN

|u|q − 1

p
epγps

∫
RN

|u|p. (5.9)

Denoting by Icµ the closed sublevel set {u ∈ S(a) : Iµ(u) ≤ c}, we introduce the
minimax class:

Γ := {γ(τ) = (α, β) ∈ C([0, 1],R× Sr(a)) : γ(0) ∈ (0,Q+
µ ), γ(1) ∈ (0, I

2mµ(a,τ)
µ )},

with associated minimax level:

σµ(a, τ) := inf
γ∈Γ

max
(s,u)∈γ([0,1])

Ĩµ(s, u).

For any 0 < µ ≤ 1 and u ∈ Sr(a). By Lemma 5.3 there exists s1 >> 1 such that:

γu : χ ∈ [0, 1] 7→ (0, ((1− χ)sµ(u) + χs1) ∗ u) ∈ R× Sr(a), (5.10)

is a path in Γ. Hence the minimax value σµ(a, τ) is a real number.
We claim that ∀γ ∈ Γ, there exists χγ ∈ (0, 1) such that α(χγ) ∗ β(χγ) ∈ Q−

µ (a).
Indeed, since γ(0) = (α(0), β(0)) ∈ (0,Q+

µ (a)), we have:

tα(0)∗β(0) = tβ(0) > sβ(0) = 0.

Since Iµ(β(1)) = Ĩµ(β(1)) = Ĩµ(γ(1)) < 2mµ(a, τ), we deduce from Proposition 2.1 and
Lemma 5.3 that:

tα(1)∗β(1) = tβ(1) < 0,

and the map tα(χ)∗β(χ) is continuous in Γ. It is not difficult to show that for any γ ∈ Γ,
there exists χγ ∈ (0, 1) such that tα(χγ)∗β(χγ) = 0, in the sense that α(τγ)∗β(τγ) ∈ Q−

µ (a).

For any γ ∈ Γ, we get from α(χγ) ∗ β(χγ) ∈ Q−
µ (a) that:

max
γ([0,1])

Ĩµ ≥ Ĩµ(γ(χγ)) = Iµ(α(χγ) ∗ β(χγ)) ≥ inf
Q−
µ (a)∩Sr(a)

Iµ,
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which shows that σµ(a, τ) ≥ inf
Q−
µ (a)∩Sr(a)

Iµ. On the other hand, if u ∈ Q−
µ (a) ∩ Sr(a),

then γu defined in (5.10) is a path in Γ with:

Iµ(u) = Ĩµ(0, u) = max
γu([0,1])

Ĩµ ≥ σµ(a, τ),

which gives inf
Q−
µ (a)∩Sr(a)

Iµ ≥ σµ(a, τ). Thus σµ(a, τ) = inf
Q−
µ (a)∩Sr(a)

Iµ.

And Corollary 5.4 and Lemma 5.7 imply that:

σµ(a, τ) = inf
Q−
µ (a)∩Sr(a)

Iµ > 0 ≥ sup

(Q−
µ (a)∪I

2mµ(a,τ)
µ )∩Sr(a)

Iµ = sup

((0,Q−
µ (a))∪(0,I

2mµ(a,τ)
µ ))∩Sr(a)

Iµ.

By using the terminology in Section 5 [17], we get that {γ([0, 1]) : γ ∈ Γ} is a homotopic
stable family with extended closed boundary (0,Q+

µ (a)) ∪ (0, I0µ), where γ([0, 1]) is the

compact subset of R × Sr(a). We also deduce that the superlevel set {Ĩµ ≥ σµ(a, τ)} is

a dual set, that is, {Ĩµ ≥ σµ(a, τ)} satisfies the assumptions (F’1) and (F’2) in Theorem
5.2 [17]. Hence, we can take any minimizing sequence {γn = (αn, βn)} ⊂ Γ for σµ(a, τ)
with the additional properties that αn ≡ 0 and βn ≥ 0 a.e. on RN for every χ ∈ [0, 1],

there exists a P.S. sequence {(sn, wn)} ⊂ R×Sr(a) for Ĩµ|R×Sr(a) at level σµ(a, τ), in the
sense that:

∂sĨµ(sn, wn) → 0 and ∂uĨµ(sn, wn) → 0 as n→ ∞, (5.11)

with the property that

|sn|+ distX (wn, βn([0, 1])) → 0 as n→ ∞. (5.12)

By (5.9) and (5.11), we get Qµ(sn ∗ wn) → 0 and,

‖∂uĨµ(sn, wn)‖(TwnSr(a))∗ → 0 as n→ ∞,

Since {sn} is bounded, due to (5.12), this is equivalent to:

dIµ(sn ∗ wn)[sn ∗ ϕ] = o(1)‖ϕ‖ = o(1)‖sn ∗ ϕ‖ as n→ ∞, for every ϕ ∈ TwnSr(a).
(5.13)

Let then un := sn ∗ wn. By Lemma 4.7 equation (5.13) establishes that {un} ⊂ Sr(a)
is a P.S. sequence for Iµ|Sr(a) at level σµ(a, τ) > 0 with Qµ(un) → 0. Thus, it is also a
P.S. sequence for Iµ|S(a) at level σµ(a, τ) > 0 with Qµ(un) → 0, because the problem is
invariant under rotations. We deduce from Lemma 3.1 that, up to a subsequence such
that un → uµ in X , where uµ ∈ S(a) is a radially symmetric and real function. From
(32) we have that uµ ≥ 0 a.e. on RN , and the strong maximum principle implies that
uµ > 0.
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6. Convergence issues as µ → 0+

In this section we will give the proof of the convergence for the sequences of critical points
of Iµ|S(a) achieved in § 4 and § 5 as µ→ 0+.

Lemma 6.1. Let N ≥ 2. Suppose that one of the following conditions holds
(a) f(u) satisfies (F1) and (F2).
(b) f(u) = τ |u|q−2u+ |u|p−2u, τ > 0 satisfies (H1) and (H2).
Assume that µn → 0+, I ′µn(un)+λµnuµn = 0 with λµn ≥ 0 and Iµn(uµn) → c 6= 0 for

uµn ∈ Sr(an) with 0 < an ≤ a. Then up to a sequence, there exists a u ∈ W 1,2
rad(RN ) ∩

L∞(RN ) with u 6=0 such that uµn ⇀ u in W 1,2(RN ) and there exists a λ ∈ R such that:

I ′µ(u) + λu = 0, I(u) = c and 0 < |u|22 ≤ a.

Moreover,
(1) if uµn ≥ 0 for any n ∈ N+, then u ≥ 0,
(2) if λ 6=0, then |u|22 = lim

n→∞
an.

Proof. The proof is motivated by [19, 24]. Since any critical point of Iµ|S(a) is
contained in Qµ(a), then I

′
µn(un) + λµnuµn = 0 implies that:

Qµn(uµn) = 0 for each n ∈ N+.

By the Step 1 of Lemma 3.1, we get

sup
n≥1

max

{
µn

∫
RN

|∇uµn |θ,
∫
RN

|∇uµn |2,
∫
RN

|uµn |2|∇uµn |2
}
< +∞, (6.1)

and thus uµn is bounded in W 1,2(RN ). We claim that lim inf
n→∞

an > 0. Indeed, if an → 0,

then, ∫
RN

f(uµn)uµn → 0,

∫
RN

F (uµn) → 0,

and we deduce from Qµn(uµn) = 0 that Iµn(uµn) → 0 which contradicts with c 6=0.
Hence λn = − 1

a2n
I ′µ(un)[un] is bounded in R. Then up to a subsequence, there exists a

λ ∈ R such that λµn → λ in R. And, there also exists a u ∈ W 1,2(RN ) with u 6≡ 0 such
that:

uµn ⇀ u in W 1,2(RN ),

uµn → u in Lr(RN ), ∀r ∈ (2, 2 · 2∗),

uµn → u a.e. on RN .
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So, the condition uµn ≥ 0 for any n ∈ N+ implies that u ≥ 0. Moreover, we have that:

uµn∇uµn → u∇u in
(
L2
loc(RN )

)N
and ∇uµn → ∇u a.e. on RN ,

see Lemma A.2 [23] for more details. Here we give the proof in three steps.
Step 1. There exists a constant C > 0 such that ‖uµn‖∞ ≤ C and ‖u‖∞ ≤ C.
The proof of the case N =2 is similar to N ≥ 3, then we only prove the case N ≥ 3.

