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Abstract

Non-technical summary. Agriculture has been dominated by annual plants, such as all cer-
eals and oilseeds, since the very beginning of civilization over 10,000 years ago. Annual plants
are planted and uprooted every year which results in severe disturbance of the soil and dis-
rupts ecosystem services. Science has shown that it is possible to domesticate completely
new perennial grain crops, i.e. planted once and harvested year after year. Such crops
would solve many of the problems of agriculture, but their development and uptake would
be at odds with the current agricultural technology industry.
Technical summary. Agriculture is arguably the most environmentally destructive innovation
in human history. A root cause is the reliance on annual crops requiring uprooting and
restarting every season. Most environmental predicaments of agriculture can be attributed
to the use of annuals, as well as many social, political, and economic ones. Advances in
domestication and breeding of novel perennial grain crops have demonstrated the possibility
of a future agricultural shift from annual to perennial crops. Such a change could have many
advantages over the current agricultural systems which are to over 80% based on annual crops
mainly grown in monocultures. We analyze and review the prospects for such scientific
advances to be adopted and scaled to a level where it is pertinent to talk about a perennial
revolution. We follow the logic of E.O. Wright’s approach of Envisioning Real Utopias by dis-
cussing the desirability, viability, and achievability of such a transition. Proceeding from
Lakatos’ theory of science and Lukes’ three dimensions of power, we discuss the obstacles
to such a transition. We apply a transition theory lens to formulate four reasons of optimism
that a perennial revolution could be imminent within 3–5 decades and conclude with an invi-
tation for research.

1. The many problems of annual grain production

The Neolithic Revolution 12,000 to 7000 years ago, during which humans shifted from hunt-
ing and gathering to farming, was arguably the most decisive social transition in human his-
tory in terms of path dependency. This profound shift in the provision of food marked the rise
of civilizations and the beginning of political organizations (Weisdorf, 2005), and was by some
proposed as the onset of a new geological Epoch, the Anthropocene (Lewis & Maslin, 2015).
Its most important characteristic was the domestication of the annual grasses and forbs that
still comprise the mainstay of our food, such as wheat, rice, maize, soya (together representing
50% of world croplands), barley, beans, millet, oat, rye, sesame, sorghum, and sunflower. It is
hard to overstate the importance of agriculture for the development of civilization, but now
agriculture and the world’s food supply have reached a critical crossroad (Olsson et al., 2023).

The history of domestication has so far resulted in that most humans today depend on a
few high-yielding staple crops in agricultural systems that are unsustainable (McIntyre et al.,
2009), climate vulnerable (Bezner Kerr et al., 2022), nutrient poor (FAO et al., 2020;
Gillespie et al., 2017), and inequitable (Krug et al., 2023). The global demand for food is pro-
jected to continue to increase because of a burgeoning population, shifting dietary preferences,
over-consumption, and food wastage (van Dijk et al., 2021). The size of the demand for food
by 2100 is contested, from a doubling, as argued by agroindustry (Steensland, 2021) to 40–55%
as assumed by the FAO (FAO, 2019), and as low as 30% as suggested by some integrated mod-
els (van Dijk et al., 2021). Climate change, water scarcity, and land use change are expected to
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make it difficult to meet even the lowest of increased demands
(Bezner Kerr et al., 2022; Mbow et al., 2019; Olsson et al.,
2019). Moreover, agriculture is already one of the most polluting
sectors of society (Breitburg et al., 2018; Foley et al., 2011;
Ramankutty et al., 2018), and dominant trends in the sector are
at odds with social goals such as health (Clark et al., 2019),
employment (White, 2012), livelihood diversity, and social cohe-
sion (Losch et al., 2012). Most people living in extreme poverty
are rural and employed in agriculture, a sector characterized by
inequality and gender disparities (World Bank, 2018). In high-
income countries farmers suffer from high and increasing debts,
decreasing returns, and high levels of stress (Rudolphi, 2019;
Rudolphi & Barnes, 2019). At a very different level, agriculture
is also the main culprit of the 400+ marine dead zones in coastal
waters (Bailey et al., 2020; Foley et al., 2011). These challenges
combined make a radical change in the agricultural sector
imperative, and such a change must also respond to the increasing
demands and expected deteriorating productivity due to climate
change (Bezner Kerr et al., 2022; Challinor et al., 2014; Mbow
et al., 2019; Porter et al., 2014) and the nutritional quality of
food (Zhu et al., 2018).

Modern agriculture is unsustainable first and foremost because
of the reliance on low diversity annual cropping systems that
require severe disruption of soil ecosystems every year to restart
the production cycle (Baker, 2017; Crews et al., 2018; Crews &
Rumsey, 2017; Eisler, 2019; Lubofsky, 2016; Rasche et al., 2017;
Soto-Gómez & Pérez-Rodríguez, 2022). This is arguably a root
cause of both environmental damage (erosion, nutrient leaching,
greenhouse gas emissions, deteriorating soil biodiversity, and
spreading of toxic substances) and many social predicaments,
such as the high dependence on an industry of external inputs
(seeds, agrochemicals, machinery, and fossil fuel). This makes
agriculture a cost to society through a complex system of subsidies
totaling about $600 billion per year worldwide (Laborde et al.,
2021), or in the EU, about 35% of its total budget (Head, 2019;
Scown et al., 2020).

In order to attribute these predicaments to one specific factor,
the reliance on annual grains, we turn to the concept path
dependence for understanding the historical evolution of agricul-
ture (Mahoney, 2000). One reason why annual crops are favored
in commercial plant breeding, is the opportunity to use patent
protection as a way of reaping future benefits. Even if plants
were exempted from the original patent legislation in 1836, the
discovery of methods for creating hybrid seeds in the 1920s
paved the way for patentability of seeds, and in 1930 the first
patent of a seed was granted. The arguments for patentability of
plants were primarily industrial (Seay, 1988). Even if crops super-
ior to the hybrids could have been achieved through selection of
(not patentable) open-pollinates (Kloppenburg, 2005; Paul, 1989),
the plant breeding industry focused on hybrids because of their
patentability and hence commercial potential. Therefore, we can
consider the 1930s decision to allow patents on plants as a con-
tingent moment initiating a self-reinforcing sequence of plant
breeding techniques (Mahoney, 2000).