Let T > 2, r > 0 and

vn =


T, uµn ≥ T,

uµn , |uµn | ≤ T,

− T, uµn ≤ −T.

Assume φ = uµn |vn|2r, then φ ∈ X . Since

I ′µn(un) + λµnuµn = 0 and λµn ≥ 0,

then we have:∫
RN

f(uµn)φ =µn

∫
RN

|∇uµn |θ−2∇uµn · ∇φ+

∫
RN

∇uµn · ∇φ

+ 2

∫
RN

(
uµnφ|∇uµn |2 + |uµn |2∇uµn · ∇φ

)
+ λµn

∫
RN

uµnφ

≥2

∫
RN

|uµn |2∇uµn · ∇φ

=2

∫
RN

(
|uµn |2|∇uµn |2|vn|2r + |uµn |22r|vn|2r−2uµnvn∇uµn · ∇vn

)
=
1

2

∫
RN

∣∣|vn|r∇u2µn∣∣2 + 4

r

∫
RN

∣∣u2µn∇|vn|r
∣∣2

≥ 1

r + 4

∫
RN

∣∣∇ (u2µn |vn|r)∣∣2 ≥ C

(r + 2)2

(∫
RN

∣∣u2µn |vn|r∣∣2∗) 2
2∗
.

Now, for the case of (a), f (u) satisfies (F1) and (F2), then∫
RN

f(uµn)φ =

∫
RN

f(uµn)uµn |vn|2r ≤
∫
RN

βF (uµn)|vn|2r

≤ βF (1)

(∫
RN

|uµn |α|vn|2r +
∫
RN

|uµn |β |vn|2r
)
.

On the other hand, by the interpolation inequality, we have:(∫
RN

|uµn |α|vn|2r) + (

∫
RN

|uµn |β |vn|2r
)
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≤
(∫

RN
|uµn |2·2

∗
)α−4

2·2∗
(∫

RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−α+4

) 2·2∗−α+4
2·2∗

+

(∫
RN

|uµn |2·2
∗
)β−4

2·2∗
(∫

RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−β+4

) 2·2∗−β+4
2·2∗

≤ C

(∫
RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−α+4

)2·2∗−α+4
2·2∗

+

(∫
RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−β+4

) 2·2∗−β+4
2·2∗

 .
We get from these inequalities that:

(∫
RN

∣∣u2µn |vn|r∣∣2∗) 2
2∗

≤C(r + 2)2
(∫

RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−α+4

)2·2∗−α+4
2·2∗

+ C(r + 2)2
(∫

RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−β+4

) 2·2∗−β+4
2·2∗

.

(6.2)

Let

r0 : (r0 + 2)s = 2 · 2∗, (r0 + 2)t < 2 · 2∗ and d =
2∗

s
> 1,

where s = 4·2∗
2·2∗−β+4 and t = 4·2∗

2·2∗−α+4 . Taking r = r0 in (6.2) and also letting T → +∞,
we have:

|uµn |(2+r0)sd
≤ (C(2 + r0))

1
2+r0 |uµn |(2+r0)s

+ (C(2 + r0))
1

2+r0 |uµn |(2+r0)t
.

Set 2 + ri+1 = (2 + ri)d for i ∈ N. Then

|uµn |(2+r0)sd
i+1 ≤

i∏
k=0

(C(2 + rk))
1

2+rk
(
|uµn |(2+r0)s

+ |uµn |(2+r0)t

)
≤ C∞

(
|uµn |(2+r0)s

+ |uµn |(2+r0)t

)
,

(6.3)

where C∞ is a positive constant. Let i → ∞, then there exists a constant C > 0 such
that ‖uµn‖∞ ≤ C and ‖u‖∞ ≤ C.
For the case of (b), f(u) = τ |u|q−2u+ |u|p−2u, τ > 0 satisfies (H1) and (H2), then∫