Agriculture has historically developed in both radical leaps
(revolutions) and incremental changes. In the last 150 years we
have distinguished at least four technological breakthroughs,
sometimes referred to as revolutions, but with very different pol-
itical and economic implications. The first was the invention and
mass manufacture of the moldboard plow in the 1850s. With the
steel plow it was possible to plow deeper into heavy soils, and to
turn the soil over. This facilitated the expansion of agriculture into

new areas. The second was the Haber Bosch process to manufac-
ture plant-available nitrogen from atmospheric nitrogen in the
1910s (Smil, 2004). The third was the Green Revolution in the
1960s which was primarily driven by advances in plant breeding
supported by massive use of agrochemicals for the purpose of
eradicating hunger (Evenson & Gollin, 2003). The fourth agricul-
tural revolution was the transgenic revolution primarily oriented
towards producing new crops with agronomic traits to make crop-
ping more cost effective – nearly all the commercially released
transgenic crops are either herbicide tolerant or insect resistant
varieties (van Acker et al., 2017). These four revolutions have
increased food production, averted famine, increased food secur-
ity, and improved lives in many farming communities. Yet, over a
longer time perspective the legacy of these agricultural revolutions
is increasingly contested both in terms of the environmental
trade-offs and social ramifications (Stone, 2019). All four agricul-
tural revolutions also contributed to creating the economic condi-
tions that drive agriculture towards productivism, as will be
elaborated below. In sum, modern agriculture is increasingly
unable to generate desired benefits without negative costs, and
its viability is increasingly undermined by climate change.

2. The many calls for a new agricultural vision

There is growing momentum in the UN (FAO et al., 2020), EU
(Kelly & Naujokaityte, 2020), and USA (USDA, 2021) of the
necessity for agriculture to change in order to better balance pro-
duction of goods with conservation of natural resources. However,
most of the proposed changes are incremental without addressing
a root cause of unsustainability, namely the reliance on annual
crops. Below we briefly review some of the most common dis-
courses of sustainable agriculture, many of which overlap.

• Climate-smart agriculture is a broad approach for transform-
ing and reorienting agricultural systems to support food secur-
ity under the new conditions expected from climate change and
water scarcity. Even if climate-smart agriculture is loosely
defined and interpretations differ among stakeholders, three pil-
lars are foundational: sustainably increase food production;
adapting and building resilience to climate change; reducing
emission of greenhouse gases and/or remove emissions where
possible (Alexander, 2019; Lipper et al., 2014).

• Sustainable/ecological intensification is a related umbrella
term for various ways of changing agricultural practices to
increase crop yield while reducing the environmental impact
of agriculture (Pretty, 2018). It is often emphasizing crop diver-
sity (Bommarco et al., 2013), and includes the debate on land
sharing/sparing (Phalan et al., 2011).

• Smart Farming is an umbrella term that includes ‘precision
agriculture’ for harnessing the exponentially increasing use of
information and communication technologies (ICT) for opti-
mizing and automatizing farming to deliver water, nutrients,
and pesticides at targeted locations, rates, and timings (Walter
et al., 2017).

• Organic agriculture is a term used explicitly for production
systems that do not allow use of synthetic fertilizers and pesti-
cides and instead rely on animal manure, biological fixation,
and biological pest control practices, or naturally derived bio-
cides (Howard, 1947; Reganold & Wachter, 2016). Organic agri-
culture is a holistic production management system which
promotes and enhances agroecosystem health, including bio-
diversity, biological cycles, and soil biological activity.
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This production system is primarily consumer driven and sup-
ported by international regulation standards.

• Regenerative agriculture is a broad term generally used to
describe practices that improve soil quality through 1) minimal
disturbance, 2) continuous cover by mulch and cover crops, 3)
diversity in terms of crop rotation and intercropping (Giller
et al., 2021; Montgomery, 2017; Rhodes, 2013). This term is
increasingly adopted by disparate groups ranging from grass
roots farmer and rancher organizations to governmental and
development agencies, as well as corporations (Tittonell et al.,
2022).

Importantly, these discourses have particular institutional
links, both private and public. Climate Smart Agriculture is a con-
cept primarily promoted by international organizations such as
FAO, World Bank and the CGIAR. Smart Farming is heavily pro-
moted by agricultural technology companies (agrochemicals and
machinery). Organic agriculture originated as a biophilic philoso-
phy that has since the early 1990s been codified as a business con-
cept based on third party certification of products. Regenerative
agriculture started as a social movement among farmers that is
rapidly spreading to other sectors, and risks losing its original
meaning (Bless et al., 2023).

A fallacy, however, of all these approaches, at least from a soil
carbon perspective, is the assumption that reversing degradation
will restore soil carbon levels. It is well known that frequent and
deep tillage in combination with leaving the soil surface exposed
for long periods of time releases soil carbon to the atmosphere
(Chi et al., 2016). But this does not mean that the soil carbon
will come back if these detrimental practices are reversed. The
soil carbon that accumulated in soils prior to cultivation were
built by a diversity of perennial plants with dense and deep
root systems. Only by reintroducing a diversity of deep-rooted
plants can we hope to rebuild that soil carbon (Guan et al.,
2016; Ledo et al., 2020).

3. A perennial revolution as a new radical alternative

We argue that the agricultural systems that hold the greatest
promise for improving on all unsustainable dimensions of annual
grain agriculture are systems that feature perennial grains culti-
vated in mixtures – here called perennial polycultures (Baker,
2017; Chapman et al., 2022; Crews et al., 2018; de Oliveira
et al., 2019; Duchene et al., 2019; Ryan et al., 2018; Soto-Gómez
& Pérez-Rodríguez, 2022). We argue that a perennial revolution
is essential for long-term sustainable agriculture.

In envisioning this alternative to current agriculture, we take
inspiration from Erik Olin Wright’s framework for social change,
‘envisioning real utopias’ (Wright, 2010). This involves a three-
pronged approach:

• A theoretically profound and systematic analysis of the current
state-of-play. This means that we need to go beyond discussing
the problems as such and ask the more fundamental question of
why modern agriculture developed into the current system.
What were the conditions and drivers of agriculture?

• The formulation of an alternative to the current situation that is
desirable (i.e. that it can generate the benefits we envision with-
out negative side effects in terms of environment, agricultural
communities, and society at large); viable (i.e. that it can be sus-
tained over long periods of time without shifting problems into

the future); and achievable (i.e. that it can be achieved in a rea-
sonable timeframe).

• A strategy for change by which the current system can be trans-
formed into the new alternative. Such a strategy may have to
first undermine or erode the power of the incumbent systems
in order to pave the way for the new alternative (Wright, 2019).

The realization of diverse, perennial grain agricultural systems
would be revolutionary for both ecological and social reasons.
Ecologically, novel agroecosystems of perennial polycultures
could help repair the ecosystem harms of industrial annual agri-
culture and could help restore and retain vitally necessary natural
ecosystem services while producing food for humans (Crews et al.,
2018). Socially, a perennial revolution could fundamentally chal-
lenge the power structures that drive current agriculture by ren-
dering much of the current agricultural inputs industry less
important, or in some cases even superfluous, through agroecolo-
gical transitions balancing production and environmental protec-
tion (Duru et al., 2015). The more sustainable ecological,
economic, and energetic infrastructure provided by perennial
agriculture opens ethical possibilities for more just human cul-
tures and relationships; while a ‘social perennial vision’ is not
inevitable, it can be intentionally pursued (Krug & Tesdell, 2021).

When the idea of shifting from annual crops to perennial crops
was first expressed some 40 years ago (Eisler, 2019; Jackson, 1980)
it was regarded by many as utopian. However, advances in plant
breeding across subsequent decades have shown that it is possible
to rapidly develop new perennial crops through wide hybridiza-
tion of existing annual plants with wild perennial relatives (Cox
et al., 2018; Cui et al., 2018; Zhang et al., 2019) and an alternative
strategy, de novo domestication of wild plants now also seems pos-
sible (Chapman et al., 2022; Luo et al., 2022). However, in a situ-
ation where most of the plant breeding is funded by the private
sector looking for a return on investment, there is little economic
incentive to develop perennial grains (Clancy & Moschini, 2017;
Coe et al., 2020).

Doubts about and even objections to the idea of domesticating
perennial grain crops (Denison, 2012; Loomis, 2022; Smaje,
2015), are sometimes raised by referring to the phenotypic trade-
off theory (or the ‘Y-model’) in ecology, popular in the 1980s and
90s (Roff & Fairbairn, 2007; Roff & Gelinas, 2003). According to
this theory perennial plants do not allocate enough energy to pro-
ducing large seeds, but instead prioritize other plant functions,
such as vegetative growth and soil exploration through an exten-
sive root system. However, observed phenotypic trade-offs are not
always supported by evolutionary theory because it is possible that
natural selection in a competitive environment never favored the
development of both longevity (large root system of perennials)
and reproductive capacity (many spikes and large seeds)
(Garland, 2014). More recent research suggests that a quantitative
genetic theory is a more appropriate for understanding trade-offs,
and according to this theory plant breeding can promote both
longevity (roots) and reproductive capacity (seeds). Evidence
exists that the trade-off between perenniality and reproductive
allocation is not fixed, for example, herbaceous perennial crops
that produce 20 tons (plantain) to 50 tons (banana) of fruit per
ha in the tropics (Kreitzman et al., 2020). Olive trees, domesti-
cated about 6000 years ago, sustain their yields for 300 to 500
years (Camarero et al., 2021). Wild perennial plants produce
fewer or smaller seeds because of natural selection in a competi-
tive environment where longevity is favored rather than because
of physiologically optimized allocation (DeHaan et al., 2005). So
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even if most existing agricultural crops are annuals, there is no
biological reason preventing the domestication of perennial
grain crops (Bajgain et al., 2022; Chapman et al., 2022; Ciotir
et al., 2019; DeHaan et al., 2005, 2016; DeHaan & Van Tassel,
2014; Van Tassel et al., 2020). However, if we use a political ecol-
ogy lens the phenotypic trade-off theory can justify and support a
continuation of conventional annual crops.

That a perennial revolution is possible can be illustrated by two
recent developments: Kernza® grain, which is the result of domes-
tication and traditional breeding of the wild perennial grass inter-
mediate wheatgrass (hereafter called IWG; Thinopyrum
intermedium) (Bajgain et al., 2020), and perennial rice which is
the result of species-wide hybridization of Asian cultivated rice
(Oryza sativa ssp. indica) with the African wild perennial relative
Oryza longistaminata (Zhang et al., 2023). The evidence from
IWG is that grain yield and other domestication traits such as
seed size, shatter resistance, and free threshing ability (i.e. that
the seed separates cleanly from the chaff when threshing) can
be increased rapidly in a previously wild perennial species using
traditional breeding and modern genetic tools such as genomic
selection (Fagnant et al., 2023; LeHeiget et al., 2023). The evi-
dence from perennial rice is that wide hybridization of an existing
annual crop and a perennial wild relative can generate a high
yielding perennial crop. These proofs-of-concept are major and
significant achievements, but many more perennial grain crops
and cultivars are in the pipeline (Chapman et al., 2022; Crews
et al., 2016). Within one to three decades we expect to see a
wide range of perennial grain crops making inroads into agricul-
ture and becoming operational, such as barley, oil seeds, sorghum,
wheat and legumes (Baker, 2017; Ciotir et al., 2019; Crews et al.,
2018; DeHaan et al., 2016, 2020; Luo et al., 2022; Westerbergh
et al., 2018). Doubts about the lack of progress in breeding peren-
nial grains were raised recently by Cassman & Connor (Cassman
& Connor, 2022), but are contradicted by recent research showing
rapid improvements in yield and other agronomic traits
(Altendorf et al., 2022; Bajgain et al., 2022; DeHaan et al., 2023).

A fundamental difference between annual and perennial plants
is the root system (Roumet et al., 2006). Annuals develop roots
just for one season whereas perennials build and accumulate typ-
ically deeper and wider root systems over numerous years
(Culman et al., 2010; Duchene et al., 2020; Monti & Zatta,
2009; Sainju et al., 2017). In Figure 1 we show the difference
between the annual winter wheat ready to be harvested (left) com-
pared with the newly domesticated perennial grain IWG after two
seasons. One study has shown that root systems of IWG in its
fourth year of growth were 15 times larger by weight and size
than wheat (Sprunger et al., 2018). Eddy covariance measure-
ments have demonstrated that IWG can act as a strong carbon
sink – the mean annual flux from the atmosphere was about 14
tons CO2 ha−1 year−1 (370 g C m−2) over a five-year period (de
Oliveira et al., 2018, 2019). Exactly how much of the assimilated
carbon that remains in the soil for long periods of time is still a
matter of discussion (Gregory, 2022; Peixoto et al., 2022). The
extensive root system is also the reason why perennial crops
reduce nutrient leaching to ground water, streams, lakes and
ultimately oceans to virtually zero (Cosentino et al., 2015;
Culman et al., 2013; DeHaan et al., 2005; Huddell et al., 2023;
Jankauskas et al., 2011; Vallebona et al., 2016). Hence, shifting
from annuals to perennials would have a tremendous effect on
water quality and eventually ocean health (Beman et al., 2005;
Beusen et al., 2016).