RN
f(uµn)φ = τ

∫
RN

∫
RN

|uµn |q|vn|2r +
∫
RN

|uµn |p|vn|2r.
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On the other hand, by the interpolation inequality, we have,

τ

∫
RN

∫
RN

|uµn |q|vn|2r +
∫
RN

|uµn |p|vn|2r

≤τ
(∫

RN
|uµn |2·2

∗
) q−2

2·2∗
(∫

RN

(
|vn|r|uµn |2

) 2·2∗
2·2∗−q+2

) 2·2∗−q+2
2·2∗

+

(∫
RN

|uµn |2·2
∗
) p−4

2·2∗
(∫

RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−p+4

) 2·2∗−p+4
2·2∗

≤C

(∫
RN

(
|vn|r|uµn |2

) 2·2∗
2·2∗−q+2

)2·2∗−q+2
2·2∗

+

(∫
RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−p+4

)2·2∗−p+4
2·2∗

 .
From these inequalities, we have:

(∫
RN

∣∣u2µn |vn|r∣∣2∗) 2
2∗

≤C(r + 2)2
(∫

RN

(
|vn|r|uµn |2

) 2·2∗
2·2∗−q+2

)2·2∗−q+2
2·2∗

+ C(r + 2)2
(∫

RN

(
|vn|r|uµn |2

) 4·2∗
2·2∗−p+4

) 2·2∗−p+4
2·2∗

.

(6.4)

Let

r0 : (r0 + 2)s = 2 · 2∗, and d =
2∗

s
> 1,

where s = 4·2∗
2·2∗−p+4 and t = 2·2∗

2·2∗−q+2 . Then (r0 + 2)t < 2 · 2∗. Assume that r = r0 in

(6.4), and also taking T → +∞, we get,

|uµn |(2+r0)sd
≤ (C(2 + r0))

1
2+r0 |uµn |(2+r0)s

+ (C(2 + r0))
1

2+r0 |uµn |
1
2
(2+r0)t

.

Set 2 + ri+1 = (2 + ri)d for i ∈ N. Then

|uµn |(2+r0)sd
i+1 ≤

i∏
k=0

(C(2 + rk))
1

2+rk

(
|uµn |(2+r0)s

+ |uµn |
1
2
(2+r0)t

)
≤ C∞

(
|uµn |(2+r0)s

+ |uµn |
1
2
(2+r0)t

)
,

(6.5)

where C∞ is a positive constant. Let i → ∞, we get that there exists a constant C > 0
such that ‖uµn‖∞ ≤ C and ‖u‖∞ ≤ C. �

Step 2. We prove that I ′µ(u) + λu = 0.
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We take φ = ψe−uµn with ψ ∈ C∞
0 (RN ), ψ ≥ 0, then

0 =
(
I ′µn(un) + λµnuµn

)
[φ]

=µn

∫
RN

|∇uµn |θ−2∇uµn
(
∇ψe−uµn − ψe−uµn∇uµn

)
+

∫
RN

∇uµn
(
∇ψe−uµn − ψe−uµn∇uµn

)
+ 2

∫
RN

(
uµnψe

−uµn |∇uµn |2 + |uµn |2∇uµn
(
∇ψe−uµn − ψe−uµn∇uµn

))
+ λµn

∫
RN

uµnψe
−uµn −

∫
RN

f(uµn)ψe
−uµn

≤µn

∫
RN

|∇uµn |θ−2∇uµn∇ψe−uµn +

∫
RN

(
1 + 2u2µn

)
∇uµn∇ψe−uµn

−
∫
RN

(
1 + 2u2µn − 2uµn

)
ψe−uµn |∇uµn |2 + λµn

∫
RN

uµnψe
−uµn

−
∫
RN

f(uµn)ψe
−uµn .

Since µn → 0+ and ‖uµn‖∞ ≤ C, then (6.1) shows that:

µn

∫
RN

|∇uµn |θ−2∇uµn∇ψe−uµn → 0.