Weeds have been a persistent problem in agriculture since its
beginning, indeed they are both an ecological response of, and a
reason for clearing the land with tillage every year. More recently,
herbicide use has increased substantially (Damalas & Koutroubas,
2024), e.g., the most widely used herbicide (glyphosate) has
increased almost 15-fold globally since the introduction of gly-
phosate resistant crops (Benbrook, 2016). One could hope that
the increasing use of glyphosate could be balanced by reduced
use of other more toxic herbicides, such as paraquat, but does
not seem to be the case (Olsson et al., 2023). As a result, we
experience an exponential increase in the number of weeds that
are resistant to glyphosate, often called ‘superweeds’ (Bain et al.,
2017; Damalas & Koutroubas, 2024). Contrary to cropping sys-
tems based on annuals, perennial cropping systems, once they
are established, can effectively suppress weeds by more fully util-
izing the plant resources of sunlight, water, and nutrients. In a
controlled experiment during three years, weed biomass decreased
by 88% in an IWG field without any weed removal (Zimbric et al.,
2020). Therefore, IWG could also reduce weed development and
species abundance over time through year-round soil cover and
longer growing seasons (Duchene et al., 2023). Lanker et al.

Figure 1. Intermediate wheatgrass in its second year (right) compared with winter
wheat ready to be harvested (left). Photo: The Land Institute.
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(2020) confirmed that weed suppression was considered by farm-
ers as one of the most important benefits.

Crop rotation is a common practice for reducing the risk of
agricultural pests in annual cropping systems, and pathogen pres-
sure is often used as a counterargument against perennial crop-
ping systems. Deploying crop diversity in time (crop rotation)
can effectively disrupt insect or disease pest populations and
thus reduce crop losses. However, inbred annual cultivars with
low genetic diversity and cultivated in monocultures are always
susceptible to pests. Strategically deploying crop diversity (inter
and intraspecific) in space (intercrops/polycultures) has also
been widely recognized as an effective strategy for regulating
insect and disease populations (Deguine et al., 2021; Ratnadass
et al., 2012). In addition to interspecific diversity, genetic diversity
within crop species in agroecosystems (as seen in outcrossers such
as IWG and other perennials, or among mixtures of cultivars)
reduces pest and disease pressures and enhances yield production
(Wan et al., 2022).

Even if perennial grains are used, they are likely to be renewed
at intervals of 3–7 years. Reasons for this could be to remove
weeds or that plant breeding has resulted in new and higher yield-
ing cultivars. Studies have also suggested the possibility of reju-
venating old perennial cultures through thinning, burning,
grazing or other treatments, but more research is needed (Law
et al., 2021; Pinto et al., 2021).

The application of nutrients, either in the form of mineral fer-
tilizers or as manure is another costly and labor-intensive part of
growing annual crops. Nitrogen is a problem, often added at a
rate of 120 to 250 kg ha−1year−1, and the manufacture of synthetic
nitrogen fertilizers comprises the greatest fossil energy input into
agriculture, and a significant source of greenhouse gas emissions.
It is well-documented that typically <50% of the fertilizer-N applied
to annual grains is used by plants (Ladha et al., 2005, 2016) while
the rest is lost to the environment as water soluble nitrate or in
various gaseous forms including ammonia and nitrous oxide
(Cameron et al., 2013; Sharma & Bali, 2018). Cropping systems
that feature deep-rooted perennial grains cultivated in mixed cul-
tures or rotations with nitrogen (atmospheric N2) fixing legumes,
such as clover or alfalfa, hold promise to drastically reduce or per-
haps even replace the need for synthetic nitrogen applications
(Huddell et al., 2023; Pugliese et al., 2019). Fewer inputs through
natural nitrogen fixation are needed when N losses are greatly
reduced in an N-use efficient perennial cropping system.
Phosphorous is another essential nutrient for crop production
which is added in large quantities, typically 10–40 kg ha−1 year−1

in annual cropping systems. The known minable resources are
finite and may be depleted in less than 100 years (Cordell et al.,
2009). However, agricultural soils commonly contain substantial
reserves of phosphorus that are unavailable for our annual crops
with shallow root systems. New perennial crops with deep and
extensive root systems can potentially utilize such reserves
(Stutter et al., 2012), and hence substantially reduce the need for
external inputs of phosphorous. Also, with deeper roots natural
reserves of phosphorus can be acquired from a larger soil volume,
held in forms that are more plant-available, and prevented from
contaminating water supplies due to soil erosion (Crews &
Brookes, 2014). The ability of perennial grain crops to harness
mycorrhiza for improved nutrient cycling is another potential
major benefit (Duchene et al., 2020; Gregory, 2022; Strohm, 2021).

From a farming point of view, perennial grains could be
described as a farmer’s dream – a cultivar that is planted once
and then harvested every season for several years with a minimum

of land management in between. Instead of 4–10 tractor passes
per year as with annual cultivars, only 1–5 for harvesting and
nutrient, pest, and weed management, would be required. From
a farm economics point of view, farming perennial grains could
translate into a significant reduction in production costs, resulting
in increasing total factor productivity. From a regional economic
perspective, it could mean that a larger share of farmers’ income
would remain in the local economy as the need for purchased
inputs such as seeds, agrochemicals, synthetic fertilizers, fuel,
and machinery from external (often transnational) corporations
are reduced. The retained income may stimulate local economic
development through the creation of new businesses (Low et al.,
2015; Persky et al., 1993) that service the emerging perennial sec-
tor. Such local growth could play an important role in offering
opportunities to workers in seasonal employment (i.e. tractor dri-
vers) who may be displaced in the short run during this transition.
In the long term, the transition to perennial grains could provide
a basis for more diverse and thriving rural economies.
Comparisons with existing perennial crops, e.g. sugarcane or
horticulture, may be difficult to learn from because of their very
different means of production and market structures.

While perennial grains hold considerable promise for addres-
sing a wide range of ecological and social challenges in the future,
the perennial crops, and cultivars themselves are in early stages of
development relative to the annual grains and much research in
plant breeding and in cropping systems is needed in the decades
to come before the ‘utopia’ becomes a ‘real utopia’ (Wright, 2010).
But a strong momentum exists among plant breeders operating
outside of the commercial seed industry around the world, and
over 150 research groups on all continents are currently partici-
pating in research on perennial grain crops, cropping systems,
sociocultural engagement, and supply chain and product develop-
ment (DeHaan et al., 2023). Rapid advances in molecular biology
and genetics are facilitating accelerated progress in breeding of
perennial crops (Chapman et al., 2022; DeHaan et al., 2020;
Luo et al., 2022; Van Tassel et al., 2020). Perennial rice is already
competitive in terms of yield compared with annual rice (Huang
et al., 2018; Zhang et al., 2023). For eight breeding cycles of IWG,
yield has been increasing by 9% per cycle and is expected to
match annual wheat in about 20 years if progress continues
with genomic selection as a breeding tool (Bajgain et al., 2022)
along with other improvements of crop management (Fagnant
et al., 2023). Finally, tools and technologies for new crop domes-
tication can be integrated with methods that engage humans, as
people are essential for plant domestication processes and cultural
valuation and awareness can help drive support for crop develop-
ment and adoption (Krug et al., 2023; Van Tassel et al., 2020).

Our conclusion is that a perennial revolution would be socially
and environmentally desirable, economically viable, and scientif-
ically achievable. However, a perennial revolution will not be
achieved overnight but can hopefully be achieved within a time-
frame like that of the Green Revolution, about 35 years
(Kendall & Pimentel, 1994). Within two to three decades domes-
tication and plant breeding, and other associated fields of
research, if sufficiently funded, can probably achieve the necessary
increases in yield and other traits that are required for ensuring
global food security (DeHaan et al., 2023; Krug et al., 2023; Luo
et al., 2022).

Arguments against a shift to perennial grains based on the
need for increasing food production in the next few decades are
to some extent valid but should not deter us from looking at
the longer term. World agricultural output growth rates are
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slowing and are now the lowest for at least six decades while the
growth rate of Total Factor Productivity has declined in the last
two decades (Morgan et al., 2022). Explanations for the declining
growth rates are not fully understood but impacts of climate
change and degradation of natural resources are frequently
invoked. Our current staple food crops will face unprecedented
challenges and perhaps even complete failure towards the second
half of this century (Liu et al., 2016; Zhao et al., 2017). Therefore,
the development of completely new crops that are better adapted
to the conditions of the Anthropocene should be an urgent prior-
ity (Kreitzman et al., 2020).

4. Obstacles for change

A perennial revolution will challenge politically powerful conven-
tional agriculture supported by economically concentrated agro-
chemical and seed industries. Inevitably, such radical changes
will involve political and economic power struggles, and they
are certain to be resisted by existing vested interests. So how
can perennial polycultures make inroads into conventional agri-
culture and ultimately replace annual crops as the mainstay of
our food systems? Below we will discuss four broad areas of
challenges.

4.1 Interdisciplinary challenges

Competing paradigms are unusual in the core disciplines of the
natural sciences, except during short periods of paradigmatic
shifts. In many social sciences, however, competing paradigms,
or at least perspectives, are the norm and they may persist over
generations. In the more applied sciences (e.g. agriculture, energy,
environment, and forestry) there are sometimes parallel and com-
peting paradigms, (Persson et al., 2018) each one supported by
their vested economic and political interests (MoeSingh, 2012).
Most obvious is the situation in agricultural sciences where
there are two competing paradigms, often called the
Productivism Paradigm (Karimi et al., 2021) and the Ecological
Paradigm (Kassam & Kassam, 2021). The paradigms differ both
in epistemological approaches (Böschen, 2009), and worldviews
(Schurman & Munro, 2010). However, paradigms are not purely
epistemic but also part of different, ever competing, food regimes
(Friedmann, 1993; McMichael, 2009). Regimes associated with
productivism paradigm are tightly integrated with the food indus-
try, which is one of the most globally consolidated production
spheres (Howard, 2015). Research and plant breeding within
the productivism paradigm is well funded and supported by
both state and private sources, while research in the ecological
paradigm is substantially less funded and almost exclusively by
state funding and philanthropy (Lindner, 2004). In searching
for radical change, both paradigms offer necessary insights but
neither of them is sufficient (Persson et al., 2018) because neither
seriously challenges the very core of agriculture – the overwhelm-
ing reliance on annual crops.

For understanding the dynamics of agricultural change, we
turn to the concept of a research program by Imre Lakatos,
which we believe is more suitable than Kuhn’s paradigm
(Gholson & Barker, 1985). Lakatos’ view of science differed
from that of a paradigm influencing (or even ruling) how science
is practiced. Lakatos described the existing scientific knowledge as
a hard core of central theses that are irrefutable (or at least highly
resistant to refutation), and the core is surrounded by a protective
belt of auxiliary hypotheses open for testing (Musgrave & Pigden,

2021). An important difference between Lakatos’ and our under-
standing of the world (or agriculture) is that while Lakatos only
considered scientific protective belts, we understand the hard
core being protected, not only by epistemic protective belts of
hypotheses that can be verified or falsified, but protective belts
of vested economic and political interests, Figure 2.

In practice this makes change even harder than if the protect-
ive belt had been epistemic only. The hard core of agriculture is
the annual crops, while the protective belts have multiple dimen-
sions, such as scientific fields (e.g. agronomy, soil science, and
plant science), economic (e.g. the agrochemical industrial com-
plex), institutional (e.g. rural advisory services, and industry orga-
nizations), ideological (e.g. neoliberalism), and cultural (e.g.
beliefs, traditions, and values). A perennial revolution needs to
engage with all layers of the protective belts.

4.2 Politics of seeds and agrochemicals

Power over the sources and development of seeds is a key for
understanding the evolution of modern agriculture
(Kloppenburg, 2005; Mooney, 1983; Peschard & Randeria,
2020). From being a public good, often organized as
co-operatives, seeds emerged as the linchpin of a commercializa-
tion of the agricultural inputs market in the 20th century (Dale,
2004; Friedmann, 1993; Howard, 2015; Kloppenburg, 2005).
Pivotal moments were the granting of patents on Roundup
Ready cultivars in the mid-1990s, and the ruling by the US
Supreme Court in 2013, Bowman vs Monsanto (Haugo, 2015;
Lim, 2013). Against a strong industrial trend of increasing market
consolidation and power, there is also a counter movement, seed
activism (Peschard & Randeria, 2020). Even if seed activism has
been around for at least four decades (Mooney, 1983), it has
grown stronger recently and is now receiving support from out-
side of farmers and agricultural activism (Peschard, 2022), to
some extent supported by the spectacular legal cases against the
agrochemical giant Monsanto/Bayer (Corporate Europe
Observatory, 2020; McHenry, 2018). The reason why it is pertin-
ent to talk about a perennial revolution is the profound effect on
the seed industry the deployment of perennial crops and cultivars
will have. The market for seeds will change dramatically, both in
terms of size and in terms of organization, with perennial crops.