By the weak convergence of uµn , the Lebesgue’s dominated convergence theorem and the
Hölder inequality, we see that:∫

RN

(
1 + 2u2µn

)
∇uµn∇ψe−uµn →

∫
RN

(
1 + 2u2

)
∇u∇ψe−u,

λµn

∫
RN

uµnψe
−uµn → λ

∫
RN

uψe−u,

and ∫
RN

f(uµn)ψe
−uµn →

∫
RN

f(u)ψe−u.

Furthermore, we deduce from the Fatou’s lemma that:

lim inf
n→∞

∫
RN

(
1 + 2u2µn − 2uµn

)
ψe−uµn |∇uµn |2 ≥

∫
RN

(
1 + 2u2 − 2u

)
ψe−u|∇u|2.
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From these convergence, we get:

0 ≤
∫
RN

∇u
(
∇ψe−u − ψe−u∇u

)
+ 2

∫
RN

|u|2∇u
(
∇ψe−u − ψe−u∇u

)
+ 2

∫
RN

uψe−u|∇u|2 + λ

∫
RN

uψe−u −
∫
RN

f(u)ψe−u.

(6.6)

For any ϕ ∈ C∞
0 (RN ) with ϕ ≥ 0. We take a sequence {ψn} with the property that

ψn ∈ C∞
0 (RN ) is nonnegative for every n ∈ N such that:

ψn → ϕeu in W 1,2(RN ), ψn → ϕeu a.e. on RN ,

and {ψn} is bounded in L∞(RN ). Then we deduce from (6.6) that:

0 ≤
∫
RN

∇u∇ϕ+ 2

∫
RN

(
|u|2∇u∇ϕ+ uϕ|∇u|2

)
+ λ

∫
RN

uϕ−
∫
RN

f(u)ϕ. (6.7)

In the same way as before, take φ = ψeuµn , we have a different inequality. Also, since
ϕ = ϕ+ − ϕ− for any ϕ ∈ C∞

0 (RN ), then I ′µ(u) + λu = 0.
Step 3. Conclusion.
We deduce form I ′µ(u) + λu = 0 that Q(u) := Q0(u) = 0. It shows that:

Qµ(uµn) +
N

2

∫
RN

[f(uµn)uµn − 2F (uµn)] → Qµ(u) +
N

2

∫
RN

[f(u)u− 2F (u)].

Then by the weak lower semicontinuity, there holds:

µ

∫
RN

|∇uµn |θ → 0,

∫
RN

|∇uµn |2 →
∫
RN

|∇u|2,
∫
RN

|uµn |2|∇uµn |2 →
∫
RN

|u|2|∇u|2,

(6.8)
which implies that I(u) = lim

n→∞
Iµ(uµn) = c. Furthermore, we get from (6.8) that

I ′µ(un)[un] → I ′µ(uµ)[uµ]. (6.9)

Thus, we combine (6.8) with (6.9), there must be λn|uµn |22 → λµ|u|22. So the condition
λµ 6= 0 shows that |u|22 = lim

n→∞
an.

Now, we give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 For the case of N ≥ 2: we define,

d∗(a) := lim
µ→0+

mµ(a) ∈ (0,+∞).

From § 4 we can obtain µn → 0+, I ′µn(un) + λµnuµn = 0, Iµn(uµn) → d∗(a) 6= 0 for
uµn ∈ Sr(an) with 0 < an ≤ a and uµn ≥ 0. Then, we deduce from Lemma 2.2 that
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λµn > 0. Now by Lemma 6.1 there exists λ0 ∈ R and v ∈W 1,2
rad(RN )∩L∞(RN ) with the

properties that v 6≡ 0 and v ≥ 0 such that:

I ′(v) + λ0v = 0, I(v) = d∗(a) and 0 < |v|2 ≤ a.

Hence by Lemma 2.2 there holds λ0 > 0. Since λµn → λ0, we have λµn 6= 0 for n large.
Then an = a for n large and |v|2 = a. It follows that v is a non-trivial non-negative
normalized solution to (1.1). To study the ground state normalized solution, we define:

d(a) := inf
{
I(v) : v ∈ S̃(a), I|S̃(a)(v) = 0, v 6= 0

}
.