Controlling the sources of agricultural seeds has been crucial
for achieving dominance of the agricultural inputs market,
hence the recent spectacular wave of concentration and control
over the seed industry (Bratspies, 2017; Clapp, 2018, 2021; Dale,
2004; Hendrickson et al., 2017, 2020; Kloppenburg, 2005). The
agriculture and food sectors are dominated by large firms that
sell seeds and agrochemicals, machinery, and data services, and
they thrive on the current agricultural model with heavy state sub-
sidies (Bellmann, 2019; Laborde et al., 2021; Lima & Monteiro,
2015; Scown et al., 2020). They have significant political power
and a strong advantage over pioneers and niche innovations
(Bruckner, 2016; Clapp, 2018; Hendrickson et al., 2017;
Howard, 2015). Understanding these dynamics will be crucial
for formulating strategies and pathways towards a perennial and
more diverse and just agriculture of the future.

In addition to corporate maneuvering of mergers and take-
overs, intellectual property rights are an important field for main-
taining dominance over the agricultural inputs market. To obtain
exclusive rights to a plant variety, it must meet criteria such as
being new, distinct, uniform, and stable (Würtenberger, 2017).
Except for the US, plant varieties cannot be patented but can
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be protected under plant breeder’s rights. However, a genetically
modified plant can be protected by a patent. Both the DNA
sequence and the organism into which the sequence has been
introduced can be subject to patent protection. Therefore, a gen-
etically modified plant may fall under both plant breeder’s rights
and a patent. Plant breeder’s rights are protected for 25 years,
while patent protection lasts for a maximum of 20 years in the
USA (Le Buanec & Ricroch, 2021).

Legal protection of varieties and patents in plant breeding is
essential for research and development. However, the fact that
seeds can reproduce raises questions about whether it violates
plant breeder’s rights and/or patent protection when the buyer,
typically a farmer, produces the seeds themselves. In contrast to
patents, plant varieties protected by plant breeder’s rights may
be freely used for research and further breeding purposes. Thus,
a plant breeding company can utilize a competitor’s plant variety
in its own crossbreeding efforts. However, with patented seeds,
regulations are different. In the case of Bowman v. Monsanto,
the United States Supreme Court argued that allowing simple
copying as a protected use would undermine the value of patents
and reduce innovation incentives (Simmons, 2013).

Considering that commercially cultivated seeds in modern
agriculture are often genetically modified and patented, the
Bowman case implies that farmers become highly dependent on
patent holders, such as Bayer/Monsanto, for their farming opera-
tions. Challenging this system, such as saving seeds for future
planting, can result in severe economic consequences, as seen in
cases like Monsanto vs Scruggs. (Savich, 2007).

The rights conferred by patent protection can be used not only
to protect one’s own inventions, such as GMOs, but also to hinder
the development of competing products (Grzegorczyk &
Głowiński, 2020). One conspicuous strategy is acquiring potential
rival patents. However, it is also possible to obstruct product
development through offensive patent strategies, such as the
‘patent picket fence strategy’ involving pursuing patents closely
related to a competing product, thereby complicating matters
for the competitor (Brown & Levitt, 2023). Small organizations
with a limited patent portfolio may face challenges in sustaining
their existence, as their long-term viability depends on the patents
secured by their competitors.

Thus, the development of perennial crops is likely to be signifi-
cantly delayed if stakeholders who prefer annual crops employ
aggressive patent strategies to secure key patents, such as genes
that control seed shattering of perennial varieties intended for
future commercial use. Various patent strategies employed for
commercial purposes can significantly impact innovation and
development at the forefront of research. There are numerous
examples discussed above that illustrate this effect. These strat-
egies are typically costly, giving larger organizations and compan-
ies an advantage over smaller businesses and publicly funded
research. This means that individual commercial interests may
take precedence over research and development for the greater
good. Intellectual property rights and other legislation that can
be used (or misused) to acquire and strengthen market power
can thus serve as significant protective belts, highlighting the
need for international policy actions aimed at enabling innovation

Figure 2. Conceptual view of how agricultural sciences can be understood as a research program with a hard core and protective belts of science and vested eco-
nomic interests, inspired by Lakatos’ concept of Research Program (Lakatos, 1976). A radically different idea, such as domesticating and breeding completely new
perennial crops, needs to confront both these protective belts.
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for sustainable transitions (Herrero et al., 2020). However, ideas
and initiatives to prevent corporate domination over seeds are fre-
quently discussed, the most advanced initiative so far being the
Open Seed Initiative (Kloppenburg, 2014; Kotschi &
Horneburg, 2018; Montenegro de Wit, 2019).

There has been a strong trend in the concentration of the seed
market globally, and not least in the US where only two firms
control over 70% of the US corn seed market after mergers in
2012 (Figure 3).

Vested commercial and scientific interests evidently influence
the ways in which science is practiced (Druker, 2015; McHenry,
2018; Schurman & Munro, 2010). This can be described and ana-
lyzed aptly by Steven Lukes’ typology of three dimensions of
power (Lukes, 2005; Scherrer, 2022). The first dimension, being
decision making power (also expressed as ‘power over’ some-
body), can be illustrated by several recent and on-going legal pro-
cesses where market leading companies use their legal power to
sue, or threaten to sue, farmers for infringing on patents. The
second dimension is called non-decision-making power (also
expressed as power to prevent/preempt, or agenda setting). It
can be illustrated by the very active role that leading industries
take in influencing political agendas about agriculture, e.g. the
process of renewal of glyphosate in EU in 2023. The third dimen-
sion is called ideological power (also expressed as power to influ-
ence people’s values, preferences, interests, and perceptions). It
can be illustrated by the very active role leading industries take
in sponsoring research. A more comprehensive list of examples
of Lukes’ three dimension is in the supplementary material.

4.3 Beyond seeds, the agricultural treadmill

Even if seeds play a very particular role in the evolution of the cur-
rent dominant practices in agriculture, we need to look at the
broad picture of agricultural technologies. This is best done
through the lens of the Agricultural Treadmill Theory (ATM) for-
mulated in 1958 by Willard Cochrane (Cochrane, 1958; Crews
et al., 2018). Even if the agricultural sector has changed substan-
tially since its formulation, the ATM theory is still valid. In short,

the ATM explains how technological development drives agricul-
ture towards productivism and increasing use of unsustainable
practices. According to ATM theory, agriculture is driven by a
self-reinforcing cycle of technological change, which increases
the efficiency of agricultural inputs and machinery and suppresses
food prices (and farmer income), in turn leading to an impetus to
increase farm sizes (corresponding to economic concentration in
the farming sector) and further technological innovation (Crews
et al., 2018). This process implies that a minority of early
non-risk-aversive adopters reap the benefits of new agricultural
technologies, while the majority of farmers are forced to adopt
in order to reduce their costs under increasing competition and
falling prices. As an illustration, the majority of small farms in
the USA, approximately 90% of all farms, had negative profits
in 2016, in sharp contrast to the 3% of large and very large
farms (Crews et al., 2018). In theory, one could argue that the
treadmill is driving agriculture towards greater resource use effi-
ciency, more narrowly targeted pesticide inputs, and more energy
efficiency. However, agriculture as a market is far from the perfect
competition often assumed by economists (Sykuta, 2013), instead
it is characterized by rapid concentration (Clapp, 2018;
Hendrickson et al., 2001, 2017, 2020; Howard, 2009, 2015) that
drives agriculture towards higher yields rather than environmen-
tal sustainability (Clapp, 2021; Houser & Stuart, 2020).