Then d(a) ≤ I(v) = d∗(a). Moreover, we conclude that d(a) > 0, see Lemma 4.2 for

details. We choose a sequence vn ∈ S̃(a), I|S̃(a)(vn) = 0, vn 6= 0 and vn ≥ 0, such

that I(vn) → d(a). By Lemma 6.1, up to a subsequence, there exists λ ∈ R and u ∈
W 1,2

rad(RN ) ∩ L∞(RN ) with the properties that u 6=0 and u ≥ 0 such that:

I ′(u) + λu = 0, I(u) = d(a).

We again use the Lemma 2.2 that λ 6=0, hence |u|2 = a. It follows that u is a minimizer
of d(a). Finally, u is classical and strictly positive since u ∈ L∞(RN ), see Lemma 2.6 in
[28]. �

Proof of Theorem 1.2 i). For the case of N ≥ 2: we define,

d∗τ (a) := lim
µ→0+

mµ(a, τ) ∈ (−∞, 0).

From § 5.2 we can obtain µn → 0+, I ′µn(un) + λµnuµn = 0, Iµn(uµn) → d∗τ (a) 6= 0 for
uµn ∈ Sr(an) with 0 < an ≤ a and uµn ≥ 0. Then, we deduce from Lemma 2.2 that

λµn > 0. Now by Lemma 6.1 there exists λ0 ∈ R and v ∈W 1,2
rad(RN )∩L∞(RN ) with the

properties that v 6=0 and v ≥ 0 such that:

I ′(v) + λ0v = 0, I(v) = d∗τ (a) and 0 < |v|2 ≤ a.

Hence by Lemma 2.2 there holds λ0 > 0. Since λµn → λ0, we have λµn 6= 0 for n large.
Then an = a for n large and |v|2 = a. It follows that v is a non-trivial non-negative
normalized solution to (K). To study the ground state normalized solution, we define:

dτ (a) := inf
{
I(v) : v ∈ S̃(a), I|S̃(a)(v) = 0, v 6= 0

}
.

Then dτ (a) ≤ I(v) = d∗τ (a). Furthermore, we have that dτ (a) < 0, see Lemma 5.5. We

take a sequence vn ∈ S̃(a), I|S̃(a)(vn) = 0, vn 6= 0 and vn ≥ 0 such that I(vn) → dτ (a).

By Lemma 6.1, up to a subsequence, there exists λ ∈ R and û ∈ W 1,2
rad(RN ) ∩ L∞(RN )
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with the properties that û 6= 0 and û ≥ 0 such that:

I ′(û) + λû = 0, I(û) = dτ (a).

We again use the Lemma 2.2 that λ 6=0, hence |û|2 = a. It shows that û is a mini-
mizer of dτ (a). Finally, by Lemma 2.6 in [29], û is classical and strictly positive since
û ∈ L∞(RN ). �

Proof of Theorem 1.2 ii). For the case of N ≥ 2: we define,

d∗τ (a) := lim
µ→0+

σµ(a, τ) ∈ (0,+∞).

From § 5.3 we obtain µn → 0+, I ′µn(un) + λµnuµn = 0, Iµn(uµn) → d∗τ (a) 6= 0 for
uµn ∈ Sr(an), with 0 < an ≤ a and uµn ≥ 0. Then we deduce from the Lemma 2.2 that

λµn > 0. Now by Lemma 6.1 there exists λ0 ∈ R and u ∈W 1,2
rad(RN )∩L∞(RN ) with the

properties that u 6= 0 and v ≥ 0 such that:

I ′(u) + λ0u = 0, I(u) = d∗τ (a) and 0 < |u|2 ≤ a.

By Lemma 2.2 there holds λ0 > 0. Since λµn → λ0, we get that λµn 6= 0 for n large. Then
an = a for n large and |u|2 = a. It follows that u is a non-trivial non-negative normalized
solution of mountain-pass type to (1.1). By using the strong maximum principle, we get
u is positive. Since u ∈ L∞(RN ), then u is classical, see Lemma 2.6 in [28]. �
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