The agrochemical industry has in recent decades forged a
strong alliance with the seed industry through mergers and take-
overs with enormous legal and political clout. Compared to the
1950s (when the ATM was formulated), we argue that the ATM
has intensified because of the unprecedented structural trans-
formation of the agrochemical and seed industry (Howard,
2009, 2015; Lianos, 2019). Hence it is tempting to make an ana-
logy with the Military-Industrial Complex that President
Eisenhower warned about in his farewell speech in 1961, i.e., an
informal, and to a large extent covert, alliance between a nation’s
military apparatus and the weapons industry forming vested
interests influencing public policy (Adams, 1968). Three condi-
tions for the existence of the military-industrial complex were
essential: (i) a commodity of national strategic importance, (ii)

Figure 3. Market share of the US corn seed market. The data for 2018–20 are estimated, and valid for Bayer instead of Monsanto (after the merger in 2018),
Corteva instead of DuPont/Pioneer (after the merger in 2018). Source of data (Macdonald et al., 2023).
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strong regulatory regime, and (iii) state subsidies. The similarities
with agriculture are striking, hence it is relevant to talk about the
agrochemical industrial complex as a powerful strategic action
field (Fligstein & McAdam, 2011; Olsson & Jerneck, 2018). A rele-
vant example is the lobbying (worth over 45M€ during 2019 and
2020) by the agrochemical industry to dilute EU’s policy for sus-
tainable farming, including the renewal of the license of glypho-
sate (De Lorenzo & Sherrington, 2021). The prospect of
developing perennial grains that would drastically reduce the mar-
ket for seeds, herbicides, and machinery, may even be seen as an
existential threat to the Agrochemical industrial complex.

4.4 Transition theory concerns

Transition theory, here used as an umbrella term including multi-
level perspective (Geels, 2019) and transition management
(Loorbach et al., 2015), is a middle range theory aimed at under-
standing the conditions for social change. The strength of transi-
tion theory for this purpose is that it links structural conditions
with agency (Geels, 2019). Seen through the lens of transition the-
ory, which helps synthesize the epistemic, political, and economic
challenges described above, the perennial revolution faces three
main barriers:

• A perennial revolution is goal-oriented rather than an emergent
transition, generating primarily collective goods (sustainability)
rather than private goods (profits). Such transitions struggle to
get traction because of the lack of clear and powerful actors to
promote change in exchange for benefits. Beneficiaries would
primarily be farmers who cannot keep up in the treadmill,
because the farms are too small to justify investment in the lat-
est and most efficient technologies, while large farms with high
degree of mechanization (i.e. capital-intensive production)
would not benefit, at least not in the first place, because of
their high sunk costs (Barham & Chavas, 2019).

• The new perennial crops and associated practices may not offer
immediate benefits in terms of profit for the early adopters and
may not match price/performance of existing technologies.
Hence, they may not be able to replace existing systems without
policy changes (e.g. taxes, subsidies, regulatory frameworks)
that entail politics and power struggles. Powerful vested interests
in the agricultural inputs industry may try to resist such
changes.

• The agriculture and food sector is dominated by large firms and
alliances with many advantages such as access to distribution
channels, advertising power, service networks, and complemen-
tary technologies (Hendrickson et al., 2001; 2017; 2020;
Howard, 2015). The incumbent regime has a strong position
vis-à-vis pioneers in terms of knowledge, agricultural advisory
services, and experimental farms that can generate evidence-
based information.

5. Four reasons for optimism

Despite the many obstacles, we offer four reasons for optimism
that a perennial revolution of agriculture is imminent in the
next couple of decades. In addition to the rapid advance of
plant breeding technologies that make perennial grains scientific-
ally achievable, which is a fundamental priority and prerequisite
for agricultural change, we understand the four reasons below
as positive signals specifically because of their relevance to
begin addressing the main political economy barriers.

5.1 Perennial polycultures are appealing to farmers

Even though the emerging new perennial crops may not yet offer
immediate benefits to farmers and have not been promoted to
them by powerful actors, there is interest in their adoption. As
commercial perennial grain crops are not yet widely available,
data on their performance in terms of economy and management
is scarce. A few interview or survey-based investigations of farm-
ers’ attitudes towards perennial grains in France, Sweden and USA
have been published (Adebiyi et al., 2016; Lanker et al., 2020;
Marquardt et al., 2016; Wayman et al., 2019). A general conclu-
sion is that information and awareness of perennial grains (par-
ticularly IWG and perennial wheat) has already received
considerable interest among farmers. Motivations or concerns
about adopting new perennial grains vary among farmers, but
fall within three main categories:

• Economics: The potential to compete with conventional annual
crops was among the most important responses in the on-line
survey among farmers in France (n = 319) and the US (n =
88) (Wayman et al., 2019) and in an interview-based study of
farmers who have already adopted IWG (Lanker et al., 2020)
in the US. This contrasts with two interview studies in
Sweden and USA (Michigan and Ohio) where low yield did
not feature as a reason for not adopting the new crops
(Adebiyi et al., 2016; Marquardt et al., 2016).

• Environment: In all the studies, the potential of improving soil
health and reducing soil erosion was among the top priorities
for adopting the new perennial grain crops. In all studies, farm-
ers showed high awareness of the advantages of perennial crops.

• Management: Reducing the time and cost for tillage, weed con-
trol, and spraying featured as a strong incentive for adopting (or
testing) new perennial crops.

5.2 The legitimacy of contemporary agricultural and food
industries is being challenged

Even though the current agriculture and food sector is powerful,
its legitimacy is increasingly being questioned by the public due to
the previously described problems. However, perennial grains
offer new and unique opportunities to address some of these
negative consequences.

Agricultural subsidies contribute to push farmers into the agri-
cultural treadmill of productivism (Lima & Monteiro, 2015) and
subsidies are increasingly under attack for several reasons. They
are accused of distorting the global trade system (Anderson &
Martin, 2005; Hopewell, 2019); driving the emission of greenhouse
gases from agriculture (Laborde et al., 2021; Scown et al., 2020);
excluding small scale producers in the Global South from import-
ant agricultural markets (Clapp, 2006); and exacerbating consolida-
tion of the farming sector towards fewer but bigger farms
(Bruckner, 2016). By reducing the cost of production, perennial
grains offer an opportunity for farmers to break out of the agricul-
tural treadmill, and ultimately the dependence on subsidies.

Consumers are increasingly aware of the negative environmental
consequences of agriculture, particularly emission of greenhouse
gases (European Commission, 2020). Concerns over the environ-
mental consequences, such as emission of greenhouse gases, loss
of biodiversity, eutrophication of coastal waters, and negative
impacts on pollinators are increasingly raised. The main benefits
of perennial grains are the possibilities to improve on a range of
environmental performances as described above, and to reduce
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the workload required to grow food whether from human or ani-
mal labor, or fossil fuel powered machines. Furthermore, the pan-
demic and Russia’s invasion of Ukraine 2022 have revealed the
risks of being dependent on international commodity chains for
food, let alone agricultural inputs such as fertilizers.

5.3 There is growing interest in soil health, which could be a
collective goal and good

Even though collective goods are undervalued by contemporary
societies, there is a complex opportunity at hand for working
toward a collective sustainability good and goal in the valuation
of soil and the ecological services soil provides. A perennial revo-
lution that offers genuine potential for holding and healing soils
aligns with the growing interest in soil health. Powerful actors
could promote goal-oriented ecological change in exchange for
benefits; however, if not challenged, they could also use this
opportunity to retrench current economic systems that feature
private profits over public goods.

Kuhnian paradigm shifts are rare, but in soil science we have
witnessed a change in the understanding of soils which can be
seen as a paradigm shift (Chapin et al., 2009; Dick, 2018;
Lehmann & Kleber, 2015), with important implications for agri-
cultural practices and the political economy of agriculture
(Chabbi et al., 2017). Before some 20 years ago, soils were primar-
ily understood and modelled as a physical-chemical entity
(Chapin et al., 2009; Lavelle, 2000) although early leaders of the
nascent organic agriculture movement of the early 20th century
(as a competing paradigm) held different viewpoints long before
(Howard, 1947). More recently, the understanding of soils as an
ecosystem where the dynamics are primarily driven by biological
processes have paved the way to the new concept of soil health
(Swinnen, 2018) defined as ‘the continued capacity of soil to func-
tion as a vital living ecosystem that sustains plants, animals, and
humans’ (Swinnen, 2018). Agricultural practices for improving
soil health have been concretized as promoting four practices:
minimize disturbance of the soil, maximize living roots, maximize
soil cover, and maximize biodiversity, as promoted by organic
regenerative agriculture (USDA NRCS, 2023). These four prac-
tices exactly mirror the functions of the diverse perennial vegeta-
tion of natural ecosystems that was responsible for building soil
health in the first place.

The shift, subtle as it may sound to lay people, is profound. In a
soil health view, soils are living ecosystems of extreme complexity –
even more complex than the above-ground interaction of plants
and animals. The paradigm shift in and of itself implies a critique
of agriculture because most of the practices in conventional agricul-
ture, such as frequent tilling, application of pesticides, excess supply
of mineral fertilizers, and monocultures with short rotation, are
detrimental to soil health (Olsson et al., 2023). The EU target to
‘ensure that 75% of soils are healthy by 2030’ (Veerman et al.,
2020) is heavily based on promoting soil health, but arguably
unrealistic within the <10 years left (Poulton et al., 2018;
Schlesinger & Amundson, 2018). However, in a somewhat longer
time perspective, a shift to perennial crops would imply a game
changer that would significantly improve the chances of achieving,
and perhaps going beyond, such a goal.

5.4 There are signs of growing interest in public R&D funding

Public entities are beginning to understand the potential for agri-
cultural research on perennial grains to provide public goods.

While the 1980s to 2010s saw an increasing privatization of agri-
cultural research, both in companies and universities (DeLonge
et al., 2016; Fuglie et al., 2012, 2018; Pray & Fuglie, 2015), we
are now seeing some signs of a reversal. For example the recent
development of perennial rice was heavily supported by public
funding (Zhang et al., 2023). Presenting the opportunity to pol-
icymakers and voters, we are seeing a growing interest in public
funds being used for research that will benefit soil, climate, wild-
life, rural cultures, and human health, simultaneously (Minnesota
Department of Agriculture, 2022; NIFA, 2020). This win-win
opportunity has great potential to ignite a renaissance of public
agricultural research. While public agricultural research has
been on a downward trend with institutions shrinking their bud-
gets for decades (Nelson & Fuglie, 2022), the opportunity to offer
something of great value to society broadly is a great opportunity
to reclaim the public-good mission for which some of these insti-
tutions were founded centuries ago. Public funding agencies over
the past 5 years have just begun to support this research, an indi-
cation that democratic ideals may still influence scientific
research. Many companies are striving to be at the forefront of cli-
mate solutions in agriculture. This presents a whole new array of
challenges, for example as discussed above with increased interest
in soil health valuation, but it is a clear opportunity to be used.

6. Concluding remark and research priorities

We believe that the time is ripe for the onset of a perennial revo-
lution. The goal of this revolution is the rapid development of
entirely new high-yielding perennial grain crops that can replace
the current repertoire of annuals. As the diversity of viable peren-
nial pulse, oilseed and cereal crops expands, so will opportunities
to experiment with ecologically functional polycultures and other
cropping systems thus facilitating the replacement of input
intensification with ecological intensification. The result will be
cropping systems that preserve the soil, store carbon efficiently,
require minimal inputs in terms of commercial energy and
machinery, utilize available water effectively, are increasingly self-
sufficient in nitrogen and can unlock stores of phosphorous in
agricultural soils. Engaging in this endeavor for the benefit of sus-
tainable agriculture will be an exciting research challenge for plant
scientists, probably more exciting than incrementally tweaking the
existing annual cultivars. It will also foster social science, human-
ities, and transdisciplinary research on the new sociocultural and
economic dynamics of rural societies before, under, and after a
perennial revolution. Nevertheless, the revolution is likely to
meet strong resistance from the agrochemical industrial complex
and societal strategies to address this predicted challenge must be
designed.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/sus.2024.27.
